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REMERCIEMENTS
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Résumé . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

2.2 Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

2.3 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

1



2.4 Related topics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

2.4.1 General two dimensional domains . . . . . . . . . . . . . . . . . . . . 73

2.4.2 Bubble clusters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3 Multiphase spectral problems 77
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Introduction

Dans ce projet de thèse, nous étudions du point de vue qualitatif et numérique quelques problèmes

d’optimisation de formes associés à des fonctionnelles spectrales et/ou géométriques. De façon

générique, un problème de ce type peut être formulé comme

min{J(Ω) : Ω ∈ Uad},

où J est une fonctionnelle coût définie sur une classe d’ensembles (ouverts, quasi-ouverts ou

mesurables) notée Uad.

Nous avons organisé la présentation de ce mémoire, suivant les problèmes étudiés :

• optimisation de la k-ème valeur propre du Laplacien avec des conditions de Dirichlet au

bord, sous contrainte de périmètre (chapitre 1),

• partitions d’un domaine donné en cellules d’aire prescrite minimisant une longueur ani-

sotrope des contours (chapitre 2),

• un problème d’optimisation de formes multiphasique pour des fonctionnelles spectrales

(chapitre 3 ),

• optimisation de fonctionnelles associées au spectre de Steklov et Wentzell (chapitre 4),

• partitions optimales de surfaces dans R3, pour des fonctionnelles associées au spectre de

l’opérateur Laplace-Beltrami avec conditions de Dirichlet, ainsi que pour des fonction-

nelles purement géométriques (chapitre 5).

Concernant l’analyse qualitative de ces problèmes, mes contributions portent sur l’étude des

conditions d’optimalité dans le cadre des valeurs propres multiples sous contrainte de périmètre,

l’analyse de la stabilité du spectre de Steklov pour des perturbations géométriques du domaine,

l’analyse des points de jonction des cellules dans une partition optimale, l’estimation de l’erreur

dans le calcul du spectre de Steklov par une méthode de type solutions fondamentales.
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Dans tout ce travail, un point commun des méthodes numériques mises en œuvre est l’absence

de maillage spécifique associé aux domaines variables. En effet, on utilise l’une des deux ap-

proches suivantes :

1. Pour des problèmes de partitionnement optimal, il convient d’identifier un ensemble Ω

par sa fonction caractéristique et ensuite de l’approcher par une fonction de champ de

phase. Ceci nous permet à la fois de travailler sur un maillage et un domaine fixe et de

transformer la condition géométrique de partition en une condition algébrique, plus facile

à appréhender numériquement.

2. Pour des problèmes d’optimisation de formes associés aux fonctionnelles spectrales, nous

utiliserons systématiquement une approche basée sur des solutions fondamentales. Le dé-

veloppement de cette méthode dans le contexte de l’optimisation de formes a été initié

par Antunes, Freitas, Osting, qui se sont concentrés sur des conditions au bord de type

Dirichlet, Robin ou Neumann. Cette méthode s’avère à la fois très rapide et très précise.

Dans ce mémoire, nous l’avons étendue à des problèmes de Steklov et Wentzell, mais

aussi pour l’opérateur Laplace-Beltrami associé aux surfaces bi-dimensionnelles de R3

(voir chapitres 4 et 5)

Le manuscrit est divisé en cinq chapitres qui traitent de problèmes distincts. On peut identi-

fier des connexions entre certains chapitres, mais chaque chapitre peut être lu indépendamment

des autres. Les chapitres 1, 3 et 4 font l’objet d’articles soumis pour publication.

Dans la suite de l’introduction, on présente plus en détail les problèmes considérés ainsi que

les principaux résultats.

Chapitre 1

Dans ce chapitre on étudie le problème de la minimisation de la k-ème valeur propre du

laplacien Dirichlet sous contrainte de périmètre. Ce problème a été étudié pour la première fois

par D. Bucur, G. Buttazzo et A. Henrot dans [28] dans le cas particulier k = 2 en dimension

deux. C’est le premier cas intéressant car pour k = 1 la forme optimale est connue : c’est une

boule en toute dimension. Les auteurs ont prouvé que la forme optimale (notée dans la suite Ω2)

existe et est de classe C∞. De plus, ∂Ω2 ne contient pas de segments ou d’arcs de cercles. G. de

Philippis et B. Velichkov ont prouvé dans [44] un résultat général d’existence pour le problème

min
Per(Ω)=c

λk(Ω),Ω ⊂ R
n (1)

et le fait que les formes optimales sont de classe C1,α en dehors d’un ensemble de mesureHn−8

nulle.

Pour k ≥ 2 on ne connaı̂t pas avec exactitude les formes optimales solutions de ce problème,

ce qui motive une recherche numérique de ces formes. Une première étape a été d’utiliser une

méthode développée par B. Osting [78] et P. Antunes, P. Freitas [9], qui consiste à représenter

la frontière de la forme Ω par sa fonction radiale. Évidement, cette procédure n’est possible
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que si Ω est étoilé, mais dans le cas du problème (1) on peut voir facilement qu’en dimension

deux la forme optimale est nécessairement convexe, et est par conséquence étoilée. La fonction

radiale est approchée par une série de Fourier tronquée. Ainsi cette discrétisation fournit une

approximation de λk(Ω) par une fonction qui ne dépend que d’un nombre fini de paramètres.

Un algorithme d’optimisation basé sur le gradient nous permet alors de trouver de bonnes ap-

proximations numériques des formes optimales.

Il n’est pas difficile de voir que le problème (1) est équivalent, à une homothétie près, à

la minimisation de λk(Ω) + Per(Ω). Récemment, chacune des deux composantes de cette

expression a été étudiée numériquement en utilisant une procédure de relaxation. Dans chacune

de ces deux procédures, on remplace la forme Ω par une fonction ϕ : D → [0, 1]. Ici ϕ est

destinée à représenter une approximation de χΩ (la fonction caractéristique de Ω). Le domaine

ouvert et bornéD est simplement une boı̂te choisie assez large pour que la forme optimale y soit

contenue. Il est important de remarquer que le problème (1) admet une solution sans imposer

une contrainte de boı̂te et que les solutions ont un diamètre borné. Par conséquent, si la boı̂teD

est assez large, les problèmes avec ou sans contrainte de boı̂te sont équivalents.

La valeur propre λk(Ω) a été approchée en utilisant une formulation avec pénalisation du

type

−∆u + C(1− ϕ)u = λku, u ∈ H1
0 (D). (2)

Cette formulation a été utilisée dans [18] pour étudier numériquement un problème de parti-

tionnement spectral. La même formulation nous a permis d’étudier un problème d’optimisation

multiphase pour des valeurs propres décrites plus loin dans le chapitre 3. Le périmètre admet

une relaxation classique par Γ-convergence, en utilisant un théorème dû à Modica et Mortola,

cPer(Ω) ≈ ε

∫

D

|∇ϕ|2 + 1

ε

∫

D

ϕ2(1− ϕ)2 (3)

Cette approximation du périmètre a été utilisée par É. Oudet dans l’étude des partitions en

cellules de même aire qui minimisent la somme des périmètres en deux et trois dimensions.

La question est à présent de savoir si on peut combiner ces deux approches pour trouver

une approximation de la fonctionnelle λk(Ω) + Per(Ω). La réponse est ici positive, et un

résultat d’approximation par Γ-convergence est proposé dans le chapitre 1. Ce résultat de Γ-

convergence nous suggère une approche numérique que nous avons mise en œuvre, avec des

résultats très satisfaisants en dimension deux et trois.

Les résultats qualitatifs de [28] ne peuvent, a priori, pas être généralisés pour k quelconque

car on ne sait pas si la valeur propre optimale λk(Ω) est simple. En effet, les calculs numériques

effectués suggèrent qu’à quelques exceptions près, la valeur propre optimale λk(Ω) est multiple.

Il est important de noter qu’une valeur propre λk est différentiable si et seulement si elle est

simple. Comme conséquence, on ne peut utiliser les propriétés de différentiabilité pour trouver

une condition d’optimalité dans le cas où λk est multiple. Pour pouvoir déduire des propriétés

qualitatives que dans le cas général, on aurait besoin d’une condition d’optimalité qui peut être
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écrite même dans ce type de situation. Une telle condition a été trouvée en [47] pour le problème

avec contrainte de volume. En utilisant des outils similaires, nous avons réussi à montrer que

si Ω est un minimiseur local pour le problème (1), de classe C3, alors il existe une famille de

fonctions propres (ui)
m
i=1 associées aux λk telle que

m∑

i=1

(∂nui)
2 = H,

où H est la courbure moyenne du bord de Ω. Ce résultat nous permet de trouver quelques

propriétés qualitatives des minimiseurs :

1. Un minimiseur ne peut pas contenir de parties plates dans sa frontière.

2. En utilisant un processus de bootstrap similaire à celui de [28], on peut déduire que les

minimiseurs sont de classe C∞ s’ils sont de classe C3. Ainsi pour déduire la régularité

des solutions du problème (1), il suffit de prouver qu’un minimiseur de classe C1,α est

C3.

La fin du chapitre présente deux autres études numériques concernant les valeurs propres

du Laplacien Dirichlet. La première concerne la minimisation de λk(Ω) sous contrainte d’aire

en dimension deux. On améliore les résultats de [9] en faisant les calculs pour k ∈ [5, 21]. La

deuxième est une étude numérique de la conjecture de Polya. Cette conjecture affirme que la

première valeur propre d’un polygone d’aire fixée à nombre de côtés donné est minimisée par

le polygone régulier. On vérifie cette conjecture pour les polygones avec au plus 15 côtés. Pour

calculer les premières valeurs propres des polygones réguliers on utilise une méthode basée sur

des solutions fondamentales de l’équation elliptique associée.

Resumé et originalité : On montre un résultat d’approximation par Γ-convergence de λk + Per,

qui nous permet de formuler et d’implémenter une méthode nouvelle pour calculer numériquement les

optimiseurs de (1). On montre une condition d’optimalité pour (1), qui est valide même dans le cas où

la valeur propre optimale est multiple. Cette condition d’optimalité nous permet de trouver quelques

propriétés concernant la structure et la régularité des ensembles optimaux et d’évaluer la qualité des

résultats numériques.

Chapitre 2

Dans ce chapitre on étudie un problème de partitionnement optimal. Le coût associé à

chaque ensemble de la partition est un périmètre anisotrope. On pourra considérer, pour un

ensemble assez régulier, la définition suivante du périmètre classique :

Per(Ω) =

∫

∂Ω

dσ =

∫

∂Ω

‖~n‖dσ.

On voit que dans cette formulation on mesure toute partie de ∂Ω avec le même poids, sans tenir

compte de son orientation. Si à la place de la norme euclidienne on considère une autre norme

ϕ qui privilégie certaines directions, on définit alors un périmètre qualifié de anisotrope associé
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à ϕ pour la quantité :

Perϕ(Ω) =

∫

∂Ω

ϕ(~n)dσ.

Ainsi, le problème consiste à trouver la partition d’un domaine D en un nombre fixe de sous

parties de même aire telles que la somme des périmètres anisotropes est minimisée.

Pour étudier ce problème, on utilise une relaxation du périmètre anisotrope en utilisant la

Γ-convergence: pour ε→ 0 les minimiseurs des fonctionnelles

ε

∫

D

ϕ(∇u)2 + 1

ε

∫

D

u2(1− u)2 (4)

convergent dans la topologie L1(D) vers un minimiseur de 1
3
Perϕ(·). L’avantage de cette repré-

sentation est qu’en étudiant des problèmes de partitionnement optimal, la condition ”(Ωi) est

une partition de D” devient

ϕ1 + ϕ2 + ... + ϕN = 1 sur D.

Cette dernière condition est plus facile à implémenter numériquement. L’approximation du péri-

mètre total d’une partition est simplement la somme des approximations du périmètre anisotrope

de chaque cellule de la partition. La preuve du résultat théorique de Γ-convergence n’est pas

immédiate, car si on a deux suites Fε, Gε qui Γ-convergent vers F et G, respectivement, il n’est

pas vrai que Fε + Gε
Γ−→ F + G. Un algorithme de minimisation et des résultats numériques

sont présentés.

Nous terminons ce chapitre en montrant une extension de l’étude présentée dans [80] dans

le cas isotrope, en considérant des domaines généraux et une formulation utilisant des éléments

finis. Cette nouvelle formulation nous permet d’améliorer certains des résultats de [80]. Par

ailleurs, en considérant des aires fixées qui ne sont pas toutes égales, on peut étudier le problème

des configurations d’équilibre des bulles de savon.

Resumé et originalité : On prouve un résultat de Γ-convergence qui nous permet d’étudier numé-

riquement les partitions optimales pour certains périmètres anisotropes. On présente une formulation

basée sur des éléments finis qui nous permet d’étudier les partitions optimales sur des ensembles 2D

généraux.

Chapitre 3

Ce chapitre traite quelques aspects qualitatifs et numériques d’un problème multiphase spec-

tral. Il s’agit de l’étude du problème

min
(Ωi)∈A

h∑

i=1

(λ1(Ωi) + α|Ωi|) , (5)

où A est l’ensemble des ouverts (Ωi)
h
i=1 contenus dans un ouvert borné D. On note que pour

α = 0 on retrouve le problème de partition spectrale étudié dans [18]. Le cas α > 0 a été

étudié dans [31], le but ici est d’étudier si on observe numériquement les propriétés qualitatives

obtenues dans [31]. Une des propriétés intéressante dans le cas α > 0 est le fait que (Ωi) n’est
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plus une partition deD. Par ailleurs, on ne peut pas avoir des points triples x ∈ ∂Ωi∩∂Ωj∩∂Ωk

(i, j, k distincts). Les tests numériques fournissent des informations complémentaires : les

formes optimales ne présentent pas d’angles et on ne peut pas avoir de points triples sur ∂D.

En fait l’ensemble de ces observations peut être déduit des résultats prouvés en [31] si ∂D a la

propriété du disque extérieur. On établit aussi dans ce chapitre une formule de monotonie pour

deux phases qui nous permet de prouver le résultat suivant : si ∂D est Lipschitz, alors on ne

peut pas avoir des points triples sur la frontière.

Concernant la partie numérique on utilise l’approche de [18], où on calcule les valeurs

propres à l’aide de la formulation pénalisée (2). Le point clé est de pouvoir gérer la condition de

non-intersection. Une manière astucieuse de faire ça est de considérer une phase supplémentaire

pour modéliser l’espace vide. Ce processus transforme le problème multiphase en un problème

de partition optimale, avec une phase dont la fonction coût n’apparaı̂t pas.

On réalise une étude numérique et théorique de l’erreur du calcul des valeurs propres fait

en utilisant la formulation (2). On compare les dix premières valeurs propres obtenues avec

celles données par MpsPack [14]. En utilisant des résultats de [29], on trouve aussi une borne

théorique pour l’erreur relative obtenue en calculant les valeurs propres par (2). On observe

qu’il y a une concordance intéressante entre les erreurs observées numériquement et ce résultat

théorique. On calcule quelques configurations optimales sur des régions rectangulaires en util-

isant des différences finies et on propose un cadre pour étudier des régions plus générales, par

éléments finis ou différences finies.

Resumé et originalité : On prouve une estimation quantitative de l’erreur faite en utilisant la formu-

lation (2). On ajoute une phase supplémentaire pour transformer le problème multiphase en un problème

de partition. On étudie le problème sur des domaines généraux, et on montre que la méthode peut être

étendue aux surfaces tridimensionnelles.

Chapitre 4

Ce chapitre traite de quelques aspects théoriques et numériques concernant des problèmes

aux valeurs propres définis sur le bord d’un ensemble régulier. On appelle valeur propre de

Wentzell correspondant au β > 0, une valeur σ pour laquelle l’équation suivante admet une

solution non-triviale : 



−∆u = 0 dans Ω,

−β∆τu+ ∂nu = σu sur ∂Ω,
(6)

où ∆τ est le Laplacien Beltrami associé à ∂Ω. Dans le cas β = 0, on retrouve le problème de

Steklov. Les valeurs pour lesquelles le problème (6) admet des solutions non triviales forment

une suite croissante divergente

0 = σ0 ≤ σ1 ≤ σ2 ≤ · · · → ∞.

La première partie de ce chapitre étudie le comportement du spectre de l’opérateur de

Steklov associé à différents types de convergences d’ensembles. Ce comportement est impor-

tant quand on regarde des problèmes d’existence d’ensembles optimaux pour des problèmes
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d’optimisation de fonctionnelles qui dépendent du spectre de l’opérateur Steklov. À ce jour,

seuls des résultats d’existence pour l’optimisation d’une fonctionnelle qui dépend du spectre

de Steklov sont connus en identifiant précisément la forme optimale (par exemple le disque).

En général, trouver la forme optimale explicitement n’est pas possible, ce qui rend ce type

d’approche essentielle. On peut observer ce fait dans la partie numérique de ce chapitre pour

le problème max
|Ω|=1

σ2(Ω). Le résultat de continuité/semicontinuité supérieure prouvé dans cette

première partie nous permet de montrer que sous certaines contraintes de régularité sur Ω (con-

vexité ou propriété de ε-cone) on peut déduire des résultats généraux d’existence pour des

problèmes d’optimisation associés à des éléments du spectre de Steklov.

Le résultat clé qui nous permet de déduire ces propriétés de continuité/semincontinuité est

un résultat de convergence des traces des fonctions Sobolev sur des frontières variables. On

observe en plus, qu’une condition suffisante pour que le spectre de Steklov d’une suite (Ωn)

converge vers le spectre de Steklov du domaine Ω est le fait que les périmètres des ensembles

(Ωn) convergent vers le périmètre de Ω.

La deuxième partie de ce chapitre traite de l’étude numérique des problèmes d’optimisation

pour les problèmes de Steklov et de Wentzell. Un premier aspect est le calcul des valeurs propres

Steklov/Wentzell de manière efficace et précise. Une méthode qui a suscité beaucoup d’intérêt

récemment consiste à utiliser des solutions fondamentales. Étant donne que l’on cherche des

fonctions qui sont harmoniques à l’intérieur de Ω, on peut travailler directement avec des fonc-

tions harmoniques fondamentales. Si on choisit des points source (yi)
n
i=1 à l’extérieur de Ω et

que l’on considère les fonctions harmoniques φi = log |x−yi|, alors toute combinaison linéaire,

u = α1φi + ...+ αnφn

est harmonique dans Ω. Pour trouver une solution il reste ainsi à imposer la condition au bord

du domaine. On impose cette condition au bord sur un nombre fini de points sur Ω, et on se

retrouve avec un problème aux valeurs propres généralisé.

On observe dans des cas particuliers, pour lesquels les valeurs propres sont connues, comme

le disque, que la méthode est très précise. Dans le cas général, on fait une comparaison avec

des méthodes avec maillage en utilisant FreeFem++. On observe qu’en raffinant le maillage, les

valeurs données par FreeFem++ s’approchent des valeurs obtenus avec notre methode utilisant

les solutions fondamentales. Il est possible de donner une borne théorique de l’erreur en utilisant

une méthode similaire à celle présenté par Moler et Payne en [73]. L’idée est de considérer le

problème aux valeurs propres approchées




−∆uε = 0 dans Ω

−β∆τuε + ∂nuε − σεuε = fε sur ∂Ω
(7)

et de remarquer que si ‖uε‖ = 1 et ‖fε‖L2(∂Ω)(= δ) est petit, alors σε est proche d’une vraie

valeur propre de l’opérateur de Steklov/Wentzell, avec une erreur relative d’ordre O(δ). Grâce
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à cette observation, on déduit numériquement que la precision de notre méthode peut atteindre

10−6.

Une fois convaincu que la méthode fournit de bonnes estimations des valeurs propres, nous

avons mené à bien des calculs d’optimisation en utilisant les formules de dérivées de forme

données de [42]. On travaille, dans un premier temps, dans le cas des formes simplement-

connexes étoilées, pour s’appuyer sur une représentation radiale. On retrouve les résultats clas-

siques en faisant des tests concernant la minimisation ou maximisation de certaines quantités

dépendant du spectre Steklov/Wentzell. On vérifie plusieurs conjectures proposées par Hersch,

Payne et Schiffer [67], et on observe les comportements qualitatifs des optimiseurs.

Pour traiter les ensembles simplement connexes en général, et ne pas restreindre l’étude aux

formes étoilées, on propose une méthode légèrement différente, qui consiste à paramétrer la

courbe en coordonnées cartésiennes t ∈ [0, 2π], t 7→ (x(t), y(t)) et de représenter x, y par des

séries de Fourier.

Resumé et originalité : On présente un résultat théorique de (semi-)continuité du spectre de l’opérateur

de Steklov, qui permet d’établir l’existence de formes optimales. On propose une méthode numérique

pour calculer de manière rapide et efficace les premières valeurs propres de Steklov/Wentzell, et on

mène à bien plusieurs expériences d’optimisation qui nous permettent de tester et de proposer un certain

nombre de conjectures. On propose une approche nouvelle en optimisation numérique, qui consiste à

paramétrer séparément les deux coordonnées du bord du domaine. Cette méthode permet de traiter des

problèmes généraux dans le cas de formes simplement connexes.

Chapitre 5

Ce chapitre traite du problème des partitions optimales sur des surfaces tridimensionnelles.

On utilise la méthode générale présentée aux chapitres 2 et 3 : on représente chaque cellule de

la partition par une fonction à valeurs dans [0, 1]. Ainsi, la condition de partition est simplement

le fait que la somme des fonctions représentatives est égale à 1.

Dans la première partie du chapitre on étudie les partitions en cellules de même aire qui

minimisent la somme des périmètres géodésiques. Le cas bidimensionnel a été étudié par Cox

et Flikkema [39] en utilisant le logiciel Evolver [21] et par Oudet [80] en utilisant une relax-

ation par Γ-convergence. L’avantage d’une méthode de relaxation est le fait qu’on ne doit pas

prescrire la topologie de la configuration optimale. Les points triples/multiples sont gérés de

manière naturelle sans poser de problèmes d’implémentation. Pour étudier le cas des surfaces,

on propose dans un premier temps un résultat de relaxation pour le périmètre géodésique en

généralisant le résultat de Modica et Mortola [72]. Ensuite on décrit un algorithme qui nous per-

met de raffiner l’optimisation en faisant des calculs exacts pour l’aire et le périmètre dans le cas

particulier de la sphère. Ces calculs nous permettent de voir que nos résultats sont comparables

a ceux connus dans la littérature.

Le deuxième problème étudié dans ce chapitre traite des partitions d’une surface qui min-

imisent leur somme des premières valeurs propres de l’opérateur de Laplace-Beltrami. Ce

problème a été étudié récemment par Elliott et Ranner [48] avec une méthode de pénalisation
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développée dans [33]. Le premier obstacle à franchir concerne le calcul du spectre de Laplace-

Beltrami pour un ensemble contenu dans une surface. Une méthode directe consisterait à

mailler la surface et à utiliser des espaces d’éléments finis. Une autre méthode, plus précise

et plus rapide dans certains cas, est donnée en utilisant des solutions fondamentales. Au lieu

de considérer des fonctions qui sont définies seulement sur la surface, on peut considérer leur

extension harmonique en dimension trois. On analyse la précision de cette méthode en étudiant

quelques sous domaines de la sphère unité pour lesquels les valeurs propres ont une expression

analytique.

Afin d’étudier les partitions optimales, on utilise une formulation pénalisée similaire à (2).

Après avoir trouvé les fonctions densités qui sont proches de la partition optimale, on regarde

l’interface entre deux phases et on observe que les frontières sont proches d’arcs géodésiques.

Dans le cas de la sphère on extrait la structure topologique, et on fait une optimisation raffinée

en supposant que les ensembles sont des polygones géodésiques. Pour calculer la valeur propre

de chaque polygone, on considère le maillage de chaque polygone et on utilise successivement

la méthode des solutions fondamentales et la méthode des éléments finis.

Resumé et originalité : On justifie et on propose une méthode pour trouver les partitions minimales

pour le périmètre et pour des fonctionnelles spectrales sur des surfaces. On propose une méthode basée

sur les solutions fondamentales pour calculer le spectre de Laplace-Beltrami d’un sous ensemble d’une

variété.
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CHAPTER 1

Optimization of the Dirichlet Laplacian

eigenvalues - perimeter constraint

Résumé

Dans ce chapitre on étudie le problème de minimisation de la première valeur propre du Lapla-

cien Dirichlet sous contrainte de périmètre: min
Per(Ω)=1

λk(Ω). Le problème d’optimisation sous

contrainte de volume: min
|Ω|=1

λk(Ω) a été très largement étudié, et malgré les travaux intensifs

qui ont été faits, on sait très peu des choses concernant les minimiseurs de cet problème pour

k ≥ 3. Le problème sous contrainte de périmètre a été étudié que très récemment. Le cas k = 2

en dimension deux a été étudié par D. Bucur, G. Buttazzo and A. Henrot [28]. Les auteurs ont

prouvé que la forme optimale existe et qu’elle est de classe C∞. En plus, un résultat qualitatif

a été donné: la forme optimale ne contient ni segments ni arcs des cercles sur son bord. Le

cas général a été étudié par G. Philippis et B. Velichkov en [44]. Ils ont prouvé que la solution

existe pour tout k et toute dimension. De plus, la solution est bornée, connexe et son bord est

de classe C1,α en dehors d’un ensemble de mesure d − 8. Le contenu de ce chapitre est un

article écrit en collaboration avec Édouard Oudet, soumis pour publication dans SIAM Journal

on Control and Optimization.

Les résultats qualitatifs prouvés pour k = 2, d = 2 montrent que les minimiseurs n’ont pas

une structure simple et les trouver analytiquement n’est pas envisageable. Il y a ainsi un réel

intérêt de trouver numériquement les ensembles optimaux. Des études similaires ont été faites

pour l’optimisation sous contrainte de volume par É. Oudet [79] et P. Antunes, P. Freitas [9].

La première contribution originale de ce chapitre est un résultat théorique de Γ-convergence

pour approximer la fonctionnelle λk(Ω)+Per(Ω). La recherche de ce résultat de Γ-convergence

a été motivée par quelques calculs numériques.

• É. Oudet a étudié dans [80] les partitions optimales en cellules de même aire qui min-

imisent la somme des périmètres en utilisant l’approximation par Γ-convergence du périmètre
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(le théorème de Modica et Mortola)

• B. Bourdin, D. Bucur et É. Oudet ont étudié le problème de partitionnement spectral en

dimension deux, en utilisant une relaxation pour calculer les valeurs propres.

L’idée principale est de connecter ces deux résultats pour retrouver l’approximation désirée. On

souligne le fait que notre résultat de Γ-convergence n’est pas trivial, car la Γ-convergence n’est

pas stable pour la somme.

La deuxième contribution originale est la construction d’une méthode numérique à partir

de ce résultat de Γ-convergence. On utilise cette méthode pour étudier les minimiseurs pour

k ≤ 20 en dimension deux et k ≤ 10 en dimension trois. Pour vérifier les résultats on utilise une

méthode de paramétrisation radiale et le logiciel MpsPack [14] pour trouver une approximation

assez précise des ensembles optimaux. On extrait ensuite les ensembles de niveaux égal à

0.5 des densités optimales obtenues grace à la la méthode basée sur la Γ-convergence. En

comparant les résultats obtenus par ces deux méthodes on voit que la méthode basée sur la Γ-

convergence est très précise. On mentionne le fait que la méthode basée sur MpsPack permet

de faire des calculs d’optimisation pour k ∈ [1, 50] (et peut être plus). Les résultats obtenus ont

été comparés avec ceux obtenus par P. Antunes et P. Freitas récemment en [10]. En dimension

deux on trouve quelques formes optimales qui ont une valeur optimale plus basse que celles

d’Antunes et Freitas. En dimension trois la situation est inversée. Antunes et Freitas ont étudié

les formes optimales pour k ∈ [1, 20] et nos formes optimales sont proches pour k ∈ [1, 6]. Pour

k ≥ 7 leurs résultats sont meilleurs. Cet effet est dû au manque de précision en dimension trois

de la méthode basée sur la Γ-convergence.

La troisième contribution originale consiste à trouver une condition d’optimalité générale,

qui peut être écrite même quand les valeurs propres optimales sont multiples. Un résultat clas-

sique nous dit qu’une valeur propre d’un ensemble Ω est différentiable par rapport à une per-

turbation régulière si et seulement si elle est simple. Les résultats numériques obtenus nous

montrent que c’est n’est pourtant pas toujours le cas. On utilise des méthodes similaires à celles

utilisées par El-Soufi et Ilias [47] pour déduire que si Ω est un minimiseur local du λk sous

contrainte de périmètre et si Ω est de classe C3, alors il existe une famille de fonctions propres

(ui)
m
i=1 telle que

(∂nu1)
2 + ... + (∂num)

2 = H,
où H est la courbure moyenne du bord de Ω. Cette condition d’optimalité nous permet de

prouver les résultats qualitatifs suivants :

• La frontière d’un ensemble optimal ne contient pas des parties plates ;

• Cette condition d’optimalité permet d’utiliser un processus de bootstrap similaire à celui

qui a été utilisé dans [28] pour conclure que Ω est de classe C∞.

Pour conclure la question de régularité pour le problème sous contrainte de périmètre, il est

suffisant de pouvoir passer deC1,α àC3. Afin de vérifier les résultats numériques, on cherche nu-
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mériquement les fonctions propres qui donnent l’erreur minimale dans la condition d’optimalité.

Pour k ≤ 15 on trouve des erreurs d’ordre inférieur à 10−4, ce qui signifie qu’il est très probable

que les solutions numériques sont des minimas locaux.

En fin de ce chapitre on utilise quelques outils développés au cours de l’étude précédente

pour étudier deux problèmes spectraux.

1. On continue l’étude du problème sous contrainte d’aire en dimension deux pour k ∈
[5, 21]. L’étude de Freitas et Antunes [9] s’arrêtant à k = 15.

2. On vérifie numériquement la conjecture de Polya pour des polygones ayant n arêtes avec

n ∈ [5, 15]. Les résultats numériques confirment le fait que les polygones réguliers min-

imisent la première valeur propre sous contrainte d’aire. Ces tests numériques sont faits

a l’aide de deux ingrédients:

• en utilisant la méthode des solutions fondamentales on construit un algorithme in-

spiré de [4] pour calculer les valeurs propres d’un polygone.

• on déduit l’expression de la dérivée de la première valeur propre par rapport aux

coordonnées des sommets du polygone.

1.1 Introduction and previous results

Given a measurable set Ω ⊂ Rd such that the injection H1
0 (Ω) →֒ L2(Ω) is compact, it is

possible to define the eigenvalues of the Dirichlet Laplace operator associated to Ω. These

eigenvalues satisfy 


−∆u = λu in Ω

u ∈ H1
0 (Ω).

It is possible to write a variational characterization using the Rayleigh quotients in the following

way:

λk(Ω) = min
Sk⊂H1

0 (Ω)
max
u∈Sk

∫
Ω
|∇u|2∫
Ω
u2

,

where the minimum is taken over all k-dimensional subspaces Sk ⊂ H1
0 (Ω). This variational

characterization allows an immediate proof of the following two important properties of λk:

(i) If Ω1 ⊂ Ω2 then λk(Ω1) ≥ λk(Ω2).

(ii) If t > 0 then λk(tΩ) =
1

t2
λk(Ω).

It is a natural shape optimization problem to consider the minimization of λk(Ω) under certain

constraints. The first reference to such a problem can be found in the book The Theory of Sound

authored by lord Rayleigh [82]. The optimization problem

min
|Ω|=c

λk(Ω) (1.1.1)
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has been extensively studied in the past decades. Despite the large amount of progress made

in this field of study there are still many open questions concerning the optimization of the low

eigenvalues of the Dirichlet Laplacian.

The first notable result is due to Faber and Krahn. They proved that λ1(Ω) is minimized

by a ball under volume constraint. Polya and Szego proved that λ2(Ω) is minimised by two

balls under volume constraint. For the case k ≥ 3 the shapes of the minimizers are unknown.

Numerical studies of the optimal shapes were performed, initially by É. Oudet in [79] for k =

3, ..., 10, and more recently by P. Antunes, P. Freitas [9] for k ≤ 15. An extension of these

computations up to k = 21 can be found in Section 1.8.1.

In recent articles [28],[44] authors considered a different problem, where the measure con-

straint was replaced by a perimeter constraint:

min{λk(Ω) : Ω ⊂ R
d,Ω open ,Per(Ω) = c}. (1.1.2)

It is not difficult to see that problem (1.1.2) is equivalent to

min{λk(Ω) + Per(Ω) : Ω ⊂ R
d,Ω open} (1.1.3)

in the sense that any solution of (1.1.2) is homothetic to a solution of (1.1.3) and conversely. We

give a proof in the following proposition.

Proposition 1.1.1. The problems (1.1.2) and (1.1.3) have homothetic solutions.

Proof: We know that the above problems have solutions in Rd and moreover, for (1.1.2) if

we change the value of the parameter c the optimal forms change only homothetically.

Consider Ω∗
c a solution for (1.1.2). Then we can find t0 for which

f(t) = λk(tΩ
∗
c) + Per(tΩ∗

c) =
λk(Ω

∗
c)

t2
+ td−1 Per(Ω∗

c)

is minimal. Denote Ω0 = t0Ω
∗
c . We claim that Ω0 does not depend on c. Indeed, if f ′(t) = 0

then we have

− 2

t3
λk(Ω

∗
c) + (d− 1)td−2 Per(Ω∗

c) = 0

so t0 =
d+1

√
2λk(Ω∗

c)

(d− 1) Per(Ω∗
c)

. This means that

Per(Ω0) = td−1
0 Per(Ω∗

c) =
d+1
√

2λk(Ω∗
c) Per(Ω

∗
c)

2

and we note that the last term is scale invariant. Therefore Ω0 is the same no matter what c we

choose.

Pick now Ω ∈ R
d arbitrary and consider Ω1 = αΩ0 a solution of

min
Per(S)=Per(Ω)

λk(S).
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Then we have

λk(Ω) + Per(Ω) ≥ λk(Ω1) + Per(Ω1) ≥ λk(Ω0) + Per(Ω0)

where in the last inequality we have used the fact that Ω0 is optimal for λk() + Per() among all

its homothetic transforms. Thus we have proved that a solution of (1.1.2) produces a homothetic

solution of (1.1.3).

Conversely, if we have a solution Ω0 of (2) then it is obvious that Ω0 is a solution for

min
Per(Ω)=Per(Ω0)

λk(Ω).

�

In the case k = 1, the solution to problem (1.1.2) is obviously a ball as a consequence of

the isoperimetric inequality and the Faber-Krahn inequality (using the formulation (1.1.3)). The

case k = 2, d = 2 was considered by D. Bucur, G. Buttazzo and A. Henrot in [28]. The authors

provided that the optimal shape exists and it has C∞ regularity. Further qualitative results are

given:

• The optimal shape does not contain segments or arcs of circles in its boundary.

• There are exactly two points on the boundary of the optimal shape where the curvature

vanishes.

A numerical computation of the optimizer, provided by É. Oudet, is also presented. Recently

G. De Philippis and B. Velichkov [44] proved that the shape optimization problem (1.1.2) has a

solution for any k ∈ N and for any dimension d. They also proved that the solution is bounded,

connected, open with boundary which is C1,α outside a closed set of Hausdorff dimension d−8.

The numerical studies performed by É. Oudet [79] and P. Antunes, P. Freitas [9] for problem

(1.1.1) show that the expected minimizers do not have an obvious geometric structure for k ≥ 5.

In [28] it is proved that the optimal shape Ω∗ for k = 2, d = 2 does not contain any segment or

any arc of circle in its boundary. This suggests that we cannot hope to find a simple geometric

description of the solution of (1.1.2) even in the case of k = 2.

In this context it is relevant to introduce new numerical approaches which provide a precise

description of optimal candidates in two and three dimensions.

One numerical approach which has been successfully used in the last few years is the follow-

ing Fourier parametric method. Considering the formulation (1.1.3) we note that the monotonic-

ity of λk and the fact that in R2 convexification decreases perimeter imply that every solution

of the problem (1.1.2) in the plane is convex. Thus we can represent any optimal candidate in

the plane using its radial function r(θ). Furthermore, we can approximate the radial function

r by its truncated Fourier series rn (n sine and cosine coefficients). Doing this truncation, we

don’t perturb the eigenvalues too much. B. Osting gives an estimate of this error in [78]. In this

way we can represent a good approximation of the boundary of a star convex shape by a finite
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number of parameters. It is possible to find the partial derivatives of λk(Ωrn) with respect to the

Fourier coefficients. Then a gradient descent algorithm can be used in order to find the optimal

shape candidate in terms of first 2n + 1 Fourier coefficients. This method is very precise and

gives reliable estimates of computed eigenvalues. The same method is used in [9]. The method

also works in three dimensions and P. Antunes and P. Freitas announced a result in this direction

[10]. A possible drawback of using this method in three or more dimensions is the fact that we

do not know a priori that the solutions of (1.1.2) are star-convex in dimension greater than two.

Moreover, the implementation of this method in dimensions d ≥ 3 is not straightforward.

A different approach consists of representing the shape Ω as a density function ϕ : D →
[0, 1] (where D is a bounded, open set of R2). In recent works of É. Oudet [80] and B. Bour-

din, D. Bucur, É. Oudet [18], some Γ-convergence results are used in order to approximate the

perimeter of Ω and the eigenvalue λk(Ω) by relaxed functionals calculated on a density approx-

imation of Ω. As stated above, choosing a large enough bounding box D, does not modify the

optimizer. In the case of the Γ-convergence approximation presented in Section 1.3, considering

a bounding box D simplifies the proofs.

The first main contribution of this chapter is to prove that we can combine the two results

above in order to produce a relaxation by Γ-convergence of λk(Ω)+Per(Ω). We implement this

method for d = 2 and d = 3 and we obtain comparable results with the Fourier parametrization

approach, in the two dimensional case. The advantage of our method is the fact that we do not

make any topological assumptions on the optimal shape. Moreover, the numerical implementa-

tion in dimension three or greater is very similar to the one in dimension two.

The second contribution is to provide new optimality conditions (Corollary 1.5.4) for this

spectral shape optimization problem which are also relevant in a non differentiable context. As

a matter of fact, the difficulty that arises very often in problem (1.1.2) is the fact that the cost

function is not differentiable anymore when the optimizer does not have a simple kth eigenvalue.

This fact was observed in our computations presented in Section 1.4. Notice that the question

of finding the multiplicity at the optimum is still open even for problem (1.1.1). Thanks to these

new optimality conditions, we are able to generalize the qualitative results obtained in [28] in

our general setting: for every k and any d, the optimal shape does not contain flat parts in its

boundary. The optimality condition is obtained under the hypothesis that Ω is of classC3, which

is stronger than the result proved in [44]. The optimality relation allows us to use a bootstrap

argument, similar to the one used in [28], in order to prove that if Ω is of class C3, then Ω is

of class C∞. Thus, in order to completely solve the regularity issue for problem 1.1.2, it only

remains to fill the gap between C1,α and C3.

1.2 Preliminaries

In the proof of our results we will need different theoretical tools, which are recalled below.
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1.2.1 Spectrum of a measurable set

For well posedness reasons, it is convenient to extend the notion of Sobolev space to any mea-

surable set Ω ⊂ Rd by defining

H̃1
0 (Ω) = {u ∈ H1(Rd) : u = 0 a.e. on Ωc}.

In general we have H1
0 (Ω) ⊂ H̃1

0 (Ω) and we have equality if, for instance, Ω has Lipschitz

boundary. Furthermore, it is proved in [66, Chapter 4] that there exists a quasi-open set ω ⊂ Ω

such that H̃1
0 (Ω) = H1

0 (ω). More technical details about the choice of this space, and why is it

suitable in the study of problem (1.1.2), can be found in [28] and [44].

For any Ω ⊂ Rd of finite measure and any f ∈ L2(Rd) we define RΩ(f) ∈ H̃1
0 (Ω) as the

weak solution in H̃1
0 (Ω) of the equation

−∆u = f, u ∈ H̃1
0(Ω)

or equivalently as the unique minimizer in H̃1
0 (Ω) of

u 7→ 1

2

∫

Ω

|∇u|2 −
∫

Ω

fu.

Then RΩ : L2(Ω)→ H̃1
0 (Ω) is a positive, self-adjoint and compact operator. As a consequence,

its spectrum is discrete and its eigenvalues form a sequence converging to zero. Thus we can

set

λk(Ω) =
1

Λk(RΩ)

where 0 < ... ≤ Λk(RΩ) ≤ ... ≤ Λ1(RΩ) are the eigenvalues of RΩ.

If µ is a capacitary measure (i.e. µ(A) = 0 if cap(A) = 0) then λk(µ) is defined as the kth

eigenvalue of the operator −∆+ µI . The corresponding Rayleigh formulas are

λk(µ) = min
E∈Sk

max
u∈E\{0}

∫
D
|∇u|2dx+

∫
D
u2dµ∫

D
u2dx

,

where the minimum is taken over n dimensional subspaces of H1
0 (D) ∩ L2(D;µ). Using this

formula we immediately deduce the following monotonicity property: if µ ≤ ν then λk(µ) ≤
λk(ν). We note that the eigenvalues of a shape Ω correspond to the eigenvalues of the measure

+∞Ωc.

The notion which is well suited to the study of the convergence of Dirichlet eigenvalues is

the γ-convergence. If (µn), µ are capacitary measures we say that µn γ-converges to µ if

|Rµn −Rµ|L(L2(D)) → 0.

We have denotedRµ the resolvent of the operator −∆+ µI . In particular, if µn γ-converges to

µ, then

λk(µn)→ λk(µ).
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A useful characterization of the γ-convergence of a sequence of sets (Ωn) to another set Ω is

the Mosco convergence of the spaces H1
0 (Ωn) to H1

0 (Ω). We suppose that Ωn,Ω are contained

in a bounded open set D. We say that H1
0 (Ωn) converges to H1

0 (Ω) in the sense of Mosco if the

two following conditions are satisfied:

(M1) For all u ∈ H1
0 (Ω) there exists a sequence un ∈ H1

0 (Ωn) such that un converges strongly

in H1
0 (D) to u.

(M2) For every sequence unk
∈ H1

0 (Ωnk
) weakly convergent in H1

0 (D) to a function u we have

u ∈ H1
0 (Ω).

For more details we refer to [27, Chapter 6] and [66].

For every measurable set Ω of finite measure we denotewΩ the weak solution of the equation

−∆wΩ = 1, wΩ ∈ H̃1
0 (Ω).

We have wU ≤ wΩ whenever U ⊂ Ω and

H1
0 ({wΩ > 0}) = H̃1

0 ({wΩ > 0}) = H̃1
0 (Ω).

We refer to [28], [44] for further details.

1.2.2 Γ-convergence and Modica Mortola Theorem

In shape optimization, many numerical methods replace the shape variable by some unknown

function. One main difficulty in our context is to associate to this kind of functional framework

a way to compute the perimeter of the set. To achieve this goal, the characteristic function χΩ

will be approximated by a regular function u ∈ H1(Ω) and the perimeter of Ω will be replaced

by some smooth functional. This smooth functional is chosen from a sequence of functionals

which Γ-converges to the perimeter.

The notion of Γ-convergence, introduced by de Giorgi, is a suitable tool for the study of the

convergence of variational problems. For the sake of completeness, we present its definition

and some of its main properties.

Definition 1.2.1. Let X be a metric space and Fε, F : X → [0,+∞] a sequence of functionals

on X (defined for ε > 0). We say that Fε Γ-converges to F and we denote Fε
Γ−→ F if the

following two properties hold:

(LI) For every x ∈ X and every (xε) ⊂ X with xε → x we have

F (x) ≤ lim inf
ε→0

Fε(xε) (1.2.1)

(LS) For every x ∈ X there exists (xε) ⊂ X such that (xε)→ x and

F (x) ≥ lim sup
ε→0

Fε(xε). (1.2.2)
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Given x0 ∈ X we will call recovery sequence a sequence (xε), which satisfies property

(1.2.2). This sequence satisfies, in particular, the relation

lim
ε→0

Fε(xε) = F (x).

Here are three main properties of the Γ-convergence.

Proposition 1.2.2. If Fε
Γ−→ F in X then the following properties hold:

(i) F is lower semicontinuous;

(ii) If G : X → [0,∞) is a continuous functional then

Fε +G
Γ−→ F +G.

(iii) Suppose xε minimizes Fε over X . Then every limit point of (xε) is a minimizer for F .

The last property suggests that we could approximate a minimizer of F by a minimizer of

Fε for ε small enough. This method was successfully used in [18, 80].

Sometimes it is difficult to prove the (LS) property (1.2.2) for every x ∈ X . Having an

element x with some good regularity properties may aid in constructing the recovery sequence.

The following procedure, of reducing the class of elements x for which we prove (1.2.2) to a

dense subset of {F < +∞}, is classical (see for example [19],[20]).

Proposition 1.2.3. Let D ⊂ {F < +∞} be a dense subset of X , such that for every x ∈ {F <

+∞} and (un) ⊂ D, with (un)→ x we have

lim sup
n→∞

F (un) ≤ F (x).

Suppose that for every x ∈ D, the property (1.2.2) is verified. Then (1.2.2) is verified in general.

The result stated below is due to Modica and Mortola [72], and it provides an approximation

of the perimeter using Γ-convergence.

Theorem 1.2.4. Let D be a bounded open set and let W : R → [0,∞) be a continuous

function such that W (z) = 0 if and only if z ∈ {0, 1}. Denote c = 2
∫ 1

0

√
W (s)ds. We define

Fε, F : L1(D)→ [0,+∞] by

Fε(u) =





ε
∫
D
|∇u|2 + 1

ε

∫
D
W (u) u ∈ H1(D)

+∞ otherwise

and

F (u) =




cPer(u−1(1)) u ∈ BV (D; {0, 1})
+∞ otherwise
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then

Fε
Γ−→ F

in the L1(D) topology.

For a proof we refer to [1] or [32]. In the numerical simulations we fix the potential

W (s) = s2(1− s)2

which imposes the corresponding constant c = 1/3.

Remark 1.2.5. In general if Fε
Γ−→ F and Gε

Γ−→ G we cannot conclude that Fε + Gε
Γ−→

F + G. Thus, the result proved in Section 1.3 is not trivial. One sufficient condition for the

above implication to hold would be that for each u we could find the same recovery sequence

for F and G. For more details and examples see [19].

1.2.3 Perturbation theory for eigenvalues

Let (fε) be a family of diffeomorphisms of Rd which depend analytically of ε, such that f0

is the identity. Each such family of diffeomorphisms determines a sequence of perturbations

(Ωε) = (fε(Ω)) of Ω. The vector field V = d
dε
fε|ε=0 is called the direction of the perturbation.

One natural question is to see whether the map

ε 7→ λk(Ωε) (1.2.3)

is differentiable at ε = 0. It is known that the above map is differentiable if and only if λk(Ω)

is simple. Nevertheless, it is possible to prove that if λk(Ω) has multiplicity p > 1 and if we

consider an analytic perturbation Ωε = fε(Ω), then the p corresponding eigenvalues move on p

smooth curves as ε varies. The differentiability is lost because the p eigenvalues change their

places on the p smooth curves as ε passes through zero, due to their ordering. We could recover

some informations on differentiability if we relabel them. This method has been used in [47].

We present below some of the results needed to derive our optimality conditions.

Consider Ω a bounded, open set of class C3 in Rd; therefore the mean curvature H is well

defined and continuous. We denote by n the outer normal to Ω. Any perimeter preserving

perturbation Ωε = fε(Ω) induces a function v = 〈 d
dε
fε|ε=0, n〉 on ∂Ω satisfying

∫
∂Ω
H v dσ = 0.

We denote by P0(∂Ω) the set of C1 functions on ∂Ω such that
∫
∂Ω
H v dσ = 0. We denote by

divΓ the tangential divergence with respect to Γ. We refer to [66, Section 5.4.3], for a precise

description of divΓ.

Lemma 1.2.6. Let v ∈ P0(∂Ω). Then there exists an analytic perimeter preserving deformation

Ωε = fε(Ω) such that v = 〈 d
dε
fε|ε=0, n〉.

Proof: Let U be an open neighborhood of Ω and ṽ, ñ be C1 extensions of v, n to U . For

ε sufficiently small, the map ϕε(x) = x + εṽ(x)ñ(x) is a diffeomorphism from Ω to ϕε(Ω)
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(local inversion theorem). This deformation is analytic in ε, but is not necessarily perimeter-

preserving.

Let X be an analytic vector field on U such that
∫
∂Ω

div∂ΩX 6= 0 and let ut be the one

parameter group of diffeomorphisms associated to X . Define (t, ε) 7→ G(t, ε) = Per(ut ◦
ϕε(Ω)). Using the fact that dut

dt
|t=0 = X and Proposition 5.4.18 from [66] we obtain

∂G

∂t
(0, 0) =

d

dt
Per(ut(Ω)) =

∫

∂Ω

div∂ΩXdσ 6= 0.

Therefore we can apply the implicit function theorem around (0, 0) to see that there exists an

analytic function ε 7→ t(ε) defined on a neighborhood (−η, η) of 0 such that

G(t(ε), ε) = G(0, 0) = Per(Ω).

Thus the deformation gε = ut(ε) ◦ ϕε is perimeter preserving. Moreover, using Propositions

5.4.9 and 5.4.18 from [66], we have

t′(0) = −
d
dε
Per(ϕε(Ω))|ε=0

d
dt
Per(ut(Ω))|t=0

= −
∫
∂Ω

div∂Ω ṽñdσ∫
∂Ω

div∂ΩXdσ
= −

∫
∂Ω
H v dσ∫

∂Ω
div∂ΩXdσ

= 0.

Therefore, if we set H(t, ε) = ut ◦ ϕε then

d

dε
gε(x)|ε=0 =

d

dt
H(t(0), 0)t′(0) +

d

dε
H(t(0), 0) =

dϕε

dε
|ε=0 = ṽ(x)ñ(x) = v(x)n(x)

for x ∈ ∂Ω. In conclusion, gε is the desired perturbation. �

Below we present two results from [47], which will be used freely in the rest of the article.

We omit the proofs, as they can be found in the cited article.

Lemma 1.2.7. Let λ be an eigenvalue of multiplicity p of the Dirichlet Laplacian on Ω. For any

analytic deformation Ωε of Ω there exist p families of real numbers (Λi,ε)i≤p and p families of

functions (ui,ε)i≤p ⊂ C∞(Ωε), depending analytically on ε, satisfying for all ε ∈ (−ε0, ε0) and

for all i ∈ {1, ..., p}:

(a) Λi,0 = λ.

(b) The family {u1,ε, ..., up,ε} is orthonormal in L2(Ωε).

(c) We have





−∆ui,ε = Λi,εui,ε in Ωε

ui,ε = 0 on ∂Ωε.

Lemma 1.2.8. Let λ be an eigenvalue of multiplicity p of the Dirichlet Laplace operator and

denote Eλ the corresponding eigenspace. Let Ωε = fε(Ω) be an analytic deformation of Ω. Let

(Λi,ε)i≤p and (ui,ε)i≤p be like in Lemma 1.2.7. Then Λ′
i =

d
dε
Λi,ε|ε=0 are the eigenvalues of the

quadratic form qv defined on Eλ ⊂ L2(Ω) by

qv(u) = −
∫

∂Ω

(
∂u

∂n

)2

v dσ,

where v = 〈 d
dε
fε, n〉. Moreover, the L2-orthonormal basis u1,0, ..., up,0 diagonalizes qv on Eλ.
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In the rest of the chapter we use λk,ε to denote λk(Ωε). We define the following notion of

critical domain for the eigenvalues of the Dirichlet Laplacian, which generalizes the notion of

local minimum or local maximum.

Definition 1.2.9. The domain Ω is said to be critical for the kth eigenvalue of the Dirichlet

problem if, for any analytic perimeter-preserving deformation Ωε of Ω, the right-sided and left-

sided derivatives of λk,ε (see Lemma 1.2.7) at ε = 0 have opposite signs, that is

d

dε
λk,ε
∣∣
ε=0+

× d

dε
λk,ε
∣∣
ε=0−

≤ 0.

1.3 The Γ-convergence result

In this section we construct a Γ-convergence approximation for λk(Ω) + Per(Ω). This result

allows us to construct a numerical method for the study of problem (1.1.2), which will be

presented in the next section. Consider F : Rk → R+ a continuous function which is increasing

in each variable. Let D ⊂ Rd be a bounded, open set. For every ϕ : D → R+, measurable we

define λk(ϕ) = λk(ϕ dx), where ϕ dx is seen as a capacitary measure. In the following, q will

be a fixed positive real parameter.

Theorem 1.3.1. Define Jε : L
1(D; [0, 1])→ R+ ∪ {+∞} by

Jε(ϕ) = F

(
λ1

(
1− ϕ
εq

dx

)
, ..., λk

(
1− ϕ
εq

dx

))
+ ε

∫

D

|∇ϕ|2 + 1

ε

∫

D

ϕ2(1− ϕ)2

if ϕ ∈ H1(D) and +∞ otherwise. Then Jε
Γ−→ J in the L1(D) topology, where

J(ϕ) =




F (λ1(Ω), ..., λk(Ω)) +

1
3
Per(Ω), if ϕ = χΩ ∈ BV (D)

+∞ otherwise

Proof: For simplicity, in the rest of the proof we denote the quantity F (λ1(Ω), .., λk(Ω))

by F (Ω). With this notation, F becomes decreasing for the inclusion, as a function of Ω. We

make the same convention when instead of Ω we have a measure µ. Let us begin by proving the

Γ− lim sup part of our result.

1. Reduction to regular domains. This part of the proof is a standard step in the proof

of the Γ − lim sup property (see Proposition 1.2.3). We refer to [19],[20] for more details and

examples. If Ω is regular, the construction of a recovery sequence is straightforward (see Part 2

of the proof). We are left to prove that regular sets are a dense subset D of {F < +∞} and that

they satisfy the following property: for each Ω ∈ {F < +∞} we can find (Ωn) ⊂ D such that

χΩn → χΩ in L1(D) topology and lim sup
n→∞

J(χΩn) ≤ J(χΩ).
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In [7], Thm 3.4.2 it is proved that the sets with boundary of class C∞ are dense in the class

of finite perimeter sets, when considering the L1 topology. Thus we can choose our dense set

D to be the family of subsets of D with finite perimeter and smooth boundary. If ϕ is the

characteristic function χΩ of Ω and it belongs to BV (D) then Ω is a set of finite perimeter.

The theorem we cited above says that each finite perimeter Ω set can be approximated in the

L1(D) topology with a sequence (Ωn) of finite perimeter sets having smooth boundaries such

that Per(Ωn) → Per(Ω). At this point it is not clear if we have lim sup
n→∞

F (Ωn) ≤ F (Ω).

The objective of the following paragraphs is to construct (Ωn) in such a way that the previous

inequality holds.

If we denote (ρk) a sequence of mollifiers, we have

Per(Ω) =

∫

Rd

|DχΩ| = lim
k→∞

∫

Rd

|∇χΩ ∗ ρk| =

= lim
k→∞

∫ 1

0

Per({χΩ ∗ ρk > t})dt ≥
∫ 1

0

lim inf
k→∞

Per({χΩ ∗ ρk > t})dt (1.3.1)

where we have applied the co-area formula and Fatou’s lemma. Here and in the sequel we

denote by DχΩ the gradient of χΩ in the sense of distributions. By applying Chebyshev’s

inequality we obtain that

|{χΩ ∗ ρk > t} \ Ω| = |{χΩ ∗ ρk − χΩ ≥ t}| ≤ 1

t

∫

Rd

|χΩ ∗ ρk − χΩ|

and

|Ω \ {χΩ ∗ ρk > t}| = |{χΩ − χΩ ∗ ρk ≥ 1− t}| ≤ 1

1− t

∫

Rd

|χΩ ∗ ρk − χΩ|.

Therefore χ{χΩ∗ρk>t} converges to χΩ in the L1(D) topology for almost every t ∈ (0, 1). By the

lower semicontinuity of the perimeter we deduce that

lim inf
k→∞

Per({χΩ ∗ ρk > t}) ≥ Per(Ω),

Combining this with (1.3.1) we obtain

lim inf
k→∞

Per({χΩ ∗ ρk > t}) = Per(Ω).

for almost every t ∈ (0, 1). Sard’s theorem tells us that the level sets of χΩ ∗ ρk are smooth for

almost every t. Moreover, Lemma 2.95 from [7] tells us that almost all level sets of χΩ ∗ ρk
are transversal, i.e. Hn−1(∂{χΩ ∗ ρk} ∩ ∂D) = 0. In this way, we can choose the smooth,

transversal approximating sets at almost every level t ∈ (0, 1).

Denote w = RΩ(1) = Rω(1) where ω ⊂ Ω is a quasi open set with the property that

H1
0 (ω) = H̃1

0 (Ω). We can assume that ‖w‖∞ ≤ 1 (or otherwise rescale it) so that we get

w ≤ χΩ which implies thatw∗ρk ≤ χΩ∗ρk and as a consequence {w∗ρk > t} ⊆ {χΩ∗ρk > t}.

27



We want to prove that lim sup
k→∞

F ({w ∗ ρk > t}) ≤ F ({w > t}). Denote Ak = {w ∗ ρk >
t} ∩ {w > t}. It is enough to prove that (Ak) γ-converges to {w > t}. Indeed, if this holds,

then

lim sup
k→∞

F ({w ∗ ρk > t}) ≤ lim
k→∞

F (Ak) = F ({w > t})

To prove this γ-convergence result it suffices to prove the first Mosco condition, since the second

one comes from Ak ⊂ {w > t}. For more details we refer to [27, Section 4.5]. To prove the

first Mosco condition it is enough to prove it on a dense subset of H1
0 ({w > t}). One such

dense subset is given in [41] Prop 5.5 and is {C∞
c (Rd) · (w − t)+}. Let ϕ ∈ C∞

c (Rd). Then if

ϕk = ϕ ·min{(w ∗ρk− t)+, (w− t)+} we have ϕk → ϕ · (w− t)+ in H1
0 (D) and ϕk ∈ H1

0 (Ak).

This concludes the proof of the fact that Ak γ-converges to {w > t}.
Therefore we have found a sequence

Bt
k = {w ∗ ρk > t} ⊆ Ct

k = {χM ∗ ρk > t}

with Ct
k → χΩ in L1(D), lim inf

k→∞
Per(Ct

k) = Per(Ω) for almost every t, F (Ct
k) ≤ F (Bt

k) and

lim sup
k→∞

F (Bt
k) ≤ F ({w > t}).

Thus, we can choose a diagonal sequence Ek = Ctk
k with tk → 0 such that χEk

→ χΩ in L1(D),

Per(Ek)→ Per(Ω) in order to obtain

lim sup
k→∞

F (Ek) ≤ F ({w > 0}) = F (ω) = F (Ω).

2. Proof of the Γ − lim sup part. Using the previous density result, it suffices to prove

the Γ − lim sup only for characteristic functions of smooth sets with finite perimeter. Let ϕ ∈
L1(D; [0, 1]) with J(ϕ) < +∞. Then ϕ is the characteristic function of a set Ω with finite

perimeter. We assume, as mentioned above, that Ω has smooth boundary and that Hn−1(∂Ω ∩
∂D) = 0.

We take (ϕε) ⊂ H1(D) to be a recovery sequence associated to the Modica-Mortola

approximation (see Theorem 1.2.4). We recall that this sequence can be chosen to satisfy

χΩ(x) = ϕε(x) for dΩ(x) /∈ [0, ε] (see [32]; here dΩ represents the signed distance from a

point to ∂Ω). We have ϕε → ϕ in L1(D) and

lim
ε→0

[
ε

∫

D

|∇ϕε|2dx+
1

ε

∫

D

ϕ2
ε(1− ϕ2

ε)dx

]
=

1

3
Per(Ω).

Since for every x ∈ Ω we have ϕε(x) = 1, we observe that +∞D\Ω ≥
1− ϕε

εq
. By the

monotonicity of λj we have

λj(Ω) = λj(+∞D\Ω) ≥ λj

(
1− ϕε

εq
dx

)
.
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Using the monotonicity of F we obtain

lim sup
ε→0

F

(
1− ϕε

εq
dx

)
≤ F (Ω).

3. Proof of the Γ − lim inf part. Let ϕ ∈ L1(D; [0, 1]) and (ϕε) ∈ L1(D; [0, 1]) such that

ϕε → ϕ in L1(D). We assume that lim inf
ε→0

Jε(ϕε) < +∞ since otherwise the result is obvious.

The Γ− lim inf part of the Modica-Mortola theorem tells us that

+∞ > lim inf
ε→0

ε

∫

D

|∇ϕε|2 +
1

ε

∫

D

ϕ2
ε(1− ϕε)

2 ≥ 1

3

∫

D

|Dϕ|.

Thus ϕ has is a characteristic function with bounded variation. This implies that Ω = ϕ−1(1) is

a set of finite perimeter relative to D, and

lim inf
ε→0

ε

∫

D

|∇ϕε|2 +
1

ε

∫

D

ϕ2
ε(1− ϕε)

2 ≥ 1

3
Per(Ω).

It remains to prove that

lim inf
ε→0

F

(
1− ϕε

εq
dx

)
≥ F (Ω).

Since F is increasing in each variable, it is enough to prove that

lim inf
ε→0

λi

(
1− ϕε

εq
dx

)
≥ λi(Ω).

Let wε be the solution of





−∆wε +

1−ϕε

εq
wε = 1 in D

wε ∈ H1
0 (D).

Without loss of generality we can replace lim inf with lim by taking a sequence εk which realizes

the lim inf. Denoting ϕk = ϕεk , we have to prove that

lim
n→∞

λi

(
1− ϕk

εqk
dx

)
≥ λi(Ω).

By compactness there is a subsequence of (wnk
) converging weakly in H1

0(D) to w. We can

choose a subsequence of this sequence which converges almost everywhere to w. For simplicity

we relabel this subsequence (wk). It is enough to prove the inequality for (ϕk) (the correspond-

ing functions for this new sequence (wk)).

Taking wk as test functions in the weak form of the partial differential equation we get

∫

D

1− ϕk

εqk
w2

k =

∫

D

wk −
∫

D

|∇wk|2 ≤
∫

D

wk ≤
∫

D

wD,

where wD is the solution of 


−∆wD = 1 in D

wD ∈ H1
0 (D).
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We know that

lim inf
k→∞

1− ϕk(x)

εqk
= +∞

for x ∈ Ωc since 1 − ϕk(x) → 1 a.e. on Ωc and εk → 0+. Therefore since wk → w almost

everywhere, if w(x) > 0, x /∈ Ω and wk(x)→ w(x) then

lim inf
k→∞

1− ϕk(x)

εqk
w2

k(x) = +∞.

Fatou’s Lemma tells us that

+∞ > lim inf
k→∞

∫

D

1− ϕk

εqk
w2

k ≥
∫

D

lim inf
k→∞

1− ϕk

εqk
w2

k ≥
∫

Ωc

lim inf
k→∞

1− ϕk

εqk
w2

k

This inequality and the previous remarks impliy that the set Ωc ∩ {w > 0} is of measure zero,

and therefore w ∈ H̃1
0 (Ω). Since the γ-convergence is compact, up to a subsequence we have

µε =
1− ϕk

εqk

γ→ µ ≥ +∞Ωc.

As a consequence, we have

lim
k→∞

λi

(
1− ϕk

εqk
dx

)
= λi(µ) ≥ λi(Ω),

which finishes the proof of the Γ− lim inf part. �

1.4 Numerical study of problem (1.1.2)

The method we developed for studying problem (1.1.2) combines the Γ-convergence methods

used in approximating the perimeter (used in [80]) and the eigenvalues of the Laplace operator

(used in [18]). The combination of the two cited methods is made possible by the Γ-convergence

result proved in the previous section. As it has been underlined, our Γ-convergence method is

very flexible with respect to both the dimension and the topology of the shapes. In order to

evaluate the quality of our solution we recall in subsection 1.4.2 the method used successfully

by B. Osting [78] and P. Antunes, P. Freitas [9]. In Table 1.1 we illustrate that both methods give

the same results in the easy context of the two dimensional case. Finally, we extend previous

results in the three dimensional case, where we notice that some of the optimal shapes found

seem to be non-convex. This behaviour has been conjectured in [28].

1.4.1 Method based on the Γ-convergence result

We relax our shape optimization problem with respect to Ω by an optimization problem of an

unknown function ϕ : D → [0, 1]. In our computations we choose D = [0, a]2 and impose

periodic boundary conditions (so that the perimeter of Ω is not influenced by the boundary of

D). We consider a N ×N uniform grid and we represent the function ϕ by its values (ϕi,j)
N
i,j=1
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on this grid. Note that the main Γ-convergence result stated in Theorem 1.3.1 holds for any

exponent q positive. In our computations we choose q = 2, because we observed a good

numerical behaviour with this parameter. This good behavior could be explained by a well

balanced effect of the cost values for q = 2 in the scale of our discretization.

We approximate

ϕ 7→ ε

∫

D

|∇ϕ|2 + 1

ε

∫

D

ϕ2(1− ϕ)2

by using centred finite differences on the considered grid. This approximation is equivalent to

considering a piecewise linear function associated to the grid values.

For the eigenvalue approximation we consider the discrete form of

−∆uk +
1− ϕ
ε2

uk = λkuk.

In order to obtain a matrix formulation, we fix an ordering on the N × N grid. We denote by

ψ̄ the vector which contains the values on the grid of the function ψ with respect to this fixed

ordering. We define A to be the N2 × N2 matrix associated to the discrete Laplacian on the

considered grid, with respect to the fixed ordering. The discretized eigenvalue problem becomes

[
A+

1− ϕ̄
ε2

I

]
ūk = λkūk.

We used the Matlab solver eigs to solve this matrix eigenvalue problem. The expression of

the discrete gradient of our functional with respect to each component of ϕ̄ is

− 1

ε2
ū2k.

We refer to [18] for more details.

We can compute the gradient of ϕ 7→ ε
∫
D
|∇ϕ|2 + 1

ε

∫
D
ϕ2(1 − ϕ)2 with respect to a

perturbation θ of ϕ ∈ H1(D) as follows:

d

dt

[
ε

∫

D

|∇(ϕ+ tθ)|2 + 1

ε

∫

D

(ϕ+ tθ)2(1− (ϕ+ tθ))2
]

t=0

=

= 2ε

∫

D

〈∇ϕ,∇θ〉+ 1

ε

∫

D

(2ϕ− 6ϕ2 + 4ϕ3)θ

=

∫

D

[
−2ε∆ϕ +

1

ε
(2ϕ− 6ϕ2 + 4ϕ3)

]
θ

Thus the discrete gradient of ϕ 7→ ε
∫
D
|∇ϕ|2 + 1

ε

∫
D
ϕ2(1− ϕ)2 with respect to ϕ is given by

2ε(4ϕ̄i,j − ϕ̄i+i,j − ϕ̄i−1,j − ϕ̄i,j+1 − ϕ̄i,j−1) +
1

ε
(2ϕ̄i,j − 6ϕ̄2

i,j + 4ϕ̄3
i,j). (1.4.1)

To obtain a solution ϕ0 of the problem

min

[
ε0

∫

D

|∇ϕ|2 + 1

ε0

∫

D

ϕ2(1− ϕ)2 + λk

(
1− ϕ
ε20

dx

)]
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we start from a random configuration with a concentration around the center of the grid. Numer-

ical experiments have shown that starting from a totally random configuration tends to lead to a

shape consisting of k disks. This configuration is a local minimum, but not the global one, since

we know that the optimal shape is connected [44]. We think this behaviour is due to the fact

that when we approximate Ω by density functions, the optimization of λk tends to separate Ω

into nodal domains. Then the perimeter, which is optimized locally, transforms those domains

into disks. This observation motivates our previous initialization. For the optimization part, we

used the quasi-Newton algorithm LBFGS implemented in [84],[86].

The choice of the initial parameter ε0 is important for the algorithm to converge. Numerical

experiments have shown that ε0 ∈ [ 1
N
, 4
N
] are suitable for obtaining the expected results. This

observation is well known in the phase-field community. The parameter ω was chosen equal to

0.5 which means that after each optimization we divide ε by 2. In the case ε is smaller than the

discretization step we refine the grid and interpolate the density functions to this new grid.

Algorithm 1 General form of optimization algorithm for minϕ Jε(ϕ)

Require: k ∈ N, ε0 > 0, pmax ∈ N, N ∈ N, ω ∈ (0, 1), tol ∈ (0, 1)
1: ε = ε0;
2: Choose a random initial shape ϕ concentrated around the center of D;

3: repeat

4: p = 1;

5: repeat

6: Compute the eigenpair (λk, uk) of A + 1−ϕ̄
ε2
I and the gradient∇λk(ϕ) = − 1

ε2
ūk;

7: Compute the gradient of ϕ 7→ ε
∫
D
|∇ϕ|2 + 1

ε

∫
D
ϕ2(1 − ϕ)2 with respect to the

components of ϕ̄ on the grid using formula (1.4.1);

8: Do a step of the LBFGS algorithm: update descent direction and do a linesearch;

9: ϕ← ϕ− dp;

10: p← p+ 1;

11: until p = pmax or |dp| < tol;

12: ε = (1− ω)ε;
13: until ε < 1/N .

1.4.2 Parametrization using Fourier coefficients

In order to verify our results, we compare them with the ones obtained using the Fourier bound-

ary parametrization method mentioned in the introduction. This method is well known, and was

applied in [9],[78] and [?]. We present it below for the sake of completeness.

We know that the solutions to problem (1.1.2) in R2 are convex shapes, so every such shape

is uniquely defined by its radial function r(θ), θ ∈ [0, 2π). B. Osting proved in [78, Prop. 3.1]

that the error |λk(Ωr) − λk(Ωrn)| can be made arbitrarily small if we choose n big enough,

where rn is the truncation of the Fourier series representation of r to 2n+ 1 coefficients:

rn(θ) = a0 +

n∑

k=1

ak cos(kθ) +

n∑

k=1

bk sin(kθ).
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This allows us to write λk(Ω) as a function of 2n + 1 variables λk(a0, a1, ..., an, b1, ..., bn).

Furthermore, using the fact that the derivative of λk(Ω) with respect to a perturbation V of the

boundary is

dλk(Ω)

dV
= −

∫

∂Ω

(
∂uk
∂n

)2

(V.n)dσ

(proofs and other references can be found in [65, 66]) we can find that

∂λk
∂ak

= −
∫ 2π

0

r(θ) cos(kθ)

(
∂uk
∂n

(r(θ), θ)

)2

dθ

∂λk
∂bk

= −
∫ 2π

0

r(θ) sin(kθ)

(
∂uk
∂n

(r(θ), θ)

)2

dθ.

We can find similar formulas for the derivatives of the perimeter in terms of Fourier coefficients.

For computing the eigenvalues and normal derivatives of the eigenfunctions it is possible to use

the publicly available software MpsPack [14].

1.4.3 Our numerical results

In order to solve numerically problem (1.1.2), in its equivalent form (1.1.3), we search the

solutions of the relaxed problem

min

[
ε0

∫

D

|∇ϕ|2 + 1

ε0

∫

D

ϕ2(1− ϕ)2 + λk

(
1− ϕ
ε20

dx

)]

We use the method presented in subsection 1.4.1 on the square D = [0, a]2 (where a is chosen

such that the solution of (1.1.3) fits inside D).

Since the method presented in subsection 1.4.2 was used successfully in the study of the

problem (1.1.1), we employ it to find the numerical solutions of (1.1.2). These solutions are a

benchmark to which we compare the results we found using our Γ-convergence methods.

The optimal shapes obtained with the Γ-convergence method coincide with the ones found

using the Fourier boundary parametrization method. The numerical results can be seen in Figure

1.1. To compare the accuracy of the results, we took the optimal shapes obtained with the Γ-

convergence method and we isolated the 0.5 level set. We choose a point in its convex hull, the

centroidG of a discretization {x1, ..., xl} of the boundary, and computed the distances from that

point to the contour, denoted by {ρ1, ..., ρl} as well as the angles made by Gxi with the positive

x-axis, denoted by {θ1, ..., θl}. This procedure gives us a radial parametrization of our domain.

Using a least squares fit

min
(aj)nj=0,(bj)

n
j=0

l∑

i=1

(
a0 +

n∑

j=1

aj cos(jθi) +

n∑

j=1

sin(jθi)− ρi
)2

we are able to find the first 2n + 1 Fourier coefficients of this radial function. We use these

coefficients to construct the radial function of our shape Ω∗. We use MpsPack to compute
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λk(Ω
∗) + Per(Ω∗) and we compare the results, which can be seen in Table 1.1. We can see

that the results agree, and in general the ones obtained with the Γ-convergence method are a

bit weaker, in the sense that the minimal value is higher. Still, the fact that we obtain the same

shapes, with small errors, shows that the Γ-convergence method is a suitable tool for the study

of problem (1.1.2). Furthermore, it gets close enough to the optimizer without imposing any

topological constraints.

One interesting question that has been addressed in several papers ([9],[79]) is the multi-

plicity of λk at the optimum. We noticed in our computations that the optimal shape for (1.1.3)

does not always have multiple kth eigenvalue. This was already proved for k = 2 in [28] and

our computations have shown that for k = 6, 9, 13, 15 the optimal eigenvalues should be simple.

This behaviour is different from the one observed for problem (1.1.1). It is known that if a

local minimizer of problem (1.1.1) would have simple eigenvalue then its eigenfunction would

satisfy the overdetermined problem






−∆u = λu in Ω

u = 0 on ∂Ω

∂u
∂n

= c on ∂Ω,

(1.4.2)

where c > 0 is a constant. There is a conjecture due to Schiffer concerning the above overdeter-

mined problem. For more details we refer to [15] and [94].

Conjecture 1.4.1. If problem (1.4.2) has a solution, then Ω is a disk.

This is true in the case of λ1, but the arguments used in the proof rely essentially on the

fact that the first eigenfunction can be chosen positive. In the case k ≥ 2, the eigenfunctions

corresponding to λk are not positive, so the argument used for k = 1 does not work here. Still,

to our knowledge, no counter-example of this conjecture is known.

A recent result by A. Berger [16] says that in two dimensions, the only positive integers k

for which the ball is a local minimizer for λk under volume constraint are k = 1, 3. Thus, we

have the following interesting fact:

• Suppose that for some k /∈ {1, 3} the shape for which Ω is solution to (1.1.1) has simple

kth eigenvalue. Then the kth corresponding eigenfunction uk satisfies an overdetermined

problem of the type (1.4.2). The result of A. Berger says that Ω cannot be a disk. Thus

Conjecture 1.4.1 is contradicted.

Thus, Conjecture 1.4.1 together with the result of [16], imply that in the case of problem (1.1.1),

if k ≥ 2 the multiplicity is greater than one at the optimum.
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In the case of the perimeter constraint, the situation is different. We can find shapes Ω,

which are not disks, such that the overdetermined problem





−∆u = λu in Ω

u = 0 on ∂Ω

∂u
∂n

= H on ∂Ω

has a non-trivial solution. Such examples are the shape described in [28] as well as the shapes

we found numerically for k = 6, 9, 13, 15.

We notice that the numerical optimal shape obtained for k = 3 is the disk. This is to be

expected, since it is a direct consequence of the conjecture that the disk minimizes λ3(Ω) under

volume constraint. This is still an open problem.

We observe that all the optimal shapes computed have one or more axes of symmetry, while

this is not the case for the volume constraint where the optimal shape for k = 13 is suspected

to be non-symmetric [9].

The fact that we can immediately generalize the method in three dimensions is a big advan-

tage. One drawback is the fact that we were not able to obtain very high resolution due to the

fact that the matrices involved have extremely large dimensions. The shapes presented in Figure

1.2 were obtained using a 40× 40× 40 grid on D = [0, a]3. As previously, the initial shape was

concentrated around the center of the cube D. In the paper [28] a few conjectures were stated

regarding the minimizers in higher dimensions. The first conjecture was that the optimal shape

for λ2(Ω) + Per(Ω) has cylindrical symmetry and is not convex in the three dimensional case.

This can be observed in our results. To conclude that a shape is convex or not we simply apply

the following procedure: we first compute a discretization of the isosurface {ϕ = 1/2} and esti-

mate the exact measure of its volume (up to roundoff error). Then, in a second step we compute

the convexhull of this discretized isosurface and again estimate its volume. When the volume

of the convex hull is 5% greater than the volume of the original isosurface we conclude that the

computed optimal profile is not convex. We have obtained non-convex shapes for k = 2, 5, 6, 7.

Cylindrical symmetry can be observed for k = 2, 3, 4, 5. For k = 8 we observe a symmetry

by a rotation of angle π/2 and for k = 10 we observe a tetrahedral symmetry. We notice that

the numerical optimal shape for k = 4 is approximately a ball. This is a direct consequence of

the conjecture that the ball minimizes λ4(Ω) under volume constraint in three dimensions. The

optimal computed value of λ4, in this case, is 255.56, while the actual eigenvalue of a ball of

same surface area is approximately 253.72. We provide for each shape the value of the scale

invariant expression λk(Ω) Per(Ω), calculated using a finite element method.

We discussed our results with P. Antunes and P. Freitas, who made computations for problem

(1.1.2) for k ≤ 50 in two dimensions and k ≤ 20 in three dimensions. In two dimensions we

obtained similar results with the exception of a few shapes which are significantly better in

terms of cost function. Our results, for k ≤ 20 can be seen in Figure 1.1 and the results for

k ∈ [21, 50] can be seen in Figure 1.4. We emphasize the fact that the computations done for
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k mult. Γ-conv Fourier

1 1 11.5523 11.5507

2 1 15.2819 15.2806

3 2 15.7597 15.7573

4 2 18.3511 18.3485

5 2 19.1168 19.1087

6 1 20.0919 20.0908

7 2 21.5097 21.5009

8 2 22.0686 22.0262

9 1 23.2096 23.2073

10 2 23.5833 23.5500

k mult. Γ-conv Fourier

11 2 24.6262 24.5966

12 3 24.7578 24.7430

13 1 25.9891 25.9823

14 2 26.4375 26.4325

15 1 26.9151 26.9123

16 3 27.2753 27.2525

17 3 27.3730 27.3600

18 2 28.6634 28.6279

19 2 29.0940 29.0796

20 3 29.5341 29.5136

Table 1.1: Comparative results - 2D

k ≥ 21 use exclusively the software MpsPack. A detailed comparison of the cost function with

the results of Antunes and Freitas is presented in Table 1.3. In the three dimensional case, for

k ≤ 6 our results coincide with theirs, but for k ≥ 7 their optimal shapes have better cost values

than ours. We believe this is due to the limitation on the discretization parameter for our method

in three dimensions. A detailed comparation between the optimal costs is presented in Table

1.4.

We observe that in the three dimensional case, the optimal shapes we obtained numerically

do not have holes. We may ask ourselves if this behaviour can be justified. In order to do this,

we can analyse the, so called, topological derivative, which for a point x ∈ Ω and a general

functional F is defined as

T (x) = lim
r→0

F (Ω \B(x, r))− F (Ω)
ε(r)

,

where ε(r) is positive and ε(r)→ 0 as r → 0. For more details see [76]. A negative topological

derivative would mean that making a small hole decreases the value of F . In our particular

case F (Ω) = λk(Ω) + Per(Ω), and for x ∈ Ω and r small enough, we have F (Ω \ B(x, r)) >

F (Ω), since the eigenvalue is decreasing with respect to set inclusion, and for small r, we have

Per(Ω \ B(x, r)) = Per(Ω) + Per(B(x, r)). Thus, in our case, the topological derivative is

always positive, and there is no interest in creating holes in order to decrease the value of the

functional.

1.5 Optimality conditions and qualitative results

Once we know that a shape optimization problem has a solution, we would like to write some

optimality conditions which could allow us to find further qualitative properties. An eigenvalue

of the Dirichlet Laplacian associated to a shape Ω is differentiable with respect to perturbations

only if it is simple. Unfortunately, solutions of (1.1.1) and (1.1.2) are conjectured to have

multiple kth eigenvalue at the optimum (with a few exceptions in the case of the perimeter
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λ1 = 11.55, simple λ2 = 15.28, simple λ3 = 15.76, double

λ4 = 18.35, double λ5 = 19.11, double λ6 = 20.09, simple

λ7 = 21.50, double λ8 = 22.03, double λ9 = 23.21, simple

λ10 = 23.55, double λ11 = 24.60, double λ12 = 24.74, triple

λ13 = 25.98, simple λ14 = 26.43, double λ15 = 26.91, simple
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λ16 = 27.25, triple λ17 = 27.36, triple λ18 = 28.63, double

λ19 = 29.08, double λ20 = 29.51, triple

Figure 1.1: Numerical optimizers for problem 1.1.3 in 2D

constraint). Thus, classical optimality conditions, like the one exploited in [28], cannot be

written for every k. In our case, we observed that for d = 2, k = 2, 6, 9, 13, 15 optimal shapes

probably have simple eigenvalues. Thus we can apply the method described in [28] to deduce

the fact that the boundary of these shapes does not contain any flat parts or any arcs of circles.

We may wonder if this is true in the general case. To study this question in the case of multiple

eigenvalues it is possible to use methods inspired by [47], [46] and [75]. In the previously cited

article [47], the authors provided an optimality condition for problem (1.1.1), which treats the

case when the eigenvalue is multiple at the optimum. The results of this section are dedicated

to find a similar optimality condition for problem (1.1.2).

The following theorem is a result similar to Theorem 2.5.10 in [65] where it is said that if an

optimizer Ω∗ for problem (1.1.1) is such that the kth eigenvalue is multiple, then the multiplicity

cluster ends at λk, i.e. λk(Ω
∗) < λk+1(Ω

∗). Throughout this section we assume that Ω has

boundary of class C3. In particular, this implies that its curvature, H is of class C1. This

assumption is stronger than the results obtained in [44], where it is proved that the optimizer

has regularity C1,α. To our knowledge, this regularity assumption cannot be easily deduced

from [44], and it is an open question, though it is natural to expect it.

Theorem 1.5.1. Let k ≥ 2 such that λk > λk−1 and assume that Ω is a minimizer for the kth

eigenvalue of the Dirichlet Laplacian with a perimeter constraint (i.e. a solution of the problem
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λ2(Ω)Per(Ω) = 223.63 λ3(Ω)Per(Ω) = 251.91 λ4(Ω)Per(Ω) = 260.98

λ5(Ω)Per(Ω) = 343.75 λ6(Ω)Per(Ω) = 394.77 λ7(Ω)Per(Ω) = 421.20

λ8(Ω)Per(Ω) = 439.80 λ9(Ω)Per(Ω) = 446.58 λ10(Ω)Per(Ω) = 510.00

Figure 1.2: Numerical optimizers for problem 1.1.3 in 3D

(1.1.2)). Then λk is simple and there exists a unique (up to sign) eigenfunction u satisfying





−∆u = λk(Ω)u in Ω

u = 0 on ∂Ω
(
∂u
∂n

)2
= H on ∂Ω

Proof: Let Ωε = fε(Ω) be a perimeter preserving analytic deformation of Ω and denote

(Λi,ε)i≤p and (ui,ε)i≤p the families of eigenfunctions and eigenvectors associated to λk according

to Lemma 1.2.7. We use the notation λk,ε(Ω) = λk(Ωε). Since λk = Λi,0 > λk−1, by continuity,

for sufficiently small ε we have

Λi,ε > λk−1,ε.

We know that Ω is a local minimizer for the Dirichlet Laplacian under the considered perturba-

tion, which means that

Λi,ε ≥ λk,ε.

39



The differentiable function ε 7→ Λi,ε achieves a local minimum at ε = 0 and this implies
d
dε
Λi,ε = 0.

As a consequence, the quadratic form qv defined in Lemma 1.2.8 is identically zero on Ek,

where v = 〈 d
dε
fε, n〉. The perimeter preserving deformation is arbitrary, so by Lemma 1.2.6 we

have that qv vanishes on Ek for every v ∈ P0(∂Ω). This means that

∫

∂Ω

(
∂u

∂n

)2

vdσ = 0

for every v ∈ P0(∂Ω) and for every u ∈ Ek.

Hence, for every function u ∈ Ek there exists a constant c > 0 such that
(
∂u
∂n

)2
= cH on

∂Ω. Since Ω is bounded, it is a classical result that the curvature of Ω is non-negative at at

least one point. Thus, since cH is non-negative, it follows that c ≥ 0. We cannot have c = 0,

because otherwise ∂u
∂n

= 0 on ∂Ω, and we could extend u with u = 0 outside Ω. Thus this

extension would be an eigenfunction on any set Ω′ containing Ω, contradicting the uniqueness

of the analytic extension.

Thus, we have
∣∣∂u
∂n

∣∣ =
√
cH on ∂Ω. Since H is continuous, there exists an open set U such

that H > 0 on U ∩ ∂Ω. Thus, on ∂Ω ∩ U , ∂u
∂n

keeps constant sign, so in this set we can only

have ∂u
∂n

=
√
cH or ∂u

∂n
= −
√
cH. If we have two eigenfunctions u1, u2 then there exists a linear

combination u = αu1+ βu2 such that ∂u
∂n

vanishes on ∂Ω∩U . We apply Holmgren uniqueness

theorem to conclude that u = 0 and λk is simple. �

The following result connects the criticality of a domain Ω with the definiteness of the

quadratic form qv. This will allow us later to state our optimality result.

Theorem 1.5.2. Let k ≥ 1 be a positive integer.

(1) If Ω is a critical domain for the kth eigenvalue of the Dirichlet Laplacian, then, for all

v ∈ P0(∂Ω), the quadratic form qv(u) = −
∫

∂Ω

(
∂u

∂n

)2

v dσ is not definite on Ek.

(2) Assume that λk > λk−1 or λk < λk+1, and that for all v ∈ P0(∂Ω), the quadratic form

qv(u) = −
∫
∂Ω

(
∂u
∂n

)2
v dσ is not definite on Ek. Then Ω is a critical domain for the kth

eigenvalue of the Dirichlet Laplacian.

Proof: (1) Consider a function v ∈ P0(∂Ω) and let Ωε = fε(Ω) be an analytic perimeter

preserving deformation of Ω such that v = 〈 d
dε
fε|ε=0, n〉 (such a deformation exists by Lemma

1.2.6). Let (Λi,ε)i≤p and (ui,ε)i≤p be families of eigenvalues and eigenfunctions associated to λk

like in Lemma 1.2.7. There exist two integers i, j ≤ p such that d
dε
λk,ε|ε=0− = d

dε
Λi,ε|ε=0 and

d
dε
λk,ε|ε=0+ = d

dε
Λj,ε|ε=0. The criticality of Ω implies that d

dε
Λi,ε|ε=0× d

dε
Λj,ε|ε=0 ≤ 0 and from

Lemma 1.2.8, it follows that qv has both positive and negative eigenvalues, which means that qv

is not definite on Ek.
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(2) Assume λk > λk−1 and let Ωε = fε(Ω) be a perimeter-preserving deformation of Ω. Let

(Λi,ε)i≤p and (ui,ε)i≤p be families of eigenvalues and eigenfunctions associated to λk according

to Lemma 1.2.7. For ε sufficiently small we have λk,ε = mini≤p Λi,ε. Hence

d

dε
λk,ε
∣∣
ε=0+

= min
i≤p

d

dε
Λi,ε

∣∣
ε=0

and
d

dε
λk,ε
∣∣
ε=0−

= max
i≤p

d

dε
Λi,ε

∣∣
ε=0

.

The non definiteness of qv on Ek means that its smallest eigenvalue is non positive and its

largest one is non negative. This implies that

d

dε
λk,ε
∣∣
ε=0+

= min
i≤p

d

dε
Λi,ε

∣∣
ε=0
≤ 0

and
d

dε
λk,ε
∣∣
ε=0−

= max
i≤p

d

dε
Λi,ε

∣∣
ε=0
≥ 0

which in turn implies the criticality of the domain Ω.

The case λk < λk+1 can be treated in a similar manner. �

The next result provides a nice characterisation of the non-definitness of qv . Note that unlike

in [47], we have to add a hypothesis on H. This hypothesis is natural when dealing with

solutions of problem (1.1.2).(see [44], Section 4.)

Theorem 1.5.3. Let k be a natural integer. If Ω is bounded and its curvature satisfies H ≥ 0

then the following two conditions are equivalent:

(i) For all v ∈ P0(∂Ω), the quadratic form qv is not definite on Ek.

(ii) There exists a finite family of eigenfunctions (ui)i≤m ⊂ Ek satisfying

m∑

i=1

(
∂ui
∂n

)2

= H on ∂Ω.

Proof: To see that (ii) implies (i) it suffices to notice that, for any v ∈ P0(∂Ω)

∑

i≤m

qv(ui) = −
∑

i≤m

∫

∂Ω

(
∂ui
∂n

)2

vdσ = −
∫

∂Ω

H v dσ = 0,

which means that qv is not definite on Ek.

To prove the other implication we look at K = conv{
(
∂u
∂n

)2
, u ∈ Ek}, and we want to

prove that the function H belongs to K. Suppose that H /∈ K. Then, from the Hahn-Banach

theorem (applied to the finite dimensional normed vector subspace of C1(∂Ω) spanned by K

andH), there exists a function v ∈ C1(∂Ω) such that
∫
∂Ω
H v dσ > 0 and for all u ∈ Ek,

∫

∂Ω

(
∂u

∂n

)2

v dσ ≤ 0.
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Since v is not necessarily in P0(∂Ω), we modify it by a constant term and define v0 = v− c
where c is chosen such that v0 ∈ P0(∂Ω). The condition that c must satisfy is

0 =

∫

∂Ω

H v0 dσ =

∫

∂Ω

H v dσ − c
∫

∂Ω

H dσ.

This last relation defines c =

∫
∂Ω
H v dσ∫

∂Ω
H dσ

, since
∫
∂Ω
H dσ > 0. The fact that

∫
∂Ω
Hdσ > 0 is a

consequence of the fact that H ≥ 0 and Ω is bounded. With the above considerations, we see

that c > 0.

For u ∈ Ek we have

qv0(u) = −
∫

∂Ω

(
∂u

∂n

)2

v0 dσ

= −
∫

∂Ω

(
∂u

∂n

)2

v dσ + c

∫

∂Ω

(
∂u

∂n

)2

dσ

≥ c

∫

∂Ω

(
∂u

∂n

)2

dσ

and
∫
∂Ω

(
∂u
∂n

)2
dσ > 0 for any non trivial Dirichlet eigenfunction u (due to Holmgren uniqueness

theorem). In conclusion, we have found a function v0 ∈ P0(∂Ω) such that the quadratic form

qv0 is positive definite on Ek, which contradicts condition (i). �

Corollary 1.5.4. If Ω is a local minimizer for the problem (1.1.2)

min
Per(Ω)=1

λk(Ω)

with boundary of class C3, then there exists a finite family of eigenfunctions (ui)i≤m ⊂ Ek, such

that
m∑

i=1

(
∂ui
∂n

)2

= H.

Proof: It is a direct result of the above theorems, noting that any solution Ω of the problem

must verifyH ≥ 0 [44]. �

Remark 1.5.5. We note that Corollary 1.5.4 the number m of eigenfunctions that satisfy the

optimality condition is not known. Numerical computations done in Section 1.6 suggest that m

is equal to the multiplicity of λk.

Once this regularity result is established, we can apply the bootstrap procedure presented in

[28], and conclude that Ω is smooth.

Corollary 1.5.6. If Ω is a minimizer for the problem (1.1.2), with boundary of class C3, then Ω

has boundary of class C∞.
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Proof: If Ω is of class C3, then Corollary 1.5.4 holds and we have the optimality relation

m∑

i=1

(
∂ui
∂n

)2

= H.

Since Ω is of class C2,α, it follows, using standard Shauder regularity estimates, that ∂nu
2
i is

C1,α. The optimality relation, then implies thatH is C1,α, and thus Ω is of class C3,α. Iterating

this procedure we find that Ω is of class C∞. �

In the article [28] the authors prove that the solution of (1.1.2) in the case k = 2, d = 2

has no segments and no arcs of circles in its boundary. The method used in the mentioned

article works only in the case we know the corresponding eigenvalue is simple. Using the above

corollary, we can partially extend this result to the general case. In the following, we call a flat

part of Rd, the nonempty intersection of a d − 1 dimensional hyperplane with a d-dimensional

open ball.

Theorem 1.5.7. If Ω is a local minimizer for the problem 1.1.2

min
Per(Ω)=1

λk(Ω)

then ∂Ω does not contain a flat part.

Proof: Suppose that Ω contains a flat part S in its boundary. Using the previous convention,

S = H ∩ B where H is a d − 1 dimensional hyperplane and B is a d-dimensional ball. Then

H = 0 on that region S, and by Corollary 1.5.4, at least one eigenfunction u satisfies
∂u

∂n
= 0

on that S.

We then choose an extension Ω′ = Ω ∪ B′ of the domain Ω such that B′ is a ball, B′ ⊂ B,

B′ 6⊂ Ω and B′ is small enough such that B′ ∩ ∂Ω ⊂ S. Define u′ = u on Ω and 0 on Ω′ \Ω. In

this way, we create an eigenfunction u′ on Ω′ which is zero on an open set. This together with

the analiticity of u′ and the fact that u′ is not identically zero brings us to a contradiction.

In conclusion, Ω cannot contain a flat part in its boundary. �

1.6 Numerical observation of the optimality

conditions

By the above results, we know that if Ω is a minimizer for (1.1.2) then it exists a family of

eigenfunctions (ui)
m
i=1 ⊂ Ek such that

m∑

i=1

(
∂ui
∂n

)2

= H. (1.6.1)

In order to evaluate the numerical quality of our solutions we would like to investigate how far

our solutions satisfy this optimality condition. The question is whether we are able to find a
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combination of eigenfunctions which realize this equality. Suppose that dimEk = p and the p

orthonormal eigenfunctions which span Ek are denoted u1, ..., up. We may use indexes from 1

to p or from k − p+ 1 to k. It is easy to see that (1.6.1) implies that

H ∈ span

({(
∂ui
∂n

)2

, i = 1..p

}
⋃{

∂ui
∂n

∂uj
∂n

, 1 ≤ i < j ≤ p

})
.

This observation is a direct consequence of the fact that each eigenfunction ui can be written as

ui =

p∑

j=1

αi
juj.

Thus, in a first step, we can find the coefficients ofH in the decomposition

H =

p∑

i=1

αi

(
∂ui
∂n

)2

+
∑

1≤i<j≤p

βi,j
∂ui
∂n

∂uj
∂n

by solving an optimization problem. The normal derivatives ∂ui

∂n
and the curvature are known on

a discretization {x1, ..., xl} of the boundary ∂Ω. To find the coefficients, we solve the quadratic,

convex minimization problem

min
(αi)

p
i=1,

(βi,j)1≤i<j≤n

l∑

h=1

(
p∑

i=1

αi

(
∂ui
∂n

(xh)

)2

+
∑

1≤i<j≤p

βi,j
∂ui
∂n

(xh)
∂uj
∂n

(xh)−H(xh)
)2

Then, we transform this quadratic representation into a canonical representation by using the

classical Gauss-Jacobi method. Of course, this representation is not unique. The claim of

Corollary 1.5.4 is that this canonical representation will consist in a sum of squares: to test this,

we checked if the matrix (ai,j) defined by ai,i = αi, ai,j = aj,i = βi,j/2 is positive definite. The

answer is affirmative for every optimizer, and a representation of the type (1.6.1) is presented

for each k = 1, ..., 15 in Table 1.2. In all computations we check the pointwise optimality

conditions presented in Table 1.2 up to an upper bound of order 10−4.

We present below a few other numerical observations in connection with the optimality

conditions.

• If x ∈ ∂Ω andH(x) = 0, then all nodal lines corresponding to the eigenfunctions present

in the optimality relation touch ∂Ω at x. This is observed numerically in Figure 1.3 for

k = 18.

• Numerical observations suggest that the number of eigenfunctions m present in the op-

timality condition is equal to the multiplicity of the eigenvalue at the optimum. Further-

more, the relation seems to be a convex combination of the type

ak(∂nuk)
2 + ak−1(∂nuk−1)

2 + ...+ ak−m+1(∂nuk−m+1)
2 = H,

where ak + ak−1 + ... + ak−m+1 = 1.

44



0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

angle

cu
rv

at
ur

e

Figure 1.3: Optimal set Ω18 obtained for k = 18, together with the nodal lines of the eigenfunc-

tions u17, u18 corresponding to λ17(Ω18) = λ18(Ω18). (left) Plot of the curvature of Ω18; note

that the nodal lines touch the boundary at the two points having zero curvature. (right)

• Motivated by [?], we studied numerically some convex combinations of eigenvalues under

perimeter constraint. Suppose that Ω∗ is solution of problem (1.1.2) and λk(Ω
∗) is double,

with observed numerical optimality relation

a(∂nuk)
2 + (1− a)(∂nuk−1)

2 = H.

Then, we observed numerically that Ω∗ is also a solution of the problem

min
Per(Ω)=1

(αλk(Ω) + (1− α)λk−1(Ω)) ,

for every α ∈ [a, 1]. This can be generalized to the cases where the eigenvalue has higher

multiplicity.

Finally, we have observed that the optimality condition is a strong indicator of a local mini-

mum. At first, when we verified if the optimality condition is satisfied on the results we obtained,

we got large errors. We then decided to remake the initial computations and it turned out that

in every situation where the optimality error was large, we were able to go further with the

optimization and decrease even more the optimal value.

1.7 Further details and comparison with other known

computations

We provide below some further details concerning the optimization of the first 50 eigenvalues

of the Dirichlet Laplacian under perimeter constraint. We compare our results (column labelled

”our λk”) with the ones obtained by P. Antunes and P. Freitas in [10] (column labelled ”λk AF”).

In their computations the perimeter is fixed and it equals 2
√
π, so in order to compare the results

we rescaled our shapes so that they have the same perimeter. We present the optimality errors

45



k mult. Numerical optimality relation L2 error L∞ error

1 1 (∂nu1)
2 = H 0 0

2 1 (∂nu2)
2 = H 3 · 10−8 4 · 10−8

3 2 ( 1√
2
∂nu2)

2 + ( 1√
2
∂nu3)

2 = H 5 · 10−4 7 · 10−4

4 2 (0.16∂nu3)
2 + (0.98∂nu4)

2 = H 3 · 10−4 6 · 10−4

5 2 (0.54∂nu4)
2 + (0.84∂nu5)

2 = H 2 · 10−4 3 · 10−4

6 1 (∂nu6)
2 = H 3 · 10−4 5 · 10−4

7 2 (0.87∂nu6)
2 + (0.48∂nu7)

2 = H 4 · 10−4 5 · 10−4

8 2 (0.39∂nu7)
2 + (0.92∂nu8)

2 = H 3 · 10−4 3 · 10−4

9 1 (∂nu9)
2 = H 7 · 10−5 10−4

10 2 ( 1√
2
∂nu9)

2 + ( 1√
2
∂nu10)

2 = H 2 · 10−4 2 · 10−4

11 2 (0.51∂nu10)
2 + (0.86∂nu11)

2 = H 6 · 10−4 7 · 10−4

12 3
(0.31∂nu10)

2 + (0.51∂nu11)
2+

(0.80∂nu12)
2 = H 3 · 10−5 2 · 10−5

13 1 (∂nu13)
2 = H 4 · 10−4 5 · 10−4

14 2 (0.82∂nu13)
2 + (0.57∂nu14)

2 = H 2 · 10−5 2 · 10−5

15 1 (∂nu15)
2 = H 10−5 10−5

Table 1.2: Optimality conditions in two dimensions

as well as the multiplicities. The optimal eigenvalues are roughly the same, except some situa-

tions highlighted in the table where the optimal values found by our algorithm are significantly

smaller (difference greater than 0.25). We note that in these highlighted cases even the optimal

shapes are slightly different. We notice that optimal shapes corresponding to k = 29, 43 do

not seem to have symmetry, while the optimal shapes proposed by Antunes and Freitas are all

symmetric. On the other hand shapes corresponding to k = 41, 49 have a central symmetry and

do not have a symmetry axis. Given these considerations it is not likely that a result concerning

the symmetry of optimal shapes can be proved.

k our λk λk + Per Opt. error λk AF Difference AF mult. our mult.

1 18.168275 11.5507 0 18.17 -0.00173 1 1

2 42.064122 15.28065 4.9e-05 42.07 -0.00588 1 1

3 46.124753 15.757328 0.000796 46.13 -0.00525 2 2

4 72.826728 18.348539 0.000694 72.83 -0.00327 2 2

5 82.259531 19.108794 0.000252 82.27 -0.01047 2 2

6 95.605716 20.090889 0.000749 95.61 -0.00428 1 1

7 117.180624 21.500892 0.000377 117.19 -0.00938 2 2

8 125.981848 22.026249 0.000282 125.99 -0.00815 2 2

9 147.353967 23.207329 0.000859 147.36 -0.00603 1 1

10 153.977603 23.549972 9.4e-05 153.98 -0.00240 2 2

11 175.435026 24.596689 0.000727 177.01 -1.57497 2 2

12 178.583626 24.742966 2.6e-05 178.6 -0.01637 3 3
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13 206.785187 25.982306 0.000565 206.79 -0.00481 1 1

14 217.721706 26.432513 2.3e-05 217.73 -0.00829 2 2

15 229.795526 26.912357 1e-05 229.8 -0.00447 1 1

16 238.618352 27.252467 0.000741 238.63 -0.01165 3 3

17 241.453665 27.359983 0.009599 241.45 0.003665 3 3

18 276.599134 28.627952 0.007984 276.62 -0.02087 3 2

19 289.904933 29.079688 0.008092 289.93 -0.02507 2 2

20 303.078565 29.513652 0.003324 303.57 -0.49143 3 3

21 306.435447 29.622216 3.2e-05 306.52 -0.08455 3 3

22 316.631478 29.947178 0.008933 316.67 -0.03852 1 2

23 324.632195 30.197414 0.008528 324.82 -0.18780 2 4

24 361.505011 31.299879 0.001318 361.52 -0.01499 2 2

25 368.455927 31.499487 0.014613 368.51 -0.05407 3 3

26 382.016789 31.881007 0.00478 382.02 -0.00321 3 3

27 383.067574 31.910211 0.007396 383.09 -0.02243 4 4

28 404.018996 32.481681 0.023895 404.04 -0.02100 1 3

29 418.269751 32.859181 0.008134 418.38 -0.11025 2 3

30 433.816974 33.261364 0.007602 433.86 -0.04303 2 3

31 456.106225 33.821527 0.004245 456.73 -0.62378 2 2

32 459.104802 33.895483 0.006554 459.12 -0.01520 3 3

33 467.407148 34.098583 0.003432 467.42 -0.01285 4 4

34 473.06016 34.2355 5.8e-05 473.08 -0.01984 3 3

35 502.991936 34.94285 0.009027 502.99 0.001936 3 3

36 517.814325 35.282763 0.010175 518.28 -0.46567 4 4

37 536.975953 35.712743 0.011331 539.99 -3.01405 3 3

38 548.576823 35.968061 0.003967 549.46 -0.88318 2 2

39 552.970701 36.063842 0.01613 553.04 -0.06930 2 3

40 557.337141 36.158524 0.00657 557.63 -0.29286 4 4

41 574.75261 36.531281 0.00672 574.88 -0.12739 3 3

42 578.401108 36.608414 0.000914 578.47 -0.06889 3 3

43 615.248826 37.369901 0.012761 615.7 -0.45117 4 3

44 625.603235 37.578336 0.011643 625.71 -0.10676 4 4

45 643.066958 37.924798 0.013028 643.2 -0.13304 3 3

46 650.617878 38.072659 0.000676 651.34 -0.72212 2 3

47 662.681925 38.30654 0.02032 662.86 -0.17808 3 3

48 672.35022 38.491935 0.006425 672.36 -0.00978 4 4

49 683.362305 38.700944 0.014663 683.77 -0.40769 3 3
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50 688.796414 38.803256 8.7e-05 688.89 -0.09359 3 3

Table 1.3: Detailed comparison of our results with the ones

of P. Antunes and P. Freitas in the two dimensional case

k our λk λk AF Rel diff.

2 223.63 219.214786 0.02

3 252.48 244.120062 0.03

4 255.56 253.743653 0.007

5 343.75 330.200432 0.04

6 394.77 374.739770 0.05

7 412.2 400.128643 0.03

8 439.8 415.120168 0.06

9 446.58 417.441436 0.07

10 510 475.666586 0.07

Table 1.4: Detailed comparison of our results with the ones of P. Antunes and P. Freitas in the

three dimensional case

21 22 23 24 25

26 27 28 29 30

31 32 33 34 35

36 37 38 39 40

41 42 43 44 45

46 47 48 49 50

Figure 1.4: Shapes which minimize the k-th eigenvalue of the Dirichlet Laplacian under perime-

ter constraint with k ∈ [21, 50]
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1.8 Related topics

1.8.1 Numerical computations - area constraint

The problem (1.1.1) has been studied numerically in two dimensions by [79] (1 ≤ k ≤ 10)

and [9] (1 ≤ k ≤ 15). Using the software MpsPack and the framework presented in the study

of the case of the perimeter constraint, we performed computations for 1 ≤ k ≤ 21. The

computational results are presented in Figure 1.5. In [9] it is conjectured that the multiplicity of

the eigenvalue at the optimum increases with k, for k ≤ 15. In our numerical computations we

observe that the multiplicity varies, and it is not increasing, as conjectured. Of course, as we

can see from the situation of the optimality errors shown below, it might be possible to further

improve some of these shapes. It is interesting to note that for k = 21, the next triangular

number after k = 15 we observed again an optimal shape which has a triangular symmetry.

As in the study of the perimeter case, we can wonder if there is an appropriate optimality

condition, which is valid in the non-differentiable case where the multiplicity is higher than

one. Note that in the case of the area constraint, the multiplicities are always higher than one.

Such an optimality condition was proved by Ilias and El Soufi in [47], article which inspired us

to prove the analogue relation in the perimeter constraint case. The corresponding optimality

relation in the area constraint case is the following.

Theorem 1.8.1. Suppose Ω∗ is a local minimizer for the problem

min
|Ω|=1

λk(Ω).

Then there exists a family of eigenfunctions (ui)
m
i=1 in the eigenspace corresponding to λk such

that
∑

i=1

(∂nui)
2 = 1.

In order to test the quality of our numerical results, we evaluated how well our shapes verify

this optimality condition, using the same method used in the case of the perimeter constraint.

The numerical results presented here are slightly better (in the sense of the optimal value of

the functional) than the ones presented in [9]. Still, the optimality error is not small enough to

be satisfied with our results. As in the perimeter case, we believe that a large optimality error

means that we are not really at the optimum, and thus, even if these results are the best known,

we believe that they can be slightly improved. An evaluation of the error and candidates for the

optimality relations are presented in Table 1.5. We omit the expression of the optimality error

for k = 13 and k ∈ [16, 21] as the optimality error is quite large in some cases, and we believe

that some of the results may be improved.
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λ5 = 78.15, mult = 2 λ6 = 88.47, mult = 3 λ7 = 106.13, mult = 3 λ8 = 118.86, mult = 3

λ9 = 132.35, mult = 3 λ10 = 142.67, mult = 4 λ11 = 159.39, mult = 4 λ12 = 172.84, mult = 4

λ13 = 186.77, mult = 4 λ14 = 198.96, mult = 4 λ15 = 209.60, mult = 5

λ16 = 230.91, mult = 4 λ17 = 241.02, mult = 3 λ18 = 255.97, mult = 4

λ19 = 267.87, mult = 5 λ20 = 279.68, mult = 5 λ21 = 289.45, mult = 4

Figure 1.5: Numerical optimizers for problem 1.1.1 in 2D
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k mult. Numerical optimality relation L2 error L∞ error

5 2 (2.8∂nu4)
2 + (1.7∂nu5)

2 = 1 7 · 10−3 3 · 10−2

6 3 (0.56∂nu4)
2 + (0.38∂nu5)

2 + (0.38∂nu6)
2 = 1 10−3 4 · 10−3

7 3
(0.16∂nu5 − 0.11∂nu6)

2 + (0.19∂nu6)
2+

(0.2∂nu7)
2 = 1

0.05 0.15

8 3 (0.31∂nu6)
2 + (0.51∂u7)

2 + (0.3∂nu8)
2 = 1 0.03 0.07

9 3 (0.18∂nu7)
2 + (0.11∂nu8)

2 + (0.18∂nu9)
2 = 1 0.04 0.11

10 4
(0.26∂nu7)

2 + (0.35∂nu8)
2 + (0.35∂nu9)

2+
(0.21∂nu10)

2 = 1
8 · 10−3 2 · 10−2

11 4
(0.14∂nu8)

2 + (0.14∂nu9)
2 + (0.12∂nu10)

2+
(0.13∂nu11)

2 = 1
0.04 0.09

12 4
(0.12∂nu9)

2 + (0.24∂nu10)
2 + (0.31∂nu11)

2+
(0.35∂nu12)

2 = 1
0.01 0.02

13 4 - 0.07 0.4

14 4
(0.1∂nu11)

2 + (0.09∂nu12)
2 + (0.11∂nu13)

2+
(0.14∂nu14)

2 = 1
0.06 0.15

15 5
(0.26∂nu11)

2 + (0.26∂nu12)
2 + (0.22∂nu13)

2+
(0.09∂nu14)

2 + (0.15∂nu15)
2 = 1

0.01 0.05

16 4 - 0.06 0.15
17 4 - 0.007 0.02
18 4 - 0.02 0.06
19 5 - 0.02 0.23
20 5 - 0.07 0.23
21 4 - 0.04 0.11

Table 1.5: Optimality conditions in two dimensions - area constraint

1.8.2 Numerical study of Polya’s conjecture

We may ask what happens if we try to optimize the Dirichlet-Laplace eigenvalues of polygonal

shapes under different constraints. In the following, n denotes the number of sides of a polygon.

It turns out that the problem is more difficult than it seems, even in the case of the first eigenvalue.

Using Steiner symmetrization techniques one may prove the following facts:

• the equilateral triangle minimizes the first eigenvalue among triangles;

• the square minimizes the first eigenvalue among quadrilaterals.

The case n ≥ 5 is an open problem, and there is a famous conjecture, due to Polya, which is a

natural extrapolation of the cases n = 3, 4.

Conjecture 1.8.2. (Polya’s conjecture) The regular polygon minimizes λ1 among all polygons

with n sides.

We do not have an answer to this conjecture, but we studied the problem numerically for

n ∈ [5, 15]. Two ingredients are needed in order to perform this numerical study:

• A numerical method which allows us to compute the eigenvalues of a polygon.
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• A formula of the derivative of the eigenvalue in terms of the vertices of the polygon.

We start by presenting the numerical method we used in the computation, which is based on

fundamental solutions. Given a general shape P , whose boundary is well behaved, we wish to

solve numerically the equation





−∆u = λu in Ω

u = 0 on ∂Ω

The idea behind the method of fundamental solutions is to consider only functions which already

satisfy the equation −∆u = λu in Ω, and one way to do this is to consider

u = α1φ
λ
1 + ...+ αNφ

λ
N ,

where φλ
i , i = 1...M are fundamental radial solutions of −∆φ = λφ, with singularities outside

Ω. We denote by (yi) the singularities of the functions φλ
i which are points outside Ω. The

coefficients α1, ..., αN are found by imposing the boundary conditions on a discretization of ∂Ω

denoted (xi). This leads to a system of equations

α1φ
λ
1(xi) + ... + αNφ

λ
N(xi) = 0, i = 1...N. (1.8.1)

Of course, we are interested in the case where this system has a non-trivial solution, which

means that the matrix Aλ = (φj(xi)
λ)Ni,j=1 needs to be singular. Thus, in order to find the

eigenvalues of a domain Ω which are situated in some interval I , it suffices to locate the points

λ ∈ I where detAλ = 0. Once such an eigenvalue is located, we can find a corresponding

eigenfunction by solving the system (1.8.1). Note that in this form, when λ is an eigenvalue, the

system does not have a unique solution. In order to address this issue, we add another equation

corresponding to an interior point, where we impose that the combination
∑
αiφ

λ
i does not

vanish. Methods of this type have been considered in the literature by Alvez and Antunes [4].

In order to tackle the problem corresponding to polygons, we need to provide a family of

radial functions which satisfies the eigenvalue equation and decide where to choose the points

(xi) and (yi). We can find a family of fundamental solutions by looking at the equation corre-

sponding to the laplacian written in polar coordinates. If φ = y(r) then−∆φ = λφ corresponds

to

−y′′(r)− 1

r
y′(r) = λy,

which translates to

r2y′′(r) + ry′(r) + r2λy(r) = 0.

We make the change of variable s =
√
λr. Then if y(r) = z(s) we have y′(r) = z′(s)

√
λ and

y′′(r) = z′′(s)λ, which means that z satisfies the differential equation

s2z′′ + sz′ + s2z = 0.
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Note that this corresponds to the Bessel function of the first kind, which satisfies the equation

s2z′′ + sz′ + (s2 − α2)z = 0 (1.8.2)

for α = 0. Thus, we can choose our fundamental solutions to be of the form φλ(x) = z(
√
λ|x|)

where z is a solution of (1.8.2) for α = 0. In our numerical computations we choose as solutions

the Hankel functions, which are a combination of an analytic and a singular solution of (1.8.2).

In Matlab this corresponds to the function besselh.

We come now to the choice of points (xi), (yi) which is important in the computations. As

noted in [4], an arbitrary choice of these points may lead to inconclusive results. A somewhat

uniform distribution and a good relation between the evaluation and source points is needed in

order for the method to be successful. In the following, we only treat the case of polygons.

Given a polygon P , we want to distribute N points on its boundary in a uniform way. In

order to do this, we compute the lengths of the sides of P , and we associate to each side of P a

number of points proportional to its length. Then we distribute evenly the corresponding points

on this side. The exterior source points (yi) are chosen on the normals of the polygon, at a fixed

distance. In my computations I used a distance of 0.3 for polygons of fixed area equal to 1. At

the corners we choose the exterior source points on the bisector of the angle of the polygon, to

better address the corner singularity present there. An example of points distribution is shown

in Figure 1.6. Another example of point distribution is the Chebyshev distribution on every

side1. The points are distributed on the segments according to the parameter (cos

(
2i− 1

2k
π

)
+

1)/2, i = 1...k. I noted that this new distribution gains more precision for the same number of

source points. This behaviour of the error with respect to the distribution of points can be seen

in Table 1.8 for the particular case of a rectangle of side lengths 1.2×1. Note that for a rectangle

of sides L × ℓ the expression of the Dirichlet eigenvalues is given by λ ∈ {π2

(
m2

L2
+
n2

ℓ2

)
:

m,n ≥ 1}.
In the numerical computations we note that the determinant of Aλ is always close to zero.

In order to better detect its zeros, we compute log(Aλ) for a discretization of the search interval,

and we look for the singularities of this function using a golden search method. A plot of

det(Aλ) on the interval [1, 100] in the case of the equilateral triangle of side length 2 is presented

in Figure 1.7. For this equilateral triangle, we can express the eigenvalues in analytic form:

λ ∈ {4π2

9
(m2+mn+n2), m, n ≥ 1}. In Table 1.6 we present the first eigenvalues we obtained

numerically, compared to their analytical correspondents.

Let’s now turn to the numerical study of Polya’s conjecture. We want to optimize numeri-

cally the first eigenvalue of a polygon with n sides. Note that in this particular case, the eigen-

value depends only on the 2n parameters corresponding to the coordinates of the vertices of

the polygon. If we could write the expression of the derivative with respect to every parameter

of the eigenvalue, then we could write a gradient descent algorithm in order to optimize this

1I thank Robert S. Jones for suggesting me this distribution
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Figure 1.6: Configuration of source points (red) and evaluation points (blue) for a regular

hexagon (left) and for a non-regular pentagon (right)
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Figure 1.7: Configuration of source points and evaluation points for an equilateral triangle and

the plot of λ 7→ log | det(Aλ)| for λ ∈ [1, 100]

Numerical values Analytical value Precision

13.1594725447 13.1594725347 7 digits

30.7054358009 30.7054359145 6 digits

52.6378888648 52.6378901391 4 digits

57.0243802270 57.0243809840 6 digits

83.3433209202 83.3433260536 5 digits

92.1163077702 92.1163077435 7 digits

Table 1.6: Comparison between numerical and analytical values for the equilateral triangle of

side length 2
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Regular Chebyshev Analytic

16.7234963700 16.7234963461 16.7234963462
37.2851722760 37.2851721817 37.2851721818
46.3323096064 46.3323095494 46.3323095495
66.8939856146 66.8939853848 66.8939853851
71.5546321129 71.5546319077 71.5546319078
95.6803315972 95.6803315556 95.6803315550

Table 1.7: Comparison between normal distribution, Chebyshev distribution and analytical val-

ues for the rectangle of sides 1 and 1.2. The different point distribution can be seen in Figure

1.8

Figure 1.8: Normal point distribution (left) vs Chebyshev point distribution (right)

eigenvalue. In general, if a shape Ω is perturbed by a vector field V , the expression of the

derivative of a simple eigenvalue is given by
dλ

dV
= −

∫

∂Ω

(
∂u

∂n

)2

V.ndσ. We want to compute

the derivative with respect to the parameters defining each vertex of the polygon. In order to do

this, we consider particular vector fields V .

Let’s fix the vertex Ai with neighbouring vertices Ai−1, Ai+1 (notation modulo n). Denote

the two coordinates of Ai by (x2i−1, x2i). If we want to find the derivative of λ1 with respect

to x2i−1 we make a perturbation of Ai with (1, 0). This perturbation of one vertex induces a

perturbation of the segments Ai−1Ai, AiAi+1 of P . In this particular case V has the following

form on ∂P : 



Ii−1,i(x)(1, 0) x ∈ [Ai−1Ai]

Ii+1,i(x)(1, 0) x ∈ [AiAi+1]

0 otherwise ,

where Ij,l : AjAl → [0, 1] is an affine function with Ij,l(Aj) = 0, Ij,l(Al) = 1. Denoting

nj,j+1 = (n2
j,j+1, n

2
j,j+1) the outer normal of the segment AjAj+1 of ∂P , we have

dλ1
dx2i−1

= −
∫

AiAi−1

Ii−1,i

(
∂u

∂n

)2

n1
i−1,idσ −

∫

AiAi+1

Ii+1,i

(
∂u

∂n

)2

n1
i+1,idσ.
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In the same way we get

dλ1
dx2i

= −
∫

AiAi−1

Ii−1,i

(
∂u

∂n

)2

n2
i−1,idσ −

∫

AiAi+1

Ii+1,i

(
∂u

∂n

)2

n2
i+1,idσ.

Once we have all these ingredients we can perform the numerical optimization using a

standard gradient descent algorithm. The numerical results presented below all support Polya’s

conjecture for n ∈ [5, 15]. Results are presented in Figure 1.10. In order to evaluate how far

these polygons are from being reguular, we compute in each case the standard deviation of the

angles (denoted sa) and the standard deviation of the lengths of the sides (denoted sl).

The numerical results show that it is likely that Polya’s conjecture is true also for n ≥ 5.

Despite the fact that we do not have a definite theoretical answer, it is possible to prove that the

regular polygons are critical points of the first eigenvalue under area constraint.

Proposition 1.8.3. For n ≥ 3 the regular polygon with n sides is a critical point for the first

eigenvalue of the Dirichlet Laplace operator among polygons with n sides under area con-

straint.

Proof: In the following we denote with Pn the class of polygons with n sides. It is not

difficult to prove that minimizing λ1(P ) in Pn under area constraint is equivalent, up to an

homothety, to solving the problem

min
P∈Pn

λ1(P ) + |P |. (1.8.3)

In the following we use this formulation in which we incorporate the constraint in the functional.

We note that the first eigenfunction u1 in the case P is a regular polygon is a H2 function [59].

This allows us to see that in this case we can write the shape derivative of G(P ) = λ1(P ) + |P |,
which is given by

dG
dV

(P ) = −
∫

∂P

(
∂u1
∂n

)2

V.n dσ +

∫

∂P

V.n dσ

In the following we let P be the regular polygon which minimizes λ1(P )+ |P |. Since choosing

a vector field V with V.n = 1 preserves the regularity of P , we can conclude by the shape

derivative formula given above that

∫

∂P

(
∂u1
∂n

)2

dσ =

∫

∂P

dσ = nℓ, (1.8.4)

where ℓ is the side-length of the optimal regular polygon P for (1.8.3). We can give an explicit

formula for the vector field V . Suppose that P is centered at the origin and has inradius equal

to r. Then V = |x|/r has the desired property that V.n = 1.

As discussed earlier, all relevant perturbations in the class of polygons can be described by

the perturbations of the n vertices. Moreover, each perturbation of a vertex Ai can be expressed

as a linear combination of perturbations of the typeAi+µ
−−−−→
Ai−1Ai, as seen in Figure 1.9. Writing
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Figure 1.9: Particular vertex perturbation

the expression of the derivative of G with respect to this perturbation gives us

dG
dV

(P ) = −
∫ ℓ

0

(∂nu1(p(t/ℓ))
2 ℓ− t

ℓ
V.ndt +

∫ ℓ

0

ℓ− t
ℓ

V.ndt,

where the parametrization of the side AiAi+1 was chosen p(s) = (1 − s)Ai + sAi+1 and n is

the normal vector to AiAi+1. Since V.n is constant we conclude that

dG
dV

(P ) = V.n(−
∫ ℓ

0

(∂nu1(p(t/ℓ))
2 ℓ− t

ℓ
dt+ ℓ/2)

Since the first eigenfunction has the same symmetries as the regular polygon we conclude that

after a change of variables t 7→ ℓ− t we have

∫ ℓ

0

(∂nu1(p(t/ℓ))
2 ℓ− t

ℓ
=

∫ ℓ

0

(∂nu1(p(t/ℓ))
2 t

ℓ
dt =

∫ ℓ

0
(∂nu1(p(t/ℓ))

2dt

2
=
ℓ

2
,

where we used (1.8.4). As a consequence we deduce that dG
dV

(P ) = 0 for every such particular

perturbation V . Since every perturbation of the vertices of the polygon can be written as a

linear combination of these simple vertex perturbation, we conclude, by the linearity of the

shape derivative, that dG
dV

(P ) = 0 for every admissible vertex perturbation V . Thus the regular

polygon P is a critical point for G.

�
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n=5, sl=7e-5, sa=1e-5 n=6, sl=1e-6, sa=1e-6 n=7, sl=3e-6, sa=3e-6 n=8, sl=2e-6, sa=2e-6

n=9, sl=4e-6, sa=3e-6 n=10, sl=3e-3, sa=3e-3 n=11, sl=2e-5, sa=3e-5 n=12, sl=3e-5, sa=3e-5

n=13, sl=2e-5, sa=2e-5 n=14, sl=1e-5,sa=1e-5 n=15, sl=2e-3, sa=2e-3

Figure 1.10: Numerical optimizers of λ1 among polygons for n ∈ [5, 15]
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CHAPTER 2

Optimal partitions - anisotropic

perimeters

Résumé

Dans ce chapitre on étudie le problème de partitionnement optimal d’un ensemble qui minimise

la somme de certains périmètres anisotropes. Un périmètre anisotrope prend en compte les

longueurs de façon différente selon la direction considérée. En conséquence, certaines direc-

tions sont favorisées. Le problème isopérimétrique est un résultat classique qui dit que si on

veut minimiser le périmètre à volume constant, alors l’ensemble optimal est la boule. Si au lieu

de minimiser le périmètre classique on minimise un périmètre anisotrope, l’optimiseur peut être

différent de la boule. Considérons l’exemple suivant : pour un ensemble bidimensionnel Ω on

considère le périmètre anisotrope Perϕ(Ω) =

∫

∂Ω

ϕ(~n)dσ avec ϕ(x) = |x1|+ |x2|, ~n la normale

sortante à ∂Ω. Pour ce périmètre anisotrope deux directions sont favorisées : la direction hori-

zontale et la direction verticale. Si on veut minimiser Perϕ(Ω) à aire constante, l’optimiseur est

un carré, qui est la forme de Wulff associée à la norme ϕ.

Comme on peut voir sur ce cas simple, changer le périmètre pour un périmètre anisotrope

change complètement la solution du problème. Le cas des partitions en cellules de même

aire qui minimisent la somme des périmètres anisotropes est encore plus difficile à traiter

théoriquement. Ceci motive la conception d’un algorithme qui permet de calculer les partitions

optimales pour des différents périmètres anisotropes.

Gérer les partitions d’un ensemble peut a priori être difficile si on considère des paramétri-

sations individuelles de chaque cellule. On contourne ces difficultés en utilisant une approche

par relaxation. Chaque cellule ωi est remplacée par une approximation ϕi de sa fonction car-

actéristique. Ici ϕ est une fonction définie sur le domaine à partitionner D et prend ses valeurs

dans [0, 1]. La condition ”(ϕi)
n
i=1 représente une partition” se traduit simplement en imposant

que la somme de toutes fonctions ϕi, i = 1, ..., n soit égale à 1.

Pour pouvoir calculer une approximation d’un périmètre anisotrope d’un ensemble ωi appro-
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ximé par une densitéϕi on a besoin de relaxer le périmètre anisotrope dans ce cadre. Il existe des

variantes du théorème de Modica et Mortola pour le cas anisotrope. On donne la preuve d’un

résultat de Γ-convergence pour la somme des périmètres anisotropes associés à une partition.

On souligne le fait que la Γ-convergence n’est pas stable pour la somme. Le résultat n’est

pas une simple conséquence du cas d’une seule phase. Une particularité de ce résultat de Γ-

convergence est le fait que l’anisotropie peut dépendre non seulement de la direction, mais

aussi de la position de la frontière.

Ce résultat de Γ-convergence nous permet d’implémenter un algorithme de calcul des par-

titions optimales anisotropes en dimension deux et trois. En utilisant cet algorithme on peut

calculer numériquement les partitions optimales pour plusieurs périmètres anisotropes. On ob-

serve que dans les résultats, les frontières des ensembles qui forment la partition sont alignées

avec les directions favorisées.

En fin de ce chapitre on présente quelques variations du même problème :

• étude numérique des configurations des bulles de savon ;

• partitions minimales pour le périmètre pour des domaines généraux avec une méthode

basée sur des éléments finis;

2.1 Introduction

The notion of Γ-convergence was introduced in Definition 1.2.1 and its main properties were

stated in Proposition 1.2.2. One classical Γ-convergence result is the Modica Mortola theorem.

For the sake of completeness, we rewrite its statement below. For simplicity, we denote

X = {u ∈ L1(D) :

∫

D

u = c},

where c ∈ (0, |D|) is a fixed constant.

Theorem 2.1.1. (Modica-Mortola) Let D be a bounded open set and let W : R→ [0,∞) be a

continuous function such that W (z) = 0 if and only if z ∈ {0, 1}. Denote c = 2
∫ 1

0

√
W (s)ds.

We define Fε, F : L1(D)→ [0,+∞] by

Fε(u) =




ε
∫
D
|∇u|2 + 1

ε

∫
D
W (u) u ∈ H1(D) ∩X

+∞ otherwise

and

F (u) =




cPer(u−1(1)) u ∈ BV (D; {0, 1}) ∩X
+∞ otherwise

then

Fε
Γ−→ F

in the L1(D) topology.
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Figure 2.1: Minimizers of Fε for c = 1/7 and ε = 1/100, 1/150, 1/200, 1/250, 1/300. The

corresponding cost values are: 1.3089, 1.3216, 1.3276, 1.3311, 1.3398

The numerical importance of this theorem was just recently observed. Indeed, when one

wants to compute numerically the perimeter of a set Ω, the boundary ∂Ω must be well known.

Using a parametric formulation might work if one only has to deal with one set. As soon as we

consider multiple shapes which might touch, keeping track of each parametrized boundary is

not a simple task. If we want to study a partitioning problem, using a parametric formulation

rises difficulties in imposing the non-overlapping condition. This is a point where having a good

relaxation for the perimeter, like the theorem mentioned above, becomes really useful.

In the following paragraphs, we take as a toy problem the isoperimetric problem. The third

property stated in Proposition 1.2.2 justifies the following numerical approach. In order to

approach the set which minimizes the perimeter at fixed volume, we find minimizers mε of Fε

for ε smaller and smaller. We expect that the minimizers mε approach the minimizer of F . We

consider a straightforward finite differences discretization to compute Fε on a fixed grid N ×N
in the unit square [0, 1]2. The procedure is as follows:

• Fix an initial ε0 and a random initial condition, and then compute the numerical minimizer

of Fε0 ;

• Decrease ε and find the numerical minimizer of Fε starting from the previous minimizer.

• Repeat until ε is small enough.

This simplistic approach has one drawback: the choice of ε0 cannot be made independent of the

grid step. The ε parameter governs the width of the interface between 0 and 1 for the minimizer

of Fε. If ε is less than 1/N then the gradient term in Fε contains meaningless information,

since the width of the interface is smaller than the width of the grid. To fix this issue, we start

with ε0 ∈ [1/N, 4/N ] and whenever we decrease ε we refine the grid and interpolate the initial

condition on this new grid. We present the numerical results obtained using this procedure in

the case c = 1/7. In this case, we know that in two dimensions, the solution of the isoperimetric

problem is a disk, and the corresponding perimeter to a disk of area 1/7 is 2
√
π/7 = 1.3398.

Results can be seen in Figure 2.1. It is interesting to note that as ε becomes smaller and smaller,

the minimal values of the functionals Fε converge towards the minimal value of F , as expected.
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We can consider the same problem in an anisotropic setting. If we consider a set Ω ⊂ Rd

with C1 boundary, then its perimeter is equal to

Per(Ω) =

∫

∂Ω

dHn−1 =

∫

∂Ω

‖~n(x)‖dHn−1

where ~n(x) denotes the unit outer normal vector corresponding to x ∈ ∂Ω. Thus, the perimeter

treats all directions in the same way and no direction has an advantage over the others. Things

change if we pick another norm ϕ on Rd, different from the euclidean one. We can define the

anisotropic perimeter associated to a norm ϕ by

Perϕ(Ω) =

∫

∂Ω

ϕ(~n).

It is possible to prove a variant of the Modica-Mortola theorem in the anisotropic case.

Proofs of this result can be found in [19],[20]. A local variant of this result, where the norm ϕ

can also depend on the position of the point can be found in [6].

Theorem 2.1.2. Let D be a bounded open set and let W : R → [0,∞) be a continuous

function such that W (z) = 0 if and only if z ∈ {0, 1}. Consider ϕ a norm on Rd. Denote

c = 2
∫ 1

0

√
W (s)ds. We define Gε, G : L1(D)→ [0,+∞] by

Gε(u) =




ε
∫
D
ϕ(∇u)2 + 1

ε

∫
D
W (u) u ∈ H1(D) ∩X

+∞ otherwise

and

G(u) =





cPerϕ(u

−1(1)) u ∈ BV (D; {0, 1}) ∩X
+∞ otherwise

then

Gε
Γ−→ G

in the L1(D) topology.

We repeat the same experiment as in the isotropic case. Pick ϕ(x) = |x1| + |x2|, a norm

which favorizes the vertical and horizontal directions. Then the shape which minimizesPerϕ(Ω)

with area constraint, the so-called Wulff shape associated to ϕ, is a square. When c = 1/7 the

optimal value is 4/
√
7 = 1.5118. In Figure 2.2 we present the optimizers of Gε for decreasing

values of ε and we observe the same convergence behavior. We observe that the convergence

speed is not as fast as in the case of the circle, but this may be due to the fact that in our case ϕ

is not differentiable on the coordinate axes.

The next step is to consider partitioning problems. A famous result due to Hales [60] is

the fact that, asymptotically, every partition of the plane into sets of unit areas has perimeter

greater than the hexagonal honeycomb tiling. In R3 the problem of finding the optimal tilling

with respect to the perimeter using shapes of equal volume is still open. Kelvin conjectured that
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Figure 2.2: Minimizers of Gε for c = 1/7 and ε = 1/100, 1/150, 1/200, 1/250, 1/300. The

corresponding cost values are: 1.4851, 1.4914, 1.4979, 1.5031, 1.5049

truncated octahedra may be optimal, but Weaire and Phelan [92] found a better tiling than the

one of Kelvin. The study of the partitions which minimize the sum of anisotropic perimeters is

even more challenging, since the optimal partition depends on the norm ϕ. This motivates the

interest in providing efficient numerical algorithms which compute the optimal partitions.

One such method was developed by É. Oudet in [80] in the case of partitions minimizing the

sum of perimeters of the cells in two and three dimensions. The author uses a generalization of

the Modica-Mortola theorem to the case of partitions. The partition condition, in this functional

case, is realized by imposing that the density functions u1, u2, ..., un, corresponding to the cells

of the partition, satisfy the relation u1 + u2 + ... + un = 1. Note that this last condition is not

too difficult to implement from a numerical point of view. With this framework, the author was

able to recover the result of Hales in the periodic case in 2D. In three dimensions, the numerical

optimizer was close to the Weaire-Phelan structure.

In this chapter we provide an extension of this numerical framework in the anisotropic case.

First we provide a Γ-convergence result which generalizes Theorem 2.1.2 to the partition case.

As always, we underline the fact that the Γ-convergence is not stable for the sum, so the result

is not trivial. In fact, the (LI) property in the definition of the Γ-convergence comes at once

from the one phase case, while the (LS) property requires a bit of work. In order to construct a

recovery sequence, we use an approximation result proven by Baldo [11], which states that we

can approximate well enough every admissible partition by a polygonal partition.

In the end, we present some numerical computations, for different anisotropy choices, and

we observe the desired behavior: partition cells tend to have their boundaries aligned with the

favorized directions. Although the theoretical framework is restricted to the case where ϕ is a

norm, and thus, is convex, we observe numerically that non-convex anisotropies also produce

the expected results and the rate of convergence is much higher in some cases. We may extend

the finite difference method to non-rectangular domains by using only the nodes of the finite

difference grid which lie inside the considered shape. We are able to improve some of the

results of É. Oudet [80], notably when the number of the cells of the partition is high. Working

with this finite differences approach allows us to study anisotropic partitions on non-rectangular

domains. We also provide a different framework, based on finite elements, in order to study

partitions of non-rectangular domains into equal area cells. Our results are comparable with
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those obtained by Cox and Flikkema in [39]. This finite element approach has the advantage

that it may be applied whenever we have a qualitative triangulation of the domain. This fact

motivates the extension of this study to three dimensional surfaces in Chapter 5.

2.2 Main Results

We consider the following definition of the generalized perimeter, valid for every measurable

set D ⊂ Rd.

Per(Ω, D) = sup{
∫

Ω

div gdx : g ∈ C∞
0 (D;Rd), ‖g‖∞ ≤ 1}

This definition agrees with the classical one in the case Ω has a certain regularity (polyhedra,

piecewise C1, etc). Given a norm ϕ on Rd we can extend the above variational characterization

to the anisotropic perimeter associated to ϕ by

Perϕ(Ω, D) = sup{
∫

Ω

div gdx : g ∈ C∞
0 (D;Rd), ϕ(g) ≤ 1}.

We make the assumption that ϕ is comparable with the Euclidean norm, i.e. there exist constants

c, C > 0 such that c|x| ≤ ϕ(x) ≤ C|x|. Then if a set E has Perϕ(E,Ω) < ∞ then χE ∈
BV (Ω), the space of functions of bounded variation on Ω.

Furthermore, we can choose norms which depend on the position of the considered point:

ϕ : D × RN which are lower semicontinuous, positively 1-homogeneous and convex in the

second variable. In addition, we assume the existence of 0 < m ≤ M such that m|ξ| ≤
ϕ(x, ξ) ≤ M |ξ| for every (x, ξ) ∈ D × RN . Then a local anisotropic perimeter can be defined

as follows

Perϕ(Ω, D) = sup{
∫

Ω

div gdx : g ∈ C∞
0 (D;Rd), ϕ(x, g(x)) ≤ 1}.

The purpose of the following paragraphs is to approximate by Γ-convergence the sum of the

anisotropic perimeters of a partition of a bounded, open set D into n parts of equal volumes.

We want to be able to have a result which is also valid for local anisotropies, where the norm

ϕ, which determines the anisotropy may also depend on the point x. The Γ-convergence result

is divided in two parts, corresponding to the two properties in its definition. The (LI) property

can be deduced by studying the one phase case. The (LS) property needs some work in order to

construct a suitable recovery sequence.

The double-well potential W is stated in a general form in the theorem, but we will assume

that it has additional properties. In practice we useW (s) = s2(1−s)2, but we are only interested

of the form of W in a neighborhood of [0, 1]. Therefore, we assume that W is bounded (by

truncating it at a large level, if necessary). In order to simplify the construction of the recovery

sequence, we assume that the graph of W is symmetric with respect to the line x = 1/2. The

theorem stated below is a particular case of the one studied in [6]. We give a slightly different

proof, and adapt it to the case of partitions.
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Theorem 2.2.1. Let D be an open, bounded domain in RN , and f : D × RN → [0,∞] be a

lower semicontinuous function, positively 1-homogeneous and convex in the second variable,

which satisfies m|ξ| ≤ ϕ(x, ξ) ≤ M |ξ| for every (x, ξ) ∈ D × RN , with 0 < m ≤ M . We

consider W : R → [0,∞) such that W (0) = W (1) = 0 and W (x) > 0 for x /∈ {0, 1}. Define

Fε, F : L1(D)→ [0,∞] as follows:

Fε(u) =






ε

∫

D

ϕ(x,∇u(x))2dx+ 1

ε

∫

D

W (u(x))dx if u ∈ H1(D),

∫

D

u = c

+∞ otherwise

F (u) =





c

∫

S(u)

ϕ(x, νu) if u ∈ BV (D, {0, 1}),
∫

D

u = c

+∞ otherwise

where c = 2
∫ 1

0
W (s)1/2ds and S(u) is the jump set of u.

Then for every u ∈ L1(D) and every (uε) ∈ L1(D) such that (uε)→ u in L1(D) we have

lim inf
ε

Fε(uε) ≥ F (u).

Proof: This result follows naturally from the following remarks and from a variant of Reshet-

nyak’s semicontinuity theorem.

Consider the function φ(t) = 2
∫ t

0
W (s)1/2ds, which is Lipschitz continuous, in view of

the fact that we assume that W is bounded above. In the following we show that F (u) =∫
D
ϕ(x,D(φ ◦ u)), where we use the notation

∫

D

ϕ(x, µ) =

∫

Ω

ϕ

(
x,

dµ

d|µ|

)
d|µ|,

for every Radon measure µ ∈ M(D,RN). First note that if u ∈ BV (D, {0, 1}) then using the

definition of the variation of a BV function we can see that D(φ ◦ u) = φ(1)Du. Moreover, if

we have a function u ∈ BV (D) whose image contains only two real values, then the absolutely

continuous part and the Cantor part of Du are zero, while the jump part is

Dju(B) =

∫

B∩S(u)
(u+ − u−)νudHN−1

where νu is the normal to the jump set S(u) defined by Du = νu|Du|. In this case, where

u ∈ {0, 1} a.e. we also have Du = dHN−1 ¬S(u). For details see [19]. Having these in mind

and using the fact that ϕ is homogeneous of degree one in the second variable, we obtain

c

∫

S(u)

ϕ(x, νu)dHN−1 = c

∫

Ω

ϕ

(
x,

dDu

d|Du|

)
dHN−1 ¬S(u)

=φ(1)

∫

Ω

ϕ

(
x,

dDu

d|Du|

)
d|Du| =

∫

Ω

ϕ

(
x,

dD(φ ◦ u)
d|D(φ ◦ u)|

)
d|D(φ ◦ u)|

=

∫

D

ϕ(x,D(φ ◦ u)).
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The following variant of Reshetnyak lower semicontinuity theorem can be found in [7, The-

orem 2.38].

Theorem 2.2.2. Let D be an open subset of RN and µ, µn be Rn-valued finite Radon measures

in D. If µn → µ weakly* in D then

∫

D

f(x, µ) ≤ lim inf
n→∞

∫

D

f(x, µn),

for every lower semicontinuous function f : Ω × Rn → [0,∞], positively 1-homogeneous and

convex in the second variable.

First, let’s note that the integral condition is preserved under L1(D) convergence, since

∣∣∣∣
∫

D

uε −
∫

D

u

∣∣∣∣ ≤ ‖uε − u‖L1(D).

Since φ is Lipschitz continuous, uε → u in L1(D) implies that φ ◦ uε → φ ◦ u in L1(D). If

we suppose that lim inf
ε→0

Fε(uε) < +∞ (else there is nothing to prove) then, using the standard

inequality a + b ≥
√
ab, we get that Fε(uε) ≥ 2

∫
D
ϕ(x,D(φ ◦ uε) ≥ 2m

∫
D
D(φ ◦ uε).

Therefore, we can assume that sup |D(φ ◦ uε)|(D) < +∞. According to [19, Definition 1.41,

Remark 1.42] we can conclude thatD(φ◦uε)⇀ D(φ◦u) weakly* inM(D,RN) and Theorem

2.2.2 is applicable:

lim inf
ε→0

Fε(uε) ≥ lim inf
ε→0

2

∫

D

ϕ(x,∇uε)W (uε)
1/2

= lim inf
ε→0

∫

D

ϕ(x,D(φ ◦ uε)) ≥
∫

D

ϕ(x,D(φ ◦ u)) = F (u).

The construction of the recovery sequence is treated in the next theorem. It is inspired from

[19]. �

We are now able to state the Γ-convergence result concerning the partition case. We use the

notation

X =

{
(ui) ∈ L1(D)n :

∫

D

ui =
1

n
,

n∑

i=1

ui = 1.

}

We assume that the potential W satisfies the following properties:

• W satisfies the hypotheses of Theorem 2.2.1.

• W (0.5− t) = W (0.5 + t) for every t ∈ R.

• W is bounded above.

We also assume that ϕ : D × RN → [0,∞) satisfies the hypotheses of Theorem 2.2.1 and that

it is Lipschitz continuous in the first variable. We use the following bold notation to denote

vectors of functions: u = (ui) ∈ L1(D)n.
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In the following, we consider X ⊂ L1(D)n to be the space containing the n-uples of func-

tion satisfying the partition condition and the area constraints:

X = {u ∈ L1(D)n :

∫

D

ui =
|D|
n
, u1 + ... + un = 1 in D}.

We note the fact that the proofs which follow do not change much if instead of the equal areas

conditions we put only a fixed area condition on every one of the phases.

Theorem 2.2.3. We consider the functionals Fε, F : (L1(D))n → [0,∞], defined by

Fε(u) =






n∑

i=1

(
ε

∫

D

ϕ(x,∇ui)2 +
1

ε

∫

D

W (ui)

)
if u ∈ (H1(D))n ∩X

+∞ otherwise

F (u) =






n∑

i=1

c

∫

S(ui)

ϕ(x, νui
) if u ∈ (BV (D, {0, 1})n ∩X

+∞ otherwise

Then Fε
Γ−→ F in the (L1(D))n topology.

Proof: The (LI) part of this result follows at once from Theorem 2.2.1.

For the (LS) part we need to be able to construct a recovery sequence for every u ∈ L1(D)

such that F (u) < +∞. In order to do this, we reduce the problem to subset D ⊂ {F < +∞}
which is dense and has some good regularity properties. This is a classical procedure described

in Proposition 1.2.3 and [19]. One such suitable dense class is provided by Baldo in [11] and

consists of functions u ∈ BV (D, {0, 1})n ∩X which represent partitions of D into polygonal

domains.

The result of Baldo says that for every u ∈ (BV (D, {0, 1})n ∩ X there exists a sequence

un ∈ (BV (D, {0, 1})n ∩ X such that un → u in (L1(D))n, each component of un represents

a set of finite perimeter, Dui
n ⇀ Dui weakly* inM(D,RN) and |Dui

n|(D) → |Dui|(D) (the

corresponding perimeters converge). The Reshetnyak continuity theorem found in [7, Theorem

2.39] assures us that F (un) → F (u). Thus, we can restrict our attention to functions u which

represent partitions of D into polygonal domains of equal areas.

We consider the optimal profile problem

c = min

{∫

R

(W (v) + |v′|2)dt : v(−∞) = 0, v(+∞) = 1

}

and the related problem

zc = min

{∫

R

(W (v) + z2|v′|2)dt : v(−∞) = 0, v(+∞) = 1

}
(2.2.1)

Note that the solution of (2.2.1) satisfies the differential equation v′ =
√
W (v)/z and for

symmetry reasons, we impose the initial condition v(0) = 1/2. Note that v is strictly increasing,

and v(t) ≥ 1/2 for t ≥ 0. It is not difficult to see that c = 2

∫ 1

0

√
W (s)ds.
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Figure 2.3: Example of a part of Nε

Take v a solution to problem 2.2.1. We modify v such that it goes from 0 to 1 on a finite

length interval in the following way (inspired from [20]):

vη = min{max{0, (1 + 2η)v − η}, 1}.

We have

cη =

∫

R

(W (vη) + |(vη)′|2)→ c as η → 0.

We denote (Ωi)
n
i=1 the polygonal partition determined by u. We denote by Nε the set of

points which are close to triple (or multiple) points of the partition (Ωi), such that

{x ∈ D : d(x, ∂Ωi) < ε} \Nε,

is a union of rectangles. An example is given in Figure 2.3.

In the following, we denote by v~n the optimal profile with z = ϕ(~n). We use the signed

distance dE(x) = d(x,D \ E)− d(x, E) and define uiε on D \Nε by

uiε(x) =






vη∇dΩi
(x)(

dΩi
(x)

ε
) if |dΩi

(x)| ≤ Tε

0 otherwise in D \ Ωi

1 otherwise in Ωi

where T is great enough such that the support of (vη)′ is contained in [−T, T ]. Until here, uε is

a Lipschitz continous function with values in [0, 1] and a Lipschitz constant of order 1/ε. We

extend each uiε to the wholeD with the same Lipschitz constant (this is possible by Kirszbraun’s

theorem, see [51]).

In order that uε ∈ X we must treat the measure and the sum constraints. We deal with the

sum constraint first. We have three types of points:

• |dΩi
(x)| > Tε for all i. Here the sum constraint is clear, since one component takes value

1 and the rest 0.
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• There exist precisely 2 indexes i, j such that |dΩi
(x)|, |dΩj

(x)| ≤ Tε. Here the symmetry

of the optimal profile assures us that the uiε(x) + ujε(x) = 1, while the other components

take the value 0.

• The points in Nε.

We see that the only problems that can occur take place inNε. Here, we replace uiε by uiε/(
n∑

j=1

ujε).

This operation is well defined, since each uiε is greater than 1/2 on Ωi; thus their sum is always

greater than 1/2. Furthermore, doing this change still leaves the gradient of uiε of the form

O(1/ε).

In the following we omit the substript from v∇dΩi
(x), and we may do so without loss of

generality, since the inequalities described below do not use this dependence until the last few

inequalities. Because of the fact that uiε varies only in the direction of the normal to Ωi on

D \Nε, we find that∇uiε(x)/|∇uiε(x)| is a unit normal to Ωi.

The integral constraints can be imposed in one of the following ways:

• by slightly moving the initial boundaries of (Ωi) and then performing the algorithm de-

scribed above.

• by performing the procedure described in [71]. We modify each phase in a ball of fixed,

small enough size, which depends on ε in order to fix the volume constraints. In the end

we note that these perturbations vanish in the limit.

We split the (LS) estimate in two parts, one on Nε and one on D \Nε.

∫

Nε

(
εϕ(x,∇uiε)2 +

1

ε
W (uiε)

)

≤|Nε|max[0,1]W

ε
+
|Nε|ε supR |(vη)′|2 sup‖~n‖=1 ϕ(x, ~n)

2

ε
= O(ε),

since |Nε| = O(ε2). This proves that the part corresponding to Nε is negligible int the (LS)

estimate.

We continue our estimate on D \Nε:

∫

D\Nε

(
εϕ(x,∇uiε)2 +

1

ε
W (uiε)

)

=

∫

D\Nε

(
εϕ2(x,∇uε/|∇uε|)|∇uε|2 +

1

ε
W (vη(dΩi(x)(x))/ε)

)

=

∫ Tε

−Tε

∫

{d(x)=t}\Nε

(
εϕ2(x, ν

u
i)
|(vη)′(t/ε)|2

ε2
+

1

ε
W (vη(dΩi(x)(x))/ε)

)
dHN−1(x)dt

=

∫

S(ui
ε)\Nε

∫ Tε

−Tε

(
1

ε
W (vη(t/ε)) +

1

ε
ϕ2(x, νui

(x))|(vη)′(t/ε)|2
)
dtdHN−1(x) +O(ε)

=

∫

S(ui
ε)\Nε

∫ T

−T

(
W (vη(t)) + ϕ2(x, νui

(x))|(vη)′(t)|2
)
dtdHN−1(x) +O(ε)
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≤cη
∫

S(ui)

ϕ(x, νui
)dHN−1 +O(ε).

We have used the co-area formula. The fact that ϕ is Lipschitz continuous in the first variable

allows us to write estimates of the form ϕ(y, ξ) ≤ ϕ(x, ξ) + L|x− y|, and this is why we have

an O(ε) term after we change the order of integration. The (LS) property comes from summing

the estimates obtained for every (ui
ε).

2.3 Numerical Results

One of the main properties of the Γ-convergence is the fact that if Fε
Γ−→ F then any limit point

of a sequence (xε) of minimizers of Fε is a minimizer for F . Based on this property, we assume

that minimizing Fε for ε small enough will get us close to a minimizer of F .

We want to approximate numerically partitions which minimize the sum of their anisotropic

perimeters, with respect to some anisotropy ϕ. In order to do this, we search numerically for

minimizers of

Fε(u) =
n∑

i=1

(
ε

∫

D

ϕ(x,∇ui)2 +
1

ε

∫

D

W (ui)

)
(2.3.1)

Using the fact that ϕ(x, ξ) ≥ c|ξ| for a constant c > 0, we deduce that if un is a minimizing

sequence for Fε then (∇ui
n) is bounded in L2(D). Truncating (un) between 0 and 1 decreases

Fε(un), so (un) is also bounded in L2(D)n. Thus (un) is bounded in H1(D)n, which means

that it has a subsequence which converges weakly H1 to u. The convexity of ϕ and the Fatou

Lemma imply that

lim inf
n→∞

Fε(un) ≥ F (u),

which means that (2.3.1) has a minimizer in H1(D)n. The lack of convexity of the potential

W does not allow us to conclude that the minimizer is unique. In fact, domain symmetry and

permutations of phases always lead to multiple optimizers.

We can devise an algorithm to approximate numerically such a minimizer. We discretize

the unit square D = [0, 1]2 using a finite differences grid, and use quadrature formulas to

compute the integrals in the expression of Fε. The choice of ε is important in order to have

meaningful results. Morally, ε dictates the width of the interface between the sets {ui = 0} and

{ui = 1}, and it cannot be lower than the width of the discretization grid. Satisfactory results

have been obtained for ε ∈ [ 1
N
, 4
N
]. Note that if ε is large then the diffusion interface is bigger,

and therefore the shapes can move more freely in order to find their optimal position. Forcing

ε small in the beginning may lead to a local minimum. In order to diminish the size of the

interface, we can iterate the optimization algorithm by decreasing ε.

We observe that the behavior of the algorithm depends heavily on the choice of ϕ. We have

many options to choose the anisotropy ϕ:

• ϕ(x) = |x1|+ |x2| - horizontal and vertical directions;
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Figure 2.4: Examples of optimal partitions with one favorized direction

• ϕ(x) = (|x1|p + |x2|p)1/p

• ϕ(x) = |ax1 + bx2|+ |cx1 + dx2| - variable directions corresponding to a, b.

• ϕ(x) = (ax21 + bx22)
1/2 with a > b: favorize one of the directions corresponding to

coordinate axes.

We present below some numerical results we obtained using various norms and parameters.

The first example we study is the case where we have one favorized direction. Favorizing

one direction parallel to the coordinate axis is not hard. It is enough to use a weighted norm like

ϕ(x) =
√
x21 + 100x22 to favorize the vertical direction. Indeed, looking at the term

∫

D

ϕ(∇u)
we see that if the gradient ∇u has a second component which is large, then the quantity ϕ(∇u)
is large. Thus, in order to minimize our functional, the gradient of u should be close to zero in

the second component. Thus u is close to a constant on each vertical line, and all boundaries

will be vertical at the optimum. In order to favorize a general direction, one could use a rotation

of the coordinate axis included in the norm. A few examples of optimal partitions with one

favorized direction can be seen in Figure 2.4.

The next interesting situation is the case of two favorized directions. Since we work on

rectangular domains, it is natural to consider vertical and horizontal favorized directions. This

can be achieved using the ℓ1 norm ϕ(x) = |x1| + |x2|. Another way of favorizing these two

direction is presented below.

One natural way to favorize a direction corresponding to a coordinate axis is to use a norm

of the form

ϕ(x) =
√
ax21 + bx22,

with a > b. In order to favorize two directions we can think of using something of the form

ϕ(x) = 4

√
(100x21 + x22)(x

2
1 + 100x22).

The problem with the above choice of ϕ is the lack of convexity, which goes out of the Γ-

convergence framework of the theoretical result. Nevertheless, we observe that despite this

non-convexity issue we obtain the same results as in the case of the ℓ1 norm. Moreover, the con-

vergence is accelerated in the case of the non-convex ϕ. We present in Figure 2.5 the partitions
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Figure 2.5: Optimal partitions obtained for N ∈ [2, 10]. The isotropic case (up) and the

anisotropic case corresponding to ϕ(x) = |x1|+ |x2| (down)

of the unit square corresponding to the classic perimeter and the ones obtained favorizing hor-

izontal and vertical directions. Since the results we obtained are all partitions of the square in

rectangles of equal areas, we may ask if these rectangle configurations are optimal. The answer

is yes, and the problem of partitioning a square into rectangles of equal areas which minimize

their total perimeter has been completely answered in [68].

As in the case of one favorized direction, we can favorize any desired direction by intro-

ducing a suitable rotation in the formulation of the norm. For example, one can favorize the

directions corresponding to the two axis bisectors by considering

ϕ(x) = |x1 + x2|+ |x1 − x2|.

We can continue our study by considering three favorized directions. The choice of the norms is

similar, but involving three directions instead of two. As before, we notice a faster convergence

when considering non-convex variants of ϕ. This behavior could be attributed to the fact that in

the non-convex case, the boundaries align immediately to the favorized directions, since along

these directions the functional has much lower values. In Figure 2.7 you can see some plots

of some of functions ϕ we considered, on the unit square. In these picture you can clearly see

the favorized directions as the directions along which the lowest values can be found. In the
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Figure 2.6: Examples of optimal partitions with two favorized directions on general non-

rectangular domains

Figure 2.7: Plots of some of the norms we considered, on the unit square. In order left to right:

1. ℓ1 norm, directions 0, π/2.

2. ℓp norm, p = 1.1, directions π/6, π/2.

3. Square root of product of two norms, directions 0, π/2.

4. Square root of product of two norms, directions −π/4, π/4.

non-convex cases, these directions are more emphasized. Some further computations involving

cases where we have three favorized directions can be found in Figure 2.8.

We can use the finite difference framework in the case of non rectangular domain in the

following way. We consider the general domain D as a subset of a rectangular region R. On

this rectangular region a finite differences grid is considered. We apply the same algorithm with

the difference that we ignore the grid points which are outside the domainD, by assigning them

a fixed value zero for the density function and for the gradient of this function. The computation

results are not always well behaved near the boundary of D, as expected. We present some of

the results obtained on general domains in Figure 2.6. In order to fix the problems regarding

the behaviour near ∂D we propose in the next section a different framework based on finite

elements.

2.4 Related topics

2.4.1 General two dimensional domains

We want to generalize the numerical framework to non-rectangular domains. In order to do

this we use a finite element framework. We consider a triangulation of the domain D and

then we construct the mass matrix M and the rigidity matrix K. Since the computation of the

quantities in the anisotropic setting is not straightforward to do on non-rectangular grids, we
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Figure 2.8: Optimal partitions for other anisotropies with two or three favorized directions,

under periodicity conditions

Figure 2.9: Various optimal perimeter partitions with equal area cells for an equilateral triangle

consider mainly the isotropic problem here, with the classic Modica-Mortola functionals. This

is a particular case of our main theorem for ϕ(x, ξ) = |ξ| for every x ∈ D, ξ ∈ Rn.

The quantity
∫
D
|∇u|2 can be computed using the form uTKu and the quantity

∫
D
u2(1−u)2

can be computed using the form vTMv where v = u⊗ (1− u) (pointwise multiplication). The

meshes are constructed by hand, when possible, or using the software DistMesh [77]. We are

able, in this way, to improve previous results due to Oudet [80], and we obtain a good corre-

spondence with the ones provided by Cox and Flikkema in [39]. We present some numerical

candidates in the case of the equilateral triangle (Figure 2.9), the circle (Figure 2.10), the regular

pentagon and the regular hexagon (Figure 2.11).

2.4.2 Bubble clusters

It is possible to use the Γ-convergence results presented in this chapter in order to study optimal

configurations of bubble clusters. The bubble cluster problem can be stated as follows: find the
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Figure 2.10: Optimal partitions on the circle for N ∈ {3, ..., 10, 16, 24}

Figure 2.11: Various optimal perimeter partitions with equal area cells for the regular pentagon

and the regular hexagon

optimal configuration of sets Ω1, ...,Ωn ⊂ D ⊂ R
d, with prescribed volumes, such that the total

d− 1 dimensional of the boundaries Hd−1(∂Ω1 ∪ ... ∪ ∂Ωn) is minimized. It is not hard to see

that this is equivalent to minimize the following quantity:

minPer(Ω1) + ... + Per(Ωn) + Per(Ext),

where Ext denotes the empty space left by (Ωi) in D. Qualitative properties of an optimal

bubble configuration in the plane and on surfaces were given by F. Morgan in [74]. Numerical

studies were performed by Cox and Flikkema in [39] using the numerical software Evolver [21].

By using the same Γ-convergence approach, but imposing different areas for the sets involved

in the partition, we can obtain numerical results which agree with the known results concerning

bubble clusters in dimension two. Some results in the case of two and three bubbles can be seen

in Figures 2.12 and 2.13. We notice that all the interfaces between two phases or between a

phase and the exterior are curves of constant curvature, fact which is proved in [74].
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Figure 2.12: Double bubbles in 2D. Left: equal areas. Right: different areas

Figure 2.13: Triple bubbles in 2D. Left: equal areas. Right: different areas
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CHAPTER 3

Multiphase spectral problems

Résumé

Dans ce chapitre on s’intéresse à l’étude qualitative et numérique du problème multiphase

min

h∑

i=1

(λ1(Ωi) + α|Ωi|),

où les ensembles Ωi sont disjoints et contenus dans un domaine ouvert borné D. Il s’agit de

continuer les travaux effectués dans [31] et de proposer une méthode numérique permettant de

trouver les configurations optimales et d’observer numériquement les propriétés théoriques. Le

contenu de ce chapitre est un article écrit en collaboration avec Bozhidar Velichkov, à paraı̂tre

dans SIAM Journal on Numerical Analysis.

Il a été observé dans [31] que si α > 0 alors la configuration optimale n’est pas une partition.

De manière plus précise, il n’est pas possible d’avoir des points triples x ∈ ∂Ωi ∩ ∂Ωj ∩
∂Ωl. On sait que pour α → 0 on approche le problème de partitionnement spectral étudié

théoriquement par Caffarelli et Lin dans [35] et numériquement par Bourdin, Bucur et Oudet

dans [18]. Comme il a été observé dans [18], pour h grand, on approche (numériquement) une

partition hexagonale du domaine D. Pour α très grand, on peut montrer que la configuration

optimale consiste en h disques disjoints contenus dans D. Il existe un paramètre optimal ᾱ pour

lequel ces disques disjoints ont un rayon maximal. Une telle configuration est appellée circle

packing.

La première partie contient l’étude d’une nouvelle formule de monotonie pour deux phases

qui nous permet de déduire des propriétés qualitatives près du bord du domaine D. En effet,

les calculs numériques nous montrent que, en plus de l’absence des points triple dans D, on ne

peut pas avoir des points triples de la forme x ∈ ∂D ∩ ∂Ωi ∩ ∂Ωj . Cette observation numérique

peut être justifiée par le fait que dans les cas simples qu’on a considérés pour D (des rectangles,

polygones) on peut ajouter à l’extérieur un disque tangent B. Ce disque est alors une sous-

solution de forme (ou géométrique) du problème minλ1(Ω) + |Ω|, et donc on peut utiliser les
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résultats de [31] pour conclure que ∂B∩∂Ωi ∩∂Ωj = ∅. La formule de monotonie nous permet

de prouver ce résultat dans le cas général où D est Lipschitz.

La deuxième partie du chapitre traite des aspects numériques du problème de minimisation.

Dans un premier temps, on fait une étude théorique et numérique de l’erreur de la méthode de

pénalisation utilisée pour calculer les valeurs propres en [18]. Si Ω est un sous-ensemble de D

alors on peut définir pour C > 0 la valeur propre approchée λk(Ω, C) qui est solution de

−∆u + C(1− χΩ)u = λk(Ω, C)u.

Il est prouvé dans la référence précédemment citée que quand C → ∞ la quantité λk(Ω, C)

approche la vraie valeur propre λk(Ω) si Ω est régulier. Dans un premier temps on fait une

approximation de l’erreur numérique commise en comparant le résultat obtenu en utilisant la

méthode présentée ci-dessus avec les résultats obtenus avec le logiciel MpsPack [14] qui a une

précision importante. La comparaison est faite en fonction de C et du pas de discrétisation du

domaine D.

Dans la suite, on présente une estimation théorique de l’erreur, en fonction du paramètre

C, et on déduit une borne explicite dans le cas où le domaine Ω est assez régulier. Ce résultat

d’erreur utilise [25] et [29] qui donnent une borne supérieure de la différence des valeurs propres

correspondant à deux mesures différentes, en utilisant des fonctions de torsion.

On présente une amélioration de l’algorithme de descente de gradient proposé dans [18], en

ajoutant une procédure de recherche du pas optimal. On observe une stabilité améliorée de l’al-

gorithme et une réduction du nombre d’itérations nécessaires pour la convergence. On propose

de plus une approche éléments finis pour résoudre ce problème. Cette approche nous permet

d’étudier les partitions spectrales et des problèmes multiphase sur des ensemble généraux, pas

seulement rectangulaires.

Les calculs numériques effectués nous montrent quelques propriétés théoriques attendues

comme l’absence de points triples à l’intérieur et sur le bord du domaine D, les ensembles

d’une configuration optimale ne contient pas des coins, etc. Une autre propriété intéressante a

été observée en étudiant le cas périodique.

• Pour α = 0 on obtient la partition en hexagones réguliers comme observé avant dans

[18].

• Pour α = ᾱ on observe une configuration du type circle packing.

• Pour α ∈ [0, ᾱ] on observe que les ensembles d’une configuration optimale sont congru-

ents et qu’ils sont monotones pour l’inclusion par rapport au paramètre α.

Ce dernier aspect de monotonie nous permet de faire un rapprochement entre le problème de

partitionnement spectral, qui est un problème ouvert et difficile, et le problème de circle packing,

qui est résolu [87]. Ce fait justifie l’intérêt de considérer des problèmes multiphase, pour mieux

comprendre le problème spectral.
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Le cadre de ce problème peut être étendu aux problèmes multiphase concernant les valeurs

propres de l’opérateur Laplace-Beltrami, avec conditions au bord de Dirichlet, des ensembles

contenus dans des variétés. On présente aussi quelques calculs numériques concernant des

problèmes multiphase sur des surfaces. On observe le même comportement monotone, qui relie

le problème de partition au problème circle packing. Dans le cas de la sphère, tous les problèmes

concernant les partitions spectrales optimales pour la somme sont ouverts pour h ≥ 3. Une

preuve théorique de la propriété de monotonie des formes pour le problème multiphase pourrait

résoudre quelques questions ouvertes importantes (conjecture de Bishop, partitions régulières

de la sphère, etc). Pour plus des détails concernant les partitions sur des variétés, le lecteur est

invité à consulter le chapitre 5.

3.1 Introduction

In the following we consider a variational problem in which the variables are subsets of a given

ambient space or design region D and the cost functional depends on the solution of a certain

PDE on each of the domains. This type of problems are known as shape optimization problems

and received a lot of attention from both the theoretical and the numerical community in the

last years (we refer to the books [27], [66] and [65] for an introduction to the topic). A special

type of shape optimization problems are the multiphase shape optimization problems in which

the aim is to find the optimal configuration of h different disjoint sets Ω1, . . . ,Ωh with respect

to a certain cost functional F

min {F (Ω1, . . . ,Ωh) : Ωi ⊂ D, Ωi ∩ Ωj = ∅} . (3.1.1)

This type of problems may arise in some models studying the population dynamics of several

highly competing species or in biology to simulate the behaviour of a cluster of cells. In some

special cases it is not restrictive from mathematical point of view to assume that the sets Ωi

fill the entire region D. This is for example the case when the functional F is decreasing

with respect to the set inclusion, i.e. if an empty space is left it will be immediately filled by

some of the phases Ωi decreasing the total optimization cost. Of course, it is always possible

to write a multiphase problem as an optimal partition problem by adding the auxiliary phase

Ωh+1 := D \
(
∪hi=1Ωi

)
. On the other hand, we notice that in this way we violate the symmetry

of the problem since this new phase does not appear in the functional. In some cases this does

not change the nature of the problem. Consider for example an optimization cost given by the

total length of the boundary ∂
(
∪hi=1 Ωi

)
, i.e.

F(Ω1, . . . ,Ωh) =

h∑

i=1

|∂Ωi| −
∑

i 6=j

|∂Ωi ∩ ∂Ωj |.
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In fact in this case we may introduce the new functional

F̃(Ω1, . . . ,Ωh+1) =
1

2

h+1∑

i=1

|∂Ωi|,

which is of the same type. In other cases the introduction of Ωh+1 may change the nature of the

problem. Consider for example a functional depending on the principal eigenvalues on each set

Ωi and the Lebesgue measure |Ωi|

F(Ω1, . . . ,Ωh) =
1

2

h∑

i=1

(
λ1(Ωi) + |Ωi|

)
.

Then, the corresponding optimal partition functional is given by

F̃(Ω1, . . . ,Ωh+1) =
1

2

h∑

i=1

λ1(Ωi)− |Ωh+1|,

and acts differently on the original sets Ωi and the auxiliary set Ωh+1.

We consider the multiphase shape optimization problem

min
{ h∑

i=1

λ1(Ωi) +

∫

Ωi

Wi(x) dx : Ωi open, Ωi ⊂ D, Ωi ∩ Ωj = ∅
}
, (3.1.2)

where

• the ambient space D is a bounded open set with Lipschitz boundary or more generally a

compact manifold with or without boundary;

• λ1(Ωi) is the first Dirichlet eigenvalue of Ωi;

• Wi : D → [0,+∞] are given measurable functions.

Our aim is to provide a theoretical and numerical analysis of the problem and to study the

qualitative behaviour of the solutions from both points of view. We notice that the optimal

configurations consists of sets with rounded corners if the weight functions are sufficiently

small. This phenomenon can be modelled in a direct way by adding a small curvature term, as

ε
∫
∂Ω
κ2i , where κi is the curvature of ∂Ωi, but from the numerical point of view the volume term

is much simpler to handle and gives the same qualitative behaviour.

In the next two examples we see the optimization problem from two different points of view.

Remark 3.1.1 (Two limit cases). In the case Wi ≡ α on D, we obtain the following problem:

min
{ h∑

i=1

λ1(Ωi) + α|Ωi| : Ωi open, Ωi ⊂ D, Ωi ∩ Ωj = ∅
}
. (3.1.3)

The variational problem (3.1.3) is widely studied in the literature in the case α = 0 that corre-

sponds to the classical optimal partition problem. We refer to the papers [38], [35], [62] and
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[18] for a theoretical and numerical analysis in this case. The other limit case appears when the

constant α > 0 is large enough. Indeed, we recall that the solution of the problem

min
{
λ1(Ω) + α|Ω| : Ω open, Ω ⊂ R

2
}
, (3.1.4)

is a disk of radius rα =

(
λ1(B1)

απ

) 1
4

. It is straightforward to check that if α > 0 is such that

there are h disjoint disks of radius rα that fit in the boxD, then the solution of (3.1.2) is given by

the h-uple of these disks. Finding the smallest real number α > 0, for which the above happens,

reduces to solving the optimal packing problem

max
{
r : there exist h disjoint balls Br(x1), . . . , Br(xh) in D

}
. (3.1.5)

In view of the previous remark the multiphase problem (3.1.3), in variation of the parameter

α, can be seen as an interpolation between the optimal partition problem (corresponding to the

case α = 0) and the optimal packing problem (3.1.5). It is interesting to notice that in the

asymptotic case when D = R2, the solution of the optimal packing problem consists of disks

with centres situated in the vertices of a infinite hexagonal honeycomb partition of the plane. On

the other hand, in the case α = 0 Caffarelli and Lin conjectured that the optimal configuration

is precisely the honeycomb partition.

Remark 3.1.2 (Competing species with diffusion). Suppose that Ωi represents the habitat of a

certain species and that the first eigenfunction ui on Ωi, solution of

−∆ui = λ1(Ωi)ui in Ωi, ui = 0 on ∂Ωi,

∫

Ωi

u2i dx = 1,

is the population distribution. The condition Ωi ∩ Ωj = ∅ corresponds to the limit assumption

that the two species cannot coexists on the same territory. We suppose that Si ⊂ D is a closed set

representing a distribution of resources and that ϕi : [0,+∞] → [0,+∞] is a given increasing

function that corresponds to the cost of transportation of resources at a given distance. The

population ui will tend to choose an habitat close to Si. This corresponds to the following

multiphase problem

min
{ h∑

i=1

λ1(Ωi) +

∫

Ωi

ϕi

(
dist(x, Si)

)
dx : Ωi open, Ωi ⊂ D, Ωi ∩ Ωj = ∅

}
. (3.1.6)

The first part of this chapter is dedicated to the analysis of the solutions of (3.1.2). We

summarize the results in the following

Theorem 3.1.3. Suppose that D ⊂ R2 is a bounded open set with Lipschitz boundary. Let 0 <

a ≤ A be two positive real numbers and Wi : D → [a, A], i = 1, . . . , h be given C2 functions.

Then there are disjoint open sets Ω1, . . . ,Ωh ⊂ D solving the multiphase optimization problem

(3.1.2). Moreover, any solution to (3.1.2) has the following properties:
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(i) There are no triple points inside D, i.e. for every three distinct indices i, j, k ∈ {1, . . . , h}
we have ∂Ωi ∩ ∂Ωj ∩ ∂Ωk = ∅.

(ii) There are no double points on the boundary of D, i.e. for every pair of distinct indices

i, j ∈ {1, . . . , h} we have ∂Ωi ∩ ∂Ωj ∩ ∂D = ∅.

(iii) If the set D is of class C2, then the first eigenfunctions ui ∈ H1
0 (Ωi) are Lipschitz continu-

ous on Ωi.

(iv) The set Ω =

h⋃

i=1

Ωi has finite perimeter and the free reduced boundary ∂∗Ω is smooth in

D. Equivalently the reduced boundary ∂∗Ωh+1 of the auxiliary phase Ωh+1 = D \ Ω is

smooth in D.

Remark 3.1.4. We notice that the above result is still valid in dimension d > 2. We restrict our

attention to dimension 2 since we can avoid some technicalities in the proofs of the Lipschitz

continuity of the eigenfunctions and the decay monotonicity formula Lemma 3.3.10. In fact,

a key step in the proof of the Lipschitz continuity of the eigenfunctions is to show their non-

degeneracy on the boundary in terms of the gradients. This question can be handled easily in

two dimensions, while for the case d > 2 we refer to [31, Theorem 5.9], where the case of the

Dirichlet energy was considered.

For the computation of the optimal partition we use an approach that has as a starting point

the algorithm used in [18]. We notice that the first eigenvalue of an open set Ω ⊂ D can be

formally characterized as λ1(Ω,+∞), where

λ1(Ω, C) = min
u∈H1

0 (Ω)\{0}

∫
D
|∇u|2 + C1D\Ωu

2 dx∫
D
u2 dx

.

Replacing the characteristic function of Ω by a function ϕ : D → [0, 1] we can define

λ1(ϕ,C) = min
u∈H1

0 (Ω)\{0}

∫
D
|∇u|2 + C(1− ϕ)u2 dx∫

D
u2 dx

,

and then replace the optimal partition problem by

min
{ h∑

i=1

λ1(ϕi, C) +

∫

D

ϕi(x)Wi(x) dx : Ωi open, ϕi : D → [0, 1],

h∑

i=1

ϕi ≤ 1
}
. (3.1.7)

In [18] it was proved that as C → +∞ and ϕ is the characteristic function of a regular set Ω,

then the relaxed eigenvalue λk(ϕ,C) converges to the actual eigenvalue λk(Ω). To the authors

knowledge, there was no prior study of the rate of convergence in terms of C.

In Section 3.5 we observe the numerical error of a few simple shapes in terms of C and the

discretization parameter, by comparing the values of the eigenvalues computed in the penalized

setting, with the ones computed using MpsPack [14]. We observe that as C and the discretiza-

tion parameter N increase, the errors decrease. In Section 3.6 we use the results of [29] in order
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to obtain a theoretical upper bound for the relative error |λk(Ω) − λk(Ω, C)|/λk(Ω). Precisely

we will prove the following.

Theorem 3.1.5. Suppose D ⊂ RN is a bounded open set and Ω ⊂ D a set with boundary of

class C2. Then there exists a constant K > 0 depending on Ω, D,N , for which we have

|λk(Ω)− λk(µC)|
λk(Ω)

≤ KC−1/(N+4).

This bound on the error makes the convergence result proved in [18] more precise. In addi-

tion to this, we observe a good concordance between the theoretical bounds and the numerical

errors observed in Section 3.5.

In Section 3.7 we present the main lines of the optimization procedure. One challenging

issue was to manage the non overlapping condition

h∑

i=1

ϕi ≤ 1. We introduce an extra phase

ϕh+1 which represents the void space. Thus we are left to manage an equality condition instead

of an inequality. This allows us to adapt the framework presented in [18] to our problem. We

use a standard gradient descent algorithm with a line search procedure in order to accelerate the

convergence. We observe good stability properties of our proposed algorithm by performing

a few optimizations starting from random densities and by observing that the resulting shape

configuration and cost values are close. In addition to the finite difference framework on a

rectangular grid we also propose an approach based on finite elements which can be generalized

to general plane domains and even to surfaces in three dimensions.

In Section 3.8 we present some of the results obtained using the presented numerical frame-

works, as well as some numerical observations which motivate the interest in the study of prob-

lem (3.1.3). First we mention that the numerical results satisfy the theoretical properties proved

in [31] and in Theorem 3.1.3: the lack of triple points, the lack of triple points on the boundary

and the lack of angles. Secondly we observe an interesting connection between the two inter-

esting cases α = 0 and the value of α which gives the circle packing in the periodic setting.

It is well known that the hexagonal circle packing in the plane has the maximal density (result

attributed to A. Thue with a first rigorous proof given by F. Toth). As mentioned above, in the

case α = 0 (the spectral partition) it is conjectured that the optimal asymptotic partition is the

honeycomb partition. This conjecture was supported numerically by the results of [18]. As we

already mentioned the problem 3.1.3 provides a connection between the established result of

the circle packing configuration and the Caffarelli-Lin conjecture that the regular honeycomb

tiling is the solution of the spectral optimal partition problem. In our computations we observe

that starting from the parameter α which realizes the circle packing in the periodic setting and

decreasing α, the shapes forming the optimal partition grow in a monotone fashion. If this

observed monotonicity property could be proved theoretically then a proof that the honeycomb

partition is optimal for α = 0 will follow. Note that this also applies in the case of the sphere,
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where it is expected that for h ∈ {3, 4, 6, 12} the optimal spectral partitions are realized by

regular tilling of the sphere.

The chapter is organized as follows. In Section 3.2 we recall the known results and we

introduce the basic notions that we use in the proof of the above results. Section 3.3 is dedicated

to the proof of Theorem 3.1.3. In Section 3.5 we present the eigenvalue computation method

and we make a few numerical tests by comparing our results to other methods or to analytical

results. Section 3.6 is dedicated to the proof of Theorem 3.1.5. In Section 3.7 we present the

optimization algorithm used for calculating the numerical minimizers of (3.1.2). The numerical

results and other observations are discussed in Section 3.8.

3.2 Preliminaries and main tools

3.2.1 Eigenvalues and eigenfunctions

Let Ω ⊂ R
2 be an open set. We denote with H1

0 (Ω) the Sobolev space obtained as the closure

in H1(R2) of C∞
c (Ω), i.e. the smooth functions with compact support in Ω, with respect to the

Sobolev norm

‖u‖H1 :=
(
‖∇u‖2L2 + ‖u‖2L2

)1/2
=

(∫

R2

|∇u|2 + u2 dx

)1/2

.

We note that H1
0 (Ω) can be characterized as

H1
0 (Ω) =

{
u ∈ H1(R2) : cap

(
{u 6= 0} \ Ω

)
= 0
}
, (3.2.1)

where the capacity cap(E) of a measurable set E ⊂ R2 is defined as

cap(E) = min
{
‖u‖2H1 : u ≥ 1 in a neighbourhood of E

}
1.

We notice that the sets of zero capacity have also zero Lebesgue measure, while the converse

might be false. We may use the notion of capacity to choose more regular representatives of the

functions of the Sobolev spaceH1(Rd). In fact, every function u ∈ H1(Rd) has a representative

which is quasi-continuous, i.e. continuous outside a set of zero capacity. Moreover, two quasi-

continuous representatives of the same Sobolev function coincide outside a set of zero capacity.

Thus we may consider H1(R2) as a space consisting of quasi-continuous functions equipped

with the usual H1 norm.

The k-th eigenvalue of the Dirichlet Laplacian can be defined through the min-max varia-

tional formulation

λk(Ω) := min
Sk⊂H1

0 (Ω)
max

u∈Sk\{0}

∫
Ω
|∇u|2 dx∫
Ω
u2 dx

, (3.2.2)

1for more details see, for example, [51] or [66]
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where the minimum is over all k dimensional subspaces Sk of H1
0 (Ω). There are functions

un, n ≥ 1 in H1
0 (Ω), orthonormal in L2(Ω), that solve the equation

−∆uk = λk(Ω)uk, uk ∈ H1
0 (Ω),

in a weak sense in H1
0 (Ω). In particular, if k = 1, then the first eigenfunction u1 of Ω is the

solution of the minimization problem

λ1(Ω) := min
u∈H1

0 (Ω)\{0}

∫
Ω
|∇u|2 dx∫
Ω
u2 dx

. (3.2.3)

In the sequel we will often see λ1 as a functional on the family of open sets. We notice that

this functional can be extended to the larger class of quasi-open sets, i.e. the sets Ω ⊂ R2 such

that for every ε > 0 there exists an open set ωε of capacity cap(ωε) ≤ ε such that Ω ∩ ωε is

an open set. We define H1
0 (Ω) as the set of Sobolev functions u ∈ H1(R2) such that u = 0

quasi-everywhere (i.e. outside a set of zero capacity) on Ωc. The first eigenvalue and the first

eigenfunctions are still characterized as the minimum and the minimizer of (3.2.3).

We notice that since |u1| is also a solution of (3.2.3), from now on we will always assume

that u1 is non-negative and normalized in L2. Moreover, we have the following properties of u1

on a generic open2 set Ω of finite measure:

• u1 is bounded and we have the estimate3

‖u1‖L∞ ≤ 1

π
λ1(Ω)|Ω|1/2. (3.2.4)

• u1 ∈ H1(R2), extended as zero outside Ω, satisfies the following inequality in sense of

distributions:

∆u1 + λ1(Ω)u1 ≥ 0 in
[
C∞

c (R2)
]′
. (3.2.5)

• Every point x0 ∈ R2 is a Lebesgue point for u1. Pointwise defined as

u1(x0) := lim
r→0
−
∫

Br(x0)

u(x) dx,

u1 is upper semi-continuous on R2.

• u1 is almost subharmonic in the sense that for every x0 ∈ R2, we have

u1(x0) ≤ ‖u1‖L∞λ1(Ω)r
2 + −

∫

Br(x0)

u1(x) dx, ∀r > 0. (3.2.6)

2The same properties hold for the first eigenfunction on quasi-open set of finite measure.
3We note that the infinity norm of u1 can also be estimated in terms of λ1(Ω) only as ‖u1‖L∞ ≤ Cλ1(Ω)

d/4.

This estimate is more general and can be found in [43, Example 8.1.3].
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3.2.2 Sets of finite perimeter and reduced boundary

In the proof of Theorem 3.1.3 (iv) we will need the notion of a reduced boundary. Let Ω ⊂ Rd

be a set of finite Lebesgue measure. If the distributional gradient of its characteristic function

∇1Ω is a Radon measure such that its total variation |∇1Ω|(Rd) is finite, then we say that Ω is

of finite perimeter. The perimeter P (Ω) is the total variation of the gradient and for regular sets

coincides with the usual notion of perimeter as surface integral. The reduced boundary ∂∗Ω

of a set Ω of finite perimeter is defined as the set of points where one can define the normal

vector to Ω in the following sense: x0 ∈ ∂∗Ω, if the limit lim
r→0

∇1Ω(Br(x0))

|∇1Ω|(Br(x0))
exists and has

Euclidean norm equal to one. We notice that if a point x0 belongs to the reduced boundary, then

the density of Ω in x0 is precisely 1/2, i.e. lim
r→0

|Ω ∩Br(x0)|
|Br(x0)|

=
1

2
. For more details on the sets

of finite perimeter we refer to the books [58] and [70].

3.2.3 The existence theory of Buttazzo and Dal Maso

The multiphase shape optimization problems of the form (3.1.1) admit solutions for a very

general cost functionals F(Ω1, . . . ,Ωh). The main existence result in this direction is well

known and is due to the classical Buttazzo-Dal Maso result from [53]. The price to pay for such

a general result is that one has to relax the problem to a wider class of domains, which contains

the open ones. Indeed, one notes that the capacitary definition of a Sobolev space (3.2.1) can be

easily extended to generic measurable sets. In particular, it is well known (we refer, for example,

to the books [66] and [27]) that it is sufficient to restrict the analysis to the class of quasi-open

sets, i.e. the level sets of Sobolev functions. Since the definition of the first eigenvalue (3.2.3) is

of purely variational character, one may also extend it to the quasi-open sets and then apply the

theorem of Buttazzo and Dal Maso [53] to obtain existence for (3.1.1) in the family of quasi-

open sets under the minimal assumptions of monotonicity and semi-continuity of the function

F . Thus, the study of the problem of existence of a solution of (3.1.1) reduces to the analysis of

the regularity of the optimal quasi-open sets. The precise statement of the Buttazzo-Dal Maso

Theorem that we are going to adopt is the following.

Theorem 3.2.1. Suppose that D is a bounded open sets, k1, . . . , kh are natural numbers, F :

Rh → R is a continuous function increasing in each variable and let Wi : D → [0,+∞] be

given measurable functions. Then there is a solution to the problem

min
{
F (λk1(Ω1), . . . , λkh(Ωh)) +

h∑

i=1

∫

Ωi

Wi(x) dx : Ωi ⊂ D quasi-open,Ωi ∩ Ωj = ∅
}
.

3.2.4 Regularity of the optimal sets for the first eigenvalue

The regularity of the optimal sets for the Dirichlet eigenvalues is a difficult question and even

in the case of a single phase it is open for higher eigenvalues. For the principal eigenvalue of
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the Dirichlet Laplacian we have the following result by Lamboley and Briançon which relies on

an adaptation of the classical Alt-Caffarelli regularity theory to the case of eigenfunctions. We

state the result here with a smooth weight function as in the original paper [2].

Theorem 3.2.2. Suppose that D ⊂ R2 is a bounded open set, W : D → [a, A] is a smooth

function and Ω is a solution of the shape optimization problem

min
{
λ1(Ω) +

∫

Ω

W (x) dx : Ω ⊂ D quasi-open
}
. (3.2.7)

Then Ω is open set of finite perimeter and the boundary D ∩ ∂Ω is locally a graph of a smooth

function.

3.2.5 Shape subsolutions and their properties

We say that the quasi-open set Ω ⊂ R2 is a shape subsolution for the functional λ1 + α| · | if for

every quasi-open set ω ⊂ Ω we have

λ1(Ω) + α|Ω| ≤ λ1(ω) + α|ω|.

The notion of a shape subsolution was introduced by Bucur in [26] in order to study the exis-

tence of an optimal set for the kth eigenvalue and then was more extensively studied in [31].

We recall the main results from [26] and [31] in the following

Theorem 3.2.3. Suppose that Ω is a shape subsolution for the functional λ1 + α| · |. Then

(a) Ω is bounded and its diameter diam(Ω) is estimated by a constant depending on α, λ1(Ω)

and |Ω|;

(b) Ω is of finite perimeter and we have the estimate

P (Ω) ≤ α−1/2λ1(Ω)|Ω|1/2; (3.2.8)

(c) there is a lower bound on the eigenvalue λ1(Ω) given by

λ1(Ω) ≥
(
4πα

)1/2
; (3.2.9)

(d) If Ω′ is also a shape subsolution for the same functional such that Ω ∩ Ω′ = ∅, then there

are disjoint open sets D and D′ such that Ω ⊂ D and Ω′ ⊂ D′.

3.2.6 Monotonicity formulas for eigenfunctions

The monotonicity formula of Alt-Caffarelli-Friedman is an essential tool in the study of the be-

haviour of the eigenfunctions in the points of the common boundary of the optimal sets. Since

the eigenfunctions are not subharmonic, but satisfy (3.2.5), we will need another version of the
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monotonicity formula from [3]. We state here the following monotonicity theorem for eigen-

functions from [38], which is a version of the Alt-Caffarelli-Friedman monotonicity formula.

We use this result to prove that the eigenfunctions of the optimal sets are Lipschitz continuous

everywhere in D.

Theorem 3.2.4 (Two-phase monotonicity formula). Consider the unit ball B1 ⊂ R2. Let

u+, u− ∈ H1(B1) ∩ L∞(B1) be two non-negative functions with disjoint supports and let

λ+, λ− ≥ 0 be two real numbers such that

∆u+ + λ+u
+ ≥ 0 and ∆u− + λ−u

− ≥ 0.

Then there are constants 1/2 ≥ r0 > 0 and C > 0, depending on d, λ+ and λ−, such that for

every r ∈ (0, r0) we have

(
1

r2

∫

Br

|∇u+|2 dx
)(

1

r2

∫

Br

|∇u−|2 dx
)
≤ C

(
1 + ‖u+ + u−‖2L∞(B2r0 )

)2
. (3.2.10)

We note that the estimate (3.2.10) follows by the more general result by Caffarelli, Jerison

and Kënig (see [34] and also the note [90], where the continuity assumption was dropped). In

order to obtain (3.3.21) we use the idea of Conti, Terracini and Verzini (see [38]) that follows

the spirit of the original Alt-Caffarelli-Friedman monotonicity formula. It works exclusively for

eigenfunctions (linear or nonlinear), but can be easily refined to obtain finer qualitative results

as (3.3.21).

The three-phase version of Theorem 3.2.4 is the main tool that allows to exclude the pres-

ence of triple boundary points in the optimal configuration. The following three-phase mono-

tonicity formula was proved for eigenfunctions in [38], while the general three-phase version

of the Caffarelli-Jerison-Kënig result can be found in [31] (see also [90] for the detailed proof).

This formula is used in the proof of the fact that in the optimal configuration there are not triple

points. In the following, B1 denotes the unit ball in R
2.

Theorem 3.2.5 (Three-phase monotonicity formula). Let u1, u2, u3 ∈ H1(B1) ∩ L∞(B1) be

three non-negative functions with disjoint supports and let λ1, λ2, λ3 ≥ 0 be real numbers such

that

∆ui + λiui ≥ 0, ∀i = 1, 2, 3.

Then there are constants 0 < r0 ≤ 1/2, C > 0 and ε > 0, depending on d, λ1, λ2 and λ3, such

that for every r ∈ (0, r0) we have

3∏

i=1

(
1

r2

∫

Br

|∇ui|2 dx
)
≤ Crε

(
1 + ‖u1 + u2 + u3‖2L∞(B2r0 )

)3
. (3.2.11)

The three phase monotonicity formula is not just a consequence of the two phase formula.

In fact if we apply the Alt-Caffarelli-Friedman formula to each pair of the tree sets Ωi,Ωj and

Ωk, then in (3.2.11) there will be no decay term rε. Roughly speaking the presence of the third
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phase forces the other two to occupy less space which in turn gives some decay with ε > 0.

The same phenomenon appears when there are only two phases that cannot occupy a certain

sufficiently big region. This is the idea that we develop in Lemma 3.3.10 which we will use to

deduce the lack of double points on the boundary of the design region D and also the regularity

of the reduced boundary of the auxiliary phase Ωh+1.

3.3 Proof of Theorem 3.1.3

3.3.1 Existence of optimal open sets

An existence of an optimal configuration in the class of quasi-open sets follows by the Buttazzo-

Dal Maso Theorem. Let Ω1, . . . ,Ωh be the optimal quasi-open sets. Then for every quasi-open

set ωi ⊂ Ωi we have that the configuration is not optimal which gives that

λ1(ωi)− λ1(Ωi) ≥
∫

Ωi

Wi dx−
∫

ωi

Wi dx ≥ a|Ωi| − a|ωi|.

Thus Ωi is a shape subsolution for the functional λ1 + a| · | and so we can apply the result from

[31] Theorem 3.2.3 (d). Thus each of the sets Ωi is contained in an open set Di and solves

min
{
λ1(Ω) +

∫

Ω

Wi(x) dx : Ω ⊂ Di quasi-open
}
.

By Theorem 3.2.2 the sets Ωi are open.

3.3.2 Lipschitz continuity of the eigenfunctions

In this section we prove that the first eigenfunctions on the optimal sets for (3.1.2) are Lipschitz

continuous. To fix the notation, in the rest of this section we will denote with (Ω1, . . . ,Ωh)

a generic solution of (3.1.2) and with ui ∈ H1
0 (Ωi) the first eigenfunction on Ωi, i.e. ui are

non-negative function such that
∫
R2 u

2
i dx = 1 satisfying (3.2.4), (3.2.5) and the equation

−∆ui = λ1(Ωi)ui, ui ∈ H1
0 (Ω),

weakly in H1
0 (Ωi).

Non-degeneracy of the eigenfunctions. We first note that for every ωi ⊂ Ωi, the optimality

of (Ω1, . . . ,Ωi, . . . ,Ωh) tested against the h-uple of open sets (Ω1, . . . , ωi, . . . ,Ωh) gives the

inequality

λ1(Ωi) + α|Ωi| ≤ λ1(ωi) + α|ωi|,

i.e. Ωi is a subsolution for the functional λ1 + α| · |. Thus using the argument from the Alt-

Caffarelli non-degeneracy lemma (see [2, Lemma 3.4] and also [31, Section 3]), we have the

following result.
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Lemma 3.3.1. Suppose that (Ω1, . . . ,Ωh) is optimal for (3.1.2). Then there are constants Cnd

and r0 > 0 such that for all the first eigenfunctions ui, every 0 < r ≤ r0 and every x0 ∈ R
2 we

have the following implication

(
Br/2(x0) ∩ Ωi 6= ∅

)
⇒
( 1

r
−
∫

Br(x0)

ui dx ≥ Cnd

)
. (3.3.1)

Remark 3.3.2. Together with the estimate (3.2.6), Lemma 3.3.1 gives that there is r0 > 0 such

that

‖ui‖L∞(Br/2(x0)) ≤ 5 −
∫

Br(x0)

ui dx, ∀r ≤ r0 such that Br/2(x0) ∩ Ωi 6= ∅. (3.3.2)

On the common boundary of two optimal sets the non-degeneracy (3.3.1) of −
∫
Br(x0)

ui dx gives

a bound from below for the gradient −
∫
Br(x0)

|∇ui|2 dx. This fact follows by the elementary

lemma proved below.

Lemma 3.3.3. Let R > 0, BR(x0) ⊂ R2 and U ∈ H1(BR(x0)) be a Sobolev function such that

for almost every r ∈ (0, R) the set {U = 0} ∩ ∂Br(x0) is non-empty. Then we have

1

R
−
∫

BR(x0)

U dH1 ≤ 2

(
−
∫

BR(x0)

|∇U |2 dx
)1/2

. (3.3.3)

Proof. Without loss of generality we suppose that x0 = 0. We first note that for almost every

r ∈ (0, R) the restriction U |∂Br is Sobolev. If, moreover, {U = 0} ∩ ∂Br 6= ∅, then we have

∫

∂Br

U2 dH1 ≤ 4r2
∫

∂Br

|∇U |2 dH1.

Applying the Cauchy-Schwartz inequality and integrating for r ∈ (0, R), we get

( 1

R
−
∫

BR

U dx
)2
≤ 1

R2
−
∫

BR

U2 dx ≤ 4 −
∫

BR

|∇U |2 dx.

Corollary 3.3.4. Suppose that (Ω1, . . . ,Ωh) is optimal for (3.1.2). Then there is a constant

r0 > 0 such that for every x0 ∈ ∂Ωi ∩ ∂Ωj , for some i 6= j we have

−
∫

Br(x0)

|∇ui|2 dx ≥ 4C2
nd, ∀r ∈ (0, r0), (3.3.4)

where Cnd > 0 is the non-degeneracy constant from Lemma 3.3.1.

Proof. Since x0 ∈ ∂Ωi∩∂Ωj , we have that for every r > 0 Ωi∩Br(x0) 6= ∅ and Ωj∩Br(x0) 6= ∅.
In view of Lemma 3.3.1, it is sufficient to check that Ωi ∩ ∂Br(x0) 6= ∅ and Ωj ∩ ∂Br(x0) 6= 0,

for almost every r ∈ (0, r0). Indeed, suppose that this is not the case and that Ωi∩∂Br(x0) = ∅.
Since Ωi is connected, we have that Ωi ⊂ Br(x0), which gives λ1(Ωi) ≥ λ1(Br0), which is

impossible if we choose r0 small enough.
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Growth estimate of the eigenfunctions on the boundary. We now prove the two key

estimates of the growth of ui close to the boundary ∂Ωi. We consider two kinds of estimates,

one holds around the points, where two phases Ωi and Ωj are close to each other, and is reported

in Lemma 3.3.5. The other estimate concerns the one-phase points, i.e. the points on one

boundary, say ∂Ωi, which are far away from all other sets Ωj .

Lemma 3.3.5. Suppose that (Ω1, . . . ,Ωh) is optimal for (3.1.2). Then there are constants C2

and r0 > 0 such that if x0 ∈ ∂Ωi is such that Ωj ∩Br(x0) 6= ∅, for some j 6= i and r ≤ r0, then

‖ui‖L∞(Br(x0)) ≤ C2r. (3.3.5)

Proof. Without loss of generality we suppose that 0 = x0 ∈ ∂Ωi. Let now 0 < r ≤ r0 be such

that Ωj ∩ Br 6= ∅. Choosing r0 small enough we may apply Lemma 3.3.1 obtaining that

−
∫

B3r

uj dx ≥ 3Cnd r.

Again by choosing r0 small enough we may suppose that for every r ∈ (0, r0) we have ∂B3r ∩
Ωi 6= 0. Indeed, if this is not the case for some r, then the set Ωi is entirely contained in B3r

and so λ1(Ωi) ≥ λ1(B3r) ≥ λ1(B3r0), contradicting the optimality of Ωi. Thus, we may apply

the estimate (3.3.3) for uj obtaining

C2
nd ≤

( 1

3r
−
∫

B3r

uj dx
)2
≤ 4 −

∫

B3r

|∇uj|2 dx.

By the two-phase monotonicity formula applied for ui and uj , we get that there is a constant

C > 0 such that
4C

C2
nd

≥ −
∫

B3r

|∇ui|2 dx.

Since Br ∩ Ωj 6= ∅, by choosing r0 small enough an reasoning as above we may suppose that

for every r̃ ∈ (r, 3r) ∂Br̃ ∩ Ωj 6= 0. Thus, reasoning as in Lemma 3.3.3, we get that

4(3r)2
∫

B3r\B2r

|∇ui|2 dx ≥
∫

B3r\B2r

u2i dx ≥
1

5πr2

(∫

B3r\B2r

ui dx
)2
.

By the mean value formula, there is R ∈ (2r, 3r) such that
∫

∂BR

ui dx ≤
1

r

∫ 3r

2r

(∫

∂Bs

ui dH1
)
ds ≤ 27r

(∫

B3r

|∇ui|2 dx
)1/2

(3.3.6)

We now note that by (3.2.5) the function v(x) = ui(x) − λ1(Ωi)‖ui‖L∞(R2 − |x|2) is subhar-

monic. Then, for every x ∈ Br, we use the Poisson formula

ui(x)− λ1(Ωi)‖ui‖L∞(3r)2 ≤ R2 − |x|2
2πR

∫

∂BR

ui(y)

|y − x|2 dH
1(y) ≤ 9 −

∫

∂BR

ui dH1.

(3.3.7)

Using the non-degeneracy of ui (Lemma 3.3.1) and combining the estimates from (3.3.6) and

(3.3.7) we get

‖ui‖L∞(Br) ≤ 36r
(∫

B3r

|∇ui|2 dx
)1/2
≤ 2
√
C36

Cnd
r. (3.3.8)
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The following Lemma is similar to [2, Lemma 3.2] and [23, Lemma 3.1]. We sketch the

proof below for the sake of completeness.

Lemma 3.3.6. Suppose that (Ω1, . . . ,Ωh) is optimal for (3.1.2). Then there are constants C1 >

0 and r0 > 0 such that if x0 ∈ ∂Ωi and 0 < r ≤ r0 are such that Ωj ∩ B2r(x0) = ∅, for every

j 6= i, then

‖ui‖L∞(Br(x0)) ≤ C1r. (3.3.9)

Proof. Without loss of generality we may suppose that x0 = 0. Since Ωj ∩ B2r = ∅, for

every j 6= i, we may use the h-uple (Ω1, . . . ,Ωi ∩ B2r, . . . ,Ωh) to test the optimality of

(Ω1, . . . ,Ωi, . . . ,Ωh). Thus we have

∫

R2

|∇ui|2 dx+ α|Ωi| = λ1(Ωi) + α|Ωi| ≤ λ1(Ωi ∪B2r) + α|Ωi ∪Br|

≤
∫
R2 |∇ũi|2 dx∫

R2 ũ
2
i dx

+ α|Ωi ∪B2r| ≤
∫

R2

|∇ũi|2 dx+ α|Ωi ∪ B2r|,
(3.3.10)

where we used the test function ũi ∈ H1
0 (Ωi ∩ B2r) defined as ũi = vi1B2r + ui1Bc

2r
and

vi ∈ H1(B2r) is the solution of the obstacle problem

min
{∫

B2r

|∇v|2 dx : v ∈ H1(B2r), v − ui ∈ H1
0 (B2r), v ≥ ui

}
. (3.3.11)

By (3.3.10) an the fact that vi is harmonic on the set {vi > ui}, we get

∫

B2r

|∇(ui − vi)|2 dx =

∫

B2r

(
|∇ui|2 − |∇vi|2

)
dx ≤ α|B2r \ Ωi|. (3.3.12)

Now, reasoning as in [2, Lemma 3.2] (see also [89, Lemma 4.3.20] and [31]), there is a constant

C > 0 such that

∣∣{ui = 0} ∩B2r

∣∣
(

1

2r
−
∫

∂B2r

ui dH1

)2

≤ C

∫

B2r

|∇(ui − vi)|2 dx. (3.3.13)

Now we note that by the optimality of Ωi, we have Ωi = {ui > 0} and |B2r ∩ {ui = 0}| > 0

(if |B2r ∩ {ui = 0}| = 0, then by the optimality vi = ui in B2r; thus ui is superharmonic in B2r

and so ui > 0 in B2r, which contradicts the assumption 0 ∈ ∂Ωi). Now (3.3.12) and (3.3.13)

give
1

2r
−
∫

∂B2r

ui dH1 ≤
√
C/α. (3.3.14)

Since the function
{
x 7→

(
ui(x) − λ1(Ωi)‖ui‖L∞(4r2 − |x|2)

)}
is subharmonic, we can use

the Poisson formula for every x ∈ Br

ui(x)− 4λ1(Ωi)‖ui‖L∞r2 ≤ (2r)2 − |x|2
4πr

∫

∂B2r

ui(y)

|y − x|2 dH
1(y) ≤ 4 −

∫

∂B2r

ui dH1.

(3.3.15)
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By the non-degeneracy of ui (Lemma 3.3.1) and (3.3.15), we have that for r0 small enough

‖ui‖L∞(Br)

r
≤ 5

2r
−
∫

∂B2r

ui dH1 ≤ 5
√
C/α,

which gives the claim.

We combine the estimates from Lemma 3.3.6 and Lemma 3.3.5, obtaining the following

Proposition 3.3.7. Suppose that (Ω1, . . . ,Ωh) is optimal for (3.1.2). Then there are constants

r0 > 0 and C12 > 0 such that for every i ∈ {1, . . . , h} we have

‖ui‖L∞(Br(x0)) ≤ C12 r, ∀r ∈ (0, r0). (3.3.16)

Conclusion of the proof of the Lipschitz continuity of the eigenfunctions. We now use

the estimate from Proposition 3.3.7 to deduce the Lipschitz continuity of ui. The argument

is standard and we recall it briefly for the sake of completeness. It is based on the following

classical lemma.

Lemma 3.3.8. Suppose that Br ⊂ R2, f ∈ L∞(Br) and u ∈ H1(Br) satisfies the equation

−∆u = f weakly in [H1
0 (Br)]

′.

Then there is a dimensional constant C > 0 such that the following estimate holds

‖∇ui‖L∞(Br/2) ≤ C

(
‖f‖L∞(Br) +

‖u‖L∞(Br)

r

)
. (3.3.17)

We prove the following result which implies Theorem 3.1.3 (iii) since if the bounded open

set D ⊂′ R2 has boundary of class C2, then the function wD defined below is Lipschitz contin-

uous on D.

Theorem 3.3.9. Let D ⊂ R2 be a bounded open set. Let (Ω1, . . . ,Ωh) be optimal for (3.1.2).

Then the corresponding first eigenfunctions u1, . . . , uh are locally Lipschitz continuous in D. If,

moreover, D is such that the weak solution wD of the problem

−∆wD = 1, wD ∈ H1
0 (D),

is Lipschitz continuous on R
2, then the first eigenfunctions u1, . . . , uh are globally Lipschitz

continuous on R2.

Proof. Let r0 > 0 be the constant from Proposition 3.3.7 and fix r1 ≤ r0/2. Let x0 ∈ Ωi be

such that dist(x0, ∂D) ≥ r1. If r := dist(x0, ∂Ωi) ≥ r1, then by (3.3.17), we have

|∇ui(x0)| ≤ C
(
λ1(Ωi) + r−1

1

)
‖ui‖L∞ . (3.3.18)
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If r := dist(x0, ∂Ωi) < r1, then we set y0 ∈ ∂Ωi to be such that |x0−y0| = dist(x0, ∂Ωi). Using

Proposition 3.3.7 and again (3.3.17), we have

|∇ui(x0)| ≤ C

(
λ1(Ωi)‖ui‖L∞ +

‖ui‖L∞(Br(x0))

r

)

≤ C

(
λ1(Ωi)‖ui‖L∞ +

‖ui‖L∞(B2r(y0))

r

)
≤ C

(
λ1(Ωi)‖ui‖L∞ + 2C12

)
,

(3.3.19)

which gives the local Lipschitz continuity of ui.

If the function wD is Lipschitz continuous on Rd, we consider for every point x0 ∈ Ωi

two possibilities for r := dist(x0, ∂Ωi): if 3r ≥ dist(x0, ∂D), then the maximum principle

ui ≤ λ1(Ωi)‖ui‖L∞wD and the gradient estimate (3.3.17) gives

|∇ui(x0)| ≤ C

(
λ1(Ωi)‖ui‖L∞ +

‖ui‖L∞(Br(x0))

r

)

≤ Cλ1(Ωi)‖ui‖L∞

(
1 +
‖∇wD‖L∞

r

(
dist(x0, ∂D) + r

))

≤ Cλ1(Ωi)‖ui‖L∞

(
1 + 4‖∇wD‖L∞

)
.

(3.3.20)

If 3r ≤ dist(x0, ∂D) and r ≤ r0/2, then the gradient estimate (3.3.17) gives again (3.3.19). If

r ≥ r0/2, then we have (3.3.18) with r1 = r0/2 and this concludes the proof.

3.3.3 A monotonicity formula with decay

In order to prove the lack of double points on the boundary of D and the regularity of the

auxiliary phase Ωh+1 we will need special type of a two phase monotonicity formula in which

the supports of the eigenfunctions cannot invade certain prescribed zone. In this case the product

of the two gradients

(
1

r2

∫

Br

|∇u+|2 dx
)(

1

r2

∫

Br

|∇u−|2 dx
)

decays as r → 0. The result is

in the spirit of the three phase formula but the proof follows the idea of the proof of the two

phase formula that was carried out in [38].

Lemma 3.3.10. Consider the unit ball B1 ⊂ R2. Let u+, u− ∈ H1(B1) ∩ L∞(B1) be two non-

negative functions with disjoint supports, i.e. such that
∫
B1
u+u− dx = 0, and let λ+, λ− ≥ 0

be two real numbers such that

∆u+ + λ+u
+ ≥ 0 and ∆u− + λ−u

− ≥ 0.

If, moreover, the set Ω := B1 ∩ {u+ = 0} ∩ {u− = 0} has positive density in 0 in sense that

lim inf
r→0

|Ω ∩Br|
|Br|

= c > 0,
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then there is some ε > 0, depending on d, λ+, λ− and c such that

(
1

r2

∫

Br

|∇u+|2 dx
)(

1

r2

∫

Br

|∇u−|2 dx
)

= o(rε). (3.3.21)

The proof of Lemma 3.3.10 is based on Lemma 3.3.12, which involves the auxiliary func-

tions U1 and U2 constructed below. Let λ := max{λ+, λ−} and let r0 > 0 be small enough

such that there is a positive radially symmetric function ϕ ∈ H1(Br0) satisfying

−∆ϕ = λϕ in Br0, 0 < a ≤ ϕ ≤ b, (3.3.22)

for some constants 0 < a ≤ b depending on d, λ and r0. We now introduce the notation

U1 :=
u+

ϕ
and U2 :=

u−

ϕ
. (3.3.23)

Remark 3.3.11. A direct computation of the gradient of Ui on Br0 gives

∇U1 = ϕ−1∇u+ − ϕ−2u+∇ϕ

We define the function Φ : [0, r0]→ R+ as

Φ(r) :=

(
1

r2

∫

Br

ϕ2|∇U1|2 dx
)(

1

r2

∫

Br

ϕ2|∇U2|2 dx
)
. (3.3.24)

Lemma 3.3.12. Consider the unit ball B1 ⊂ R2. Let u+, u− ∈ H1(B1) ∩ L∞(B1) be as in

Lemma 3.3.10 and let Φ : [0, r0]→ R+ be given by (3.3.24). Then

(a) Φ is increasing on the interval (0, r0);

(b) If, moreover, the set Ω := B1 ∩ {u+ = 0} ∩ {u− = 0} has positive density in 0, then there

are constants C > 0 and ε > 0 such that

1

rε
Φ(r) ≤ C

rε0
Φ(r0).

Proof. We first estimate the derivative of Φ, using the notations∇nu and ∇τu respectively for
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the normal and the tangential part of the gradient∇u on the boundary of ∂Br.

Φ′(r)

Φ(r)
= −4

r
+
∑

i=1,2

∫
∂Br

ϕ2|∇Ui|2 dH1

∫
Br
ϕ2|∇Ũi|2 dx

≥ −4
r
+
∑

i=1,2

∫
∂Br

ϕ2
(
|∇τUi|2 + |∇nUi|2

)
dH1

∫
∂Br

ϕ2Ui|∇nUi| dH1
(3.3.25)

≥ −4
r
+
∑

i=1,2

2
(∫

∂Br
ϕ2|∇nUi|2 dH1

)1/2 (∫
∂Br

ϕ2|∇τUi|2 dH1
)1/2

(∫
∂Br

ϕ2U2
i dH1

)1/2 (∫
∂Br

ϕ2|∇nUi|2 dH1
)1/2 (3.3.26)

= −4
r
+ 2

∑

i=1,2

(∫
∂Br
|∇τUi|2 dH1

∫
∂Br

U2
i dH1

)1/2

(3.3.27)

≥ −4
r
+ 2

∑

i=1,2

√
λ1(∂Br ∩ {Ui > 0})

≥ −4
r
+
∑

i=1,2

2π

H1(∂Br ∩ {Ui > 0}) , (3.3.28)

where (3.3.25) follows by integration by parts and the inequality −div(ϕ2∇Ui) ≤ 0 obtained

using Remark 3.3.11; (3.3.26) is obtained by applying the mean quadratic-mean geometric

inequality in the nominator and the Cauchy-Schwartz inequality in the denominator; (3.3.27)

is due to the fact that ϕ is constant on ∂Br; (3.3.28) follows by a standard symmetrization

argument. Setting

θ(r) :=
H1(Ω ∩ ∂Br)

H1(∂Br)
,

and applying the mean arithmetic-mean harmonic inequality to (3.3.28), we get

Φ′(r)

Φ(r)
≥ 4

r

(
− 1 +

1

1− θ(r)
)
≥ 4θ(r)

r
, (3.3.29)

which gives (a). In order to prove (b), we note that for r0 > 0 small enough we have the density

estimate

|Ω ∩ Br| ≥ c|Br|, ∀0 < r ≤ r0.

Using the fact that ∂
∂r
|Ω ∩Br| = H1(Ω ∩ ∂Br) = 2πrθ(r) we get

∫ r

0

2πs(θ(s)− c) ds ≥ 0, ∀r ∈ (0, r0). (3.3.30)

As a consequence we have that

∫ r

rc/2

2πs
(
θ(s)− c

2

)
ds ≥ 0, ∀r ∈ (0, r0). (3.3.31)

Indeed, if this is not the case, then

0 ≤
∫ r

0

2πs(θ(s)− c) ds ≤
∫ cr/2

0

2πs(1− c) ds−
∫ r

cr/2

2πs
c

2
ds ≤ −πr2c(1− c)2,
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which is in contradiction with (3.3.30). By (3.3.31), we get that there is a constant c0 > 0 such

that ∫ r

rc/2

θ(s) ds ≥ c0r, ∀r < r0. (3.3.32)

By (3.3.29) we have

log
(
r−εΦ(r)

)
− log

((
rc/2

)−ε
Φ(rc/2)

)
=

∫ r

rc/2

(
−ε
s
+

Φ′(s)

Φ(s)

)
ds

≥
∫ r

rc/2

4

s

(
−ε
4
+ θ(s)

)
ds ≥ ε log(c/2) + 4c0,

which is positive for ε > 0 small enough. Thus, we obtain that the sequence

an := r−ε
n Φ(rn), where rn = (c/2)nr0,

is decreasing and so, by rescaling we obtain (b).

Proof of Lemma 3.3.10. We first note that as a consequence of Remark 3.3.11, we have the

estimates:
∫

Br

|∇u±|2
|x|d−2

dx ≤ 2

∫

Br

ϕ2 |∇U12|2
|x|d−2

dx+ 2‖ϕ−1∇ϕ‖2L∞(Br0 )

∫

Br

u2

|x|d−2
dx,

∫

Br

ϕ2 |∇U12|2
|x|d−2

dx ≤ 2

∫

Br

|∇u±|2
|x|d−2

dx+ 2‖ϕ−1∇ϕ‖2L∞(Br0 )

∫

Br

u2

|x|d−2
dx.

(3.3.33)

Taking in consideration the inequality

∫

Br0

|∇u±|2
|x|d−2

dx ≤ C

(
1 +

∫

B2r0

|u±|2 dx
)
, (3.3.34)

proved in [34], we obtain the claim by Lemma 3.3.12 and simple arithmetic.

3.3.4 Multiphase points and regularity of the free boundary

This subsection is dedicated to the proof of (i), (ii) and (iv) of Theorem 3.1.3.

Lack of triple points. The lack of triple points was proved in [31] in the more general

case of partitions concerning general functionals depending on the spectrum of the Dirichlet

Laplacian. The original proof uses the notion of an energy subsolution. In the present case the

lack of triple points follows directly. In fact if there are three phases Ωi, Ωj , Ωk such that the

intersection of their boundaries contains a point x0, then by the non-degeneracy of the gradient

(Corollary 3.3.4) we have that the product

3∏

i=1

(
1

r2

∫

Br

|∇ui|2 dx
)

remains bounded from be-

low by a strictly positive constant, which is in contradiction with the three-phase monotonicity

formula (Theorem 3.2.5).

Lack of two-phase points on the boundary of the box. Our first numerical simulations

showed the lack of double points (i.e. points on the boundary of two distinct sets) on the
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boundary of the box D. We first notice that there is a quick argument that proves the above

claim in the case when the boundary ∂D is smooth. Indeed, if this is the case and if x0 ∈ ∂D,

then there is a ball B ⊂ Dc such that x0 ∈ ∂B. Since the gradient of the first eigenfunction u

on B satisfies the non-degeneracy inequality (3.3.4), we can use the three-phase monotonicity

formula to conclude the proof.

If the boundary ∂D is only Lipschitz we need to use Lemma 3.3.10. Suppose, by absurd,

that there is a point x0 ∈ ∂Ωi ∩ ∂Ωj ∩ ∂D. If ui and uj are the first eigenfunctions on Ωi and

Ωj , by Corollary 3.3.4 we have

−
∫

Br(x0)

|∇ui|2 dx ≥ Cnd and −
∫

Br(x0)

|∇uj|2 dx ≥ Cnd, (3.3.35)

for small enough r > 0 and some non-degeneracy constant Cnd > 0. Since ∂D is Lipschitz,

we have the density estimate lim inf
r→0

|Dc ∩Br(x0)|
|Br|

> 0 and so, we can apply Lemma 3.3.10,

obtaining a contradiction.

Regularity of the auxiliary set Ωh+1 = D \
( h⋃

i=1

Ωi

)
. We first notice that since each of the

sets Ω1, . . . ,Ωh is a shape subsolution for λ1 + a| · |, we have that each of these sets has finite

perimeter by Theorem 3.2.3. As a consequence Ωh+1 also has finite perimeter. Suppose that

x0 ∈ D ∩ ∂∗Ωh+1.

Suppose that x0 is on the boundary of at most one phase, i.e. that there is ball Br(x0) and

an index i ∈ {1, . . . , h} such that Br(x0) =
(
Br(x0)∩Ωi

)
∪
(
Br(x0)∩Ωh+1

)
. Then the set Ωi

is a solution of

min
{
λ1(Ω) +

∫

Ω

Wi(x) dx : Ω ⊂ Di ∩ Br(x0), Ω open
}
,

where the set Di is given by Theorem 3.2.3. By the regularity result of Briançon and Lamboley

Theorem 3.2.2 we have that ∂∗Ωh+1 = ∂Ωh+1 in Br(x0) and is locally a graph of a smooth

function.

Thus in order to conclude it is sufficient to prove that x0 belonging to the boundary of just

one of the phases is the only possible case. Indeed, suppose that there is j 6= i such that for every

ball Br(x0) the sets Br(x0) ∩ Ωi and Br(x0) ∩ Ωj are both non-empty. By the non-degeneracy

of the gradients of the eigenfunctions ui and uj we have that

∫

Br(x0)

|∇ui|2 dx ≥ Cndr
2 and

∫

Br(x0)

|∇uj|2 dx ≥ Cndr
2. On the other hand, since x0 is in the reduced boundary of Ωh+1 we

have that

lim
r→0

|Br(x0) ∩ Ωh+1|
|Br(x0)|

=
1

2
.

Thus by the decay monotonicity formula Lemma 3.3.10 we get

lim
r→0

(
1

r2

∫

Br(x0)

|∇ui|2 dx
)(

1

r2

∫

Br(x0)

|∇uj|2 dx
)

= 0,

which is a contradiction. Thus every point of the reduced boundary belongs to at most one

phase and ∂∗Ωh+1 is smooth.
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3.4 Further remarks and open questions

This section is dedicated to some further developments around Theorem 3.1.3. In particular,

using the decay monotonicity formula from Lemma 3.3.10 and the same argument as in Theo-

rem 3.1.3 (iv) we prove that the optimal set for the second eigenfunction has smooth reduced

boundary. We also discuss the extension of Theorem 3.1.3 to smooth surfaces and the analogous

result in this case.

3.4.1 On the regularity of the optimal set for the second

eigenvalue

Consider the shape optimization problem

min
{
λ2(Ω) + α|Ω| : Ω open, Ω ⊂ D

}
, (3.4.1)

where D ⊂ R2 is a bounded open set and α > 0. By the Buttazzo-Dal Maso Theorem this

problem admits a solution in the class of quasi-open sets. The question of regularity of the

solutions is quite involved and no progress was made for almost two decades until in [26] it

was proved that every solution has finite perimeter and in [31] it was proved that there is an

open solution characterized through a multiphase problem. In the Theorem below we answer

the question of the regularity of the reduced boundary ∂∗Ω of the solutions of (3.4.1).

Theorem 3.4.1. Let Ω be a solution of (3.4.1). Then the reduced boundary D ∩ ∂∗Ω is smooth.

Proof. We first notice that it was proved in [31] that for every solution Ω of the problem (3.4.1)

there are disjoint open sets ω1, ω2 ⊂ Ω of the same measure as Ω, i.e. |Ω \ (ω1 ∪ ω2)| = ∅ such

that the set ω1 ∪ ω2 is still a solution of (3.4.1) and such that the couple (ω1, ω2) is a solution to

the multiphase problem

min
{
max{λ1(ω1), λ1(ω2)}+α|ω1|+α|ω2| : ω1, ω2 open, ω1,2 ⊂ D, ω1∩ω2 = ∅

}
. (3.4.2)

We notice that necessarily ω1 and ω2 are both connected and λ1(ω1) = λ1(ω2), otherwise it

would be possible to construct a better competitor for (3.4.2). Thus, by confronting the couple

ω1, ω2 with a couple ω̃1, ω2 where ω̃1 ⊂ ω1 we get that ω1 is a shape subsolution for the func-

tional λ1+α| · | and analogously ω2 is a shape subsolution for the same functional. In particular,

all the conclusions of Theorem 3.2.3 are valid. Let now x0 ∈ ∂∗Ω. Using the non-degeneracy

of the gradient of the first eigenfunctions u1 ∈ H1
0 (ω1) and u2 ∈ H1

0 (ω2) in x0 and the decay

monotonicity formula Lemma 3.3.10, and reasoning as in the proof of Theorem 3.1.3 (iv) we

get that there is a ball Br(x0) that does not intersect one of the sets ω1 and ω2. Without loss of

generality Br(x0) ∩ ω2 = ∅. Now by the regularity result of Briançon and Lamboley [23] and

the fact that ∂∗ω1 = ∂∗Ω in Br(x0) we get that ∂∗Ω is regular in a neighbourhood of x0.

Remark 3.4.2. We notice that an estimate on the Hausdorff dimension of the set ∂Ω \ ∂∗Ω is

not available at the moment.
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3.4.2 Multiphase shape optimization problems on smooth

manifolds

We notice that all the arguments that we use are local and Theorem 3.1.3 can easily be extended

to the case where the box (D, g) is a riemannian manifold with or without boundary. In fact the

existence of an optimal partition follows by the analogous of the Buttazzo - Dal Maso Theorem

proved in [31]. The Laplace-Beltrami operator ∆g in local coordinates satisfies ε∆ ≤ ∆g ≤
ε−1∆ as an operator, where ε > 0 depends on D and g, and analogously the gradient satisfies

ε|∇u| ≤ |∇gu| ≤ ε−1|∇u|, for any function u ∈ H1(D) expressed in local coordinates. Thus,

the two and three-phase monotonicity formulas are still valid as well as the non-degeneracy of

the gradient, the lack of triple points inside D and the lack of double points on the boundary of

D. We present the results that are still valid in the following Theorem.

Theorem 3.4.3. Suppose that D is a compact riemannian surface. Let 0 < a ≤ A be two

positive real numbers and Wi : D → [a, A], i = 1, . . . , h be given C2 functions. Then there are

disjoint open sets Ω1, . . . ,Ωh ⊂ D solving the multiphase optimization problem (3.1.2) in D.

Moreover, any solution to (3.1.2) satisfies the conditions (i), (ii) and (iii) of Theorem 3.1.3.

3.5 Numerical eigenvalue computation on a fixed grid

There are multiple ways of computing numerically the low Dirichlet-Laplace eigenvalues of a

shape Ω, most of them requiring a good description of the boundary (for example finite elements,

or fundamental solutions). In our case it is necessary to compute the first eigenvalue of a number

of shapes, for which it is difficult to keep track of their boundaries. Thus, having a method which

allows us to work on a fixed domain D containing the shape, greatly simplifies the treatment

of the problem. Methods of this kind were used in [18],[36] in the study of spectral minimal

partitions. In our study we use the method presented in [18]. We did not found any other works

in the literature which study the numerical error associated to this method. In this section we

present the discretization algorithm, as well as the errors obtained for a few simple shapes.

This eigenvalue computation method is inspired from penalized problems of the form

−∆u+ µu = λk(µ)u, u ∈ H1(D) ∩ L2(D, µ), (3.5.1)

where D is a bounded open set in R
2, and µ is a measure such that µ(A) = 0 whenever A has

capacity zero. The case where λk corresponds to a Dirichlet Laplace eigenvalue of a set Ω ⊂ D

is included in the formulation (3.5.1). Indeed, if∞Ωc is defined as follows:

∞Ωc(A) =





0 if cap(A ∩ Ω) = 0

∞ otherwise
,

then λk(∞Ωc) = λk(Ω). We have denoted cap(A) the capacity of the set A. For further details

about the penalized formulation (3.5.1), we refer to [27, Chapter 6].
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N C = 103 C = 104 C = 105 C = 106 C = 107 C = 108 C = 109

100 5.2 · 10−2 1.8 · 10−2 1.2 · 10−2 1.1 · 10−2 1.1 · 10−2 1.1 · 10−2 1.1 · 10−2

200 5.1 · 10−2 1.1 · 10−2 1.5 · 10−3 5.5 · 10−4 7 · 10−4 7.2 · 10−4 7.2 · 10−4

300 5.6 · 10−2 1.6 · 10−2 4.7 · 10−3 2.8 · 10−3 2.6 · 10−3 2.6 · 10−3 2.6 · 10−3

400 5.7 · 10−2 1.6 · 10−2 3.9 · 10−3 1.6 · 10−3 1.3 · 10−3 1.3 · 10−3 1.3 · 10−3

500 5.7 · 10−2 1.6 · 10−2 3.8 · 10−3 1.1 · 10−3 7.9 · 10−4 7.6 · 10−4 7.5 · 10−4

Table 3.1: Relative errors for the unit disk

N C = 103 C = 104 C = 105 C = 106 C = 107 C = 108 C = 109

100 5.1 · 10−2 1.9 · 10−2 1.3 · 10−2 1.3 · 10−2 1.3 · 10−2 1.3 · 10−2 1.3 · 10−2

200 4.4 · 10−2 5.7 · 10−3 3.7 · 10−3 4.8 · 10−3 5 · 10−3 5 · 10−3 5 · 10−3

300 6.2 · 10−2 2.2 · 10−2 1.2 · 10−2 10−2 10−2 10−2 10−2

400 5.7 · 10−2 1.6 · 10−2 5 · 10−3 2.9 · 10−3 2.7 · 10−3 2.7 · 10−3 2.7 · 10−3

500 5.4 · 10−2 1.3 · 10−2 8.3 · 10−4 1.7 · 10−3 2 · 10−3 2 · 10−3 2 · 10−3

Table 3.2: Relative errors for the square of side length 2

This formulation suggests the following numerical method: we choose µ = (1 − 1Ω)Cdx,

where 1Ω is the characteristic function of Ω, and C is large. In [18] it is proved that as C →∞
we have λk(C(1−1Ω)dx)→ λk(Ω). In the following we propose to study the behaviour of this

eigenvalue computation method with respect to the discretization parameter N and with respect

to the choice of C. We compare these values with the ones provided by the MpsPack software

[14], which is quite precise.

We consider the domain D = [−1.5, 1.5]2 and on it we take a N × N uniform grid. We

discretize a function u : D → R by considering its values on this regular grid. For sets Ω ⊂ D

we consider the approximation of problem (3.5.1) defined as

−∆u + C(1− 1Ω)u = λk(C1Ωcdx)u. (3.5.2)

This leads us to the discretized matrix problem

(A + Cdiag(1− 1Ω))u = λu,

where A is the finite difference discretization of the laplacian operator.

We present below the relative error, compared to MpsPack, in function of the measure pa-

rameter C and the discretization parameter N . In tables 3.1,3.2,3.3 and 3.4 we present the

maximal relative error |λapprox

k − λk|/λk (with 1 ≤ k ≤ 10) for the unit disk, for the square of

side length 2 and for the shapes presented in Figure 3.1. Here λk stands for the analytical value

(when available) or the value computed with MpsPack.

In our experiments we observed that for a fixed discretization parameterN , the relative error

stabilizes itself when C is large enough. This numerical effect seems to be due to the fact that

Ω is approximated using a rectangular grid, so at a given N , for large C we only compute the

eigenvalue of this discrete approximation of Ω.
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N C = 103 C = 104 C = 105 C = 106 C = 107 C = 108 C = 109

100 6 · 10−2 1.8 · 10−2 1 · 10−2 9.5 · 10−3 9.4 · 10−3 9.4 · 10−3 9.4 · 10−3

200 6.5 · 10−2 1.8 · 10−2 6.1 · 10−3 4.4 · 10−3 4.2 · 10−3 4.2 · 10−3 4.2 · 10−3

300 6.7 · 10−2 1.9 · 10−2 4.9 · 10−3 2.5 · 10−3 2.2 · 10−3 2.2 · 10−3 2.2 · 10−3

400 6.8 · 10−2 1.9 · 10−2 4.7 · 10−3 1.8 · 10−3 1.4 · 10−3 1.4 · 10−3 1.4 · 10−3

500 6.9 · 10−2 2 · 10−2 5.3 · 10−3 1.9 · 10−3 1.4 · 10−3 1.4 · 10−3 1.4 · 10−3

Table 3.3: Relative errors for the shape presented in Figure 3.1 (left)

N C = 103 C = 104 C = 105 C = 106 C = 107 C = 108 C = 109

100 6.9 · 10−2 2.2 · 10−2 1.4 · 10−2 1.3 · 10−2 1.3 · 10−2 1.3 · 10−2 1.3 · 10−2

200 7.2 · 10−2 2 · 10−2 6.8 · 10−3 4.8 · 10−3 4.6 · 10−3 4.6 · 10−3 4.6 · 10−3

300 7.4 · 10−2 2.1 · 10−2 5.9 · 10−3 3.3 · 10−3 3 · 10−3 2.9 · 10−3 2.9 · 10−3

400 7.6 · 10−2 2.2 · 10−2 6.1 · 10−3 2.8 · 10−3 2.4 · 10−3 2.4 · 10−3 2.4 · 10−3

500 7.6 · 10−2 2.3 · 10−2 5.6 · 10−3 1.8 · 10−3 1.3 · 10−3 1.3 · 10−3 1.3 · 10−3

Table 3.4: Relative errors for the shape presented in Figure 3.1 (right)

Figure 3.1: Shapes for which we test the method in Table 3.3 (left) and Table 3.4 (right)

3.6 Proof of Theorem 3.1.5

In this section, we give a theoretical estimate of the relative error obtained when working with

the penalized method. We study the difference between the eigenvalue λk(C1Ωcdx), given by

(3.5.2), and λk(Ω). We fix Ω ⊂ D to be an open set with boundary of class C2. In the following,

we denote µC = C1Ωcdx.

We consider the functions w,wC defined as follows

−∆w = 1 in Ω, w ∈ H1
0 (Ω),

−∆wC + C1ΩcwC = 1 in D,wC ∈ H1
0 (D).

Note that the standard maximum principle implies that wC ≥ w on D. Using the terminology
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defined in [29] we note that µCdx ≺ ∞Ωc so cf. [29, Lemma 4.3] and [26, Lemma 4.1] the

following estimate holds

‖RµC
−R∞Ωc‖L(L2) ≤ CN,Ω‖wC − w‖L1.

In general, we denote Rµ the resolvent operator associated to the problem

−∆u + uµ = f, u ∈ H1
0 (D) ∩ L2(D, µ).

Using [27, Corollary 6.1.8] we obtain the estimate

∣∣∣∣
1

λk(µC)
− 1

λk(Ω)

∣∣∣∣ ≤ ‖RµC
−R∞Ωc‖L(L2) ≤ CN,Ω‖wC − w‖L1.

Thus, we have
|λk(Ω)− λk(µC)|

λk(Ω)
≤ λk(µC)CN,Ω

∫

D

wC − w.

The monotonicity property stated in [27, Proposition 6.1.5] shows that λk(µC) ≤ λk(Ω). In

order to finish the proof, it suffices to give an upper bound for

∫

D

wC − w.

We clearly have ∫

D

|∇wC|2 + C

∫

Ωc

w2
C =

∫

D

wC .

When C → ∞ we have wc ⇀ w in H1
0 (D), and as a consequence lim

C→∞
C

∫

Ωc

w2
C = 0. This

proves that for C large enough there exists a constant M such that

(∫

Ωc

wC

)2

≤ |Ωc|
∫

Ωc

w2
C ≤

M

C
.

Thus ∫

Ωc

wC − w ≤
M

C1/2
.

For the estimate of

∫

Ω

wC − w we use the fact that wC − w is harmonic in Ω, so

∫

Ω

wC − w ≤ sup
∂Ω

wC |Ω|.

It remains to estimate sup∂Ω wC .

Assume that Bx0,r0 ⊂ Ωc. Then

−∆wC ≤ 1 in D,

so wC +
|x− x0|2

2N
is subharmonic in D. This implies

wC(x0) ≤
1

ωNrN0

∫

Bx0,r0

(wc +
|x− x0|2

2N
) ≤ r20

2N
+

1

ω
1/2
N r

N/2
0

(∫

Bx0,r0

w2
C

)1/2

,
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where we used the fact that |x− x0| ≤ r and we applied the Cauchy Schwarz inequality. Thus,

for C large enough we have

wC(x0) ≤
r20
2N

+
M

ω
1/2
N r

N/2
0 C1/2

.

Next, we choose r0 of the form C−α, which gives us

wC(x0) ≤
1

2NC2α
+

M

ω
1/2
N C(1−Nα)/2

.

We choose α = 1/(N + 4), which gives the same exponent for C in the two terms of the above

sum. Thus

wC(x0) ≤
(

1

2N
+

M

ω
1/2
N

)
C−2/(N+4).

Clearly, as C → ∞, x0 can be chosen closer and closer to ∂Ω. The fact that Ω is of class C2

implies that Ω satisfies an exterior ball condition Bρ. If d(x0, ∂Ω) < ρ then we can apply the

previous estimate.

To go from x0 to the boundary ∂Ω we note that the Minkowski sum Ω + BC−α satisfies

an interior and exterior ball condition, if C is large enough. For simplicity, we denote Ω′ =

Ω+BC−α in the sequel. Thus Ω′ is of class C1,α and∇wΩ′ is well defined on ∂Ω′. Furthermore,

considerBρ′ an exterior ball tangent to Ω′ and another concentric ball BR such thatBR contains

Ω′. The annulus A determined by Bρ′ , BR contains Ω′, and thus wΩ′ ≤ wA in Ω′ and |∇wΩ′| ≤
|∇wA| on ∂Ω′ . It is well known that wA is Lipschitz, with a Lipschitz constant depending on

ρ′ and the diameter of Ω′. Thus, on ∂Ω′ we have that |∇wΩ′| is bounded, and since |∇wΩ′| is

maximal on the boundary, it follows that wΩ′ is Lipschitz.

The function wC − wΩ′ is subharmonic on ∂Ω′. As a consequence, we have

wΩ+BC−α ≥
(
wC −

(
1

2N
+

M

ω
1/2
N

)
C−2/(N+4)

)+

,

which together with the Lipschitz continuity of wΩ+BC−α gives us that

wC |∂Ω ≤
(

1

2N
+

M

ω
1/2
N

)
C−2/(N+4) +M2C

−α,

where M2 is the constant in the Lipschitz continuity result.

Thus

wC |∂Ω ≤
(

1

2N
+

M

ω
1/2
N

)
C−2/(N+4) +M2ℓ

1/2C−1/(N+4).

Consequently, there exists a constant M3, depending on ε,N,D, such that

∫

D

wc − w ≤M3C
−1/(N+4).
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In conclusion, for C large enough, there exists a constant K such that

|λk(Ω)− λk(µC)|
λk(Ω)

≤ KC−1/(N+4).

�

Remark 3.6.1. Using techniques similar to [66, Lemma 3.4.11] we are able to prove that there

is an upper bound of the form KC−δ (with K, δ > 0) for the relative error even in the more

general case when Ω satisfies a ε-cone condition (equivalently, a uniform Lipschitz condition).

The drawback is that we do not have an explicit formula for δ, like in the case presented above.

We remark that in the case N = 2, studied numerically in the previous section, the relative

error is bounded theoretically by a term of order C−1/6. If we look at the numerical errors, we

see that from C = 103 to C = 109 the errors roughly decrease by one order of magnitude. This

is in good correspondence with the theoretical result which predicts a decrease of the relative er-

ror by approximately one order of magnitude when C is multiplied by 106. This correspondence

shows that this theoretical error bound is close to being sharp in two dimensions.

3.7 Numerical setting and optimization algorithm

In order to compute numerically the shape and the position of the optimal sets, we use the

procedure described in Section 3.5. This technique has been introduced in [18] for the study of

the case α = 0. We recall that the problem we study has the form

min
{ h∑

i=1

λk(Ωi) + α|Ωi| : Ωi ⊂ D quasi-open, Ωi ∩ Ωj = ∅
}
. (3.7.1)

where with λk(Ω) we denote the k-th eigenvalue of the Dirichlet Laplacian on Ω ⊂ D.

For a given measurable function ϕ : Ω ∈ [0, 1] and constant C > 0, we consider the

spectrum of the operator −∆+ C(1 − ϕ) on D, consisting on the eigenvalues with variational

characterization

λk(ϕ,C) := min
Sk⊂H1

0 (Ω)
max
u∈Sk

∫
Ω
|∇u|2 + C(1− ϕ)u2 dx∫

Ω
u2 dx

,

where the minimum is over all k-dimensional subspaces Sk of H1
0 (D). The corresponding k-th

eigenfunction satisfies the equation

−∆uk + C(1− ϕ)uk = λk(ϕ,C)uk, uk ∈ H1
0(D),

∫

D

u2k dx = 1. (3.7.2)

By the general existence theorem of Buttazzo and Dal Maso [53], there is a solution
(
ϕC
1 , . . . , ϕ

C
h

)

of the problem

min
{ h∑

i=1

(
λk(ϕi, C) + α

∫

D

ϕi dx
)
: ϕi : D → [0, 1] measurable,

h∑

i=1

ϕi ≤ 1
}
. (3.7.3)
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Moreover, by the approximation result [18, Theorem 2.4], or the result given by Theorem 3.1.5,

we have that, for every i = 1 . . . h,

lim
C→+∞

λ1(ϕ
C
i , C) = λ1(Ωi) and lim

C→+∞
ϕC
i = 1Ωi

,

where the second limit is strong in L1(D) and the h-uple (Ω1, . . . ,Ωh) is optimal for (3.7.1).

We were not able to prove that for k ≥ 2 the functions ϕC
i converge to characteristic func-

tions as C →∞. In [18] a concavity argument was used to prove the result, and this argument

does not extend to the case k ≥ 2. In the description of the algorithm we keep k general, but

the numerical results presented are for k = 1. Although we don’t have a theoretical justification

of the convergence in the case k = 2, the algorithm behaves well and produces the expected

results. For k ≥ 3 we did not manage to obtain conclusive results.

Note that for α > 0 solutions of problem 3.7.1 do not consist of partitions of D. Therefore

the functions ϕl satisfy the non-overlapping constraint
∑h

i=1 ϕi ≤ 1. This inequality constraint

is not easy to treat numerically, so we choose to add an additional phase, representing the empty

space. Define ϕh+1 := 1 −∑h
i=1 ϕi, the empty phase associated to the multiphase problem.

Thus (3.7.3) is equivalent to

min
{ h∑

i=1

λk(ϕi, C)− α
∫

D

ϕh+1 dx : ϕi : D → [0, 1] measurable,

h+1∑

i=1

ϕi = 1
}
, (3.7.4)

which is more suitable for numerical implementation. In this way (3.7.1) is reformulated as an

optimal partitioning problem

min
{ h∑

i=1

λk(Ωi)− α|Ωh+1| : Ωi ⊂ R
d quasi-open, Ωi ∩ Ωj = ∅, for i, j = 1, . . . , h+ 1

}
.

In this setting the numerical cost computation of the above problem involves the discrete ap-

proximation of the measure of Ωh+1 given by

|Ωh+1| ≃
1

N2

N2∑

i,j=1

ϕh+1
i,j .

In order to use an optimization algorithm we approximate the derivative of the eigenvalues

λk(ϕl, C) as a function of the values of the phases ϕl on the grid points. The precise expression

of this derivative was given in [18] and has the form

∂i,jλk(ϕl, C) = −C(U l
i,j)

2, (3.7.5)

whereU l is the l-th normalized eigenvector solution of the corresponding discrete equation. The

discrete derivative of the volume is given by

∂i,j |Ωh+1| = 1/N2.
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In order to perform the optimization under the constraint
∑h+1

l=1 ϕl = 1 we use the projection

operator on the simplex

S
h =

{
X = (X1, .., Xh+1) ∈ [0, 1]h+1 :

h+1∑

l=1

Xl = 1
}
,

defined by
(
ΠShϕ

l
)

i,j
=

|ϕl
i,j|∑h+1

l=1 |ϕl
i,j|
.

More details about the justification of the choice of this non orthogonal projection operator can

be found in [18]. We did not manage to improve this projection procedure. We observed that

both aspects: the condition that the sum is equal to 1 and that the functions ϕl take values in

[0, 1], are essential in the optimization process, and this projection operator preserves them both.

The optimization procedure proposed in [18] was based on a steepest descent algorithm

with an adaptive step length. We improve the descent algorithm by introducing a linesearch

procedure in order to determine the step length. A description of the procedure can be found in

Algorithm 2. The number of iterations is significantly reduced, but each iteration needs multiple

function evaluations.

Algorithm 2 Linesearch algorithm

Require: γ0, ω > 1, x, d (descent direction)

1: γ = γ0
2: Evaluate the cost c corresponding to x
3: c0 = c (variable which keeps previous cost)

4: repeat

5: xt = x+ γd
6: xp = ΠSh(xt) (projection on the constraint)

7: Evaluate the cost cp corresponding to xp
8: if cp < c0 then

9: γ ← ωγ
10: else

11: break

12: end if

13: c0 = cp
14: until

return γ

In order to test the stability of our modified algorithm, we took a rectangular box which

can be paved with regular hexagons, with one edge oriented horizontally, in a periodic setting.

One possibility is to choose the edges of the rectangle having a ratio of
√
3, in the case of 6

cells, or 2/
√
3 in the case of 12 cells. In each case we performed the optimization starting from

random densities with sum 1. We observe that the resulting partitions are equivalent, and the

corresponding costs are close. Results can be seen in Figure 3.3 (the case of 6 cells) and Figure

3.4 (the case of 12 cells). The cost evolution, in the case of 6 cells, is plotted in Figure 3.2.
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Algorithm 3 General form of the optimization algorithm

Require: k, α, h, ε, γ0, pmax

1: p = 1
2: Choose random initial densities (ϕl) and project them on the constraint

3: repeat

4: Compute c = F (ϕl) (the cost functional)

5: Choose descent direction d = −∇F (ϕl)
6: Find step length γ using the linesearch algorithm

7: Update ϕl ← ϕl − γd
8: ϕl ← ΠSh(ϕ

l) (project on the constraint)

9: p← p+ 1
10: until p = pmax or γ‖∇F (ϕl)‖ℓ∞ < ε
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Figure 3.2: Cost evolution in the four cases presented in Figure 3.3

Figure 3.3: Optimal results - 6 cells on a periodic domain, starting each time from random

densities. Optimal numerical value (left to right): 205.21, 205.23, 205.22, 205.22
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Figure 3.4: Optimal results - 12 cells on a periodic domain, starting each time from random

densities. Optimal numerical value (left to right): 1512.85, 1512.83, 1513.12, 1513.26

In order to be able to study the minimizers of problem 3.7.1 in the case where D is not

rectangular, we use a finite elements approach. We find a triangulation of D using the software

Distmesh [77], or by specifying a regular triangulation directly (when possible). We compute

the associated rigidity and mass matrices K and M , respectively. Then, if ϕ is a vector contain-

ing the values of the discretization of Ω, we are left to solve the problem

∫

D

∇u∇v +
∫

D

C(1− ϕ)uv = λ

∫

D

uv,

which has the discrete form

vTKu+ CvTdiag(1− ϕ)Mu = λvTMu.

Since this is true for each v, we are left with the generalized eigenvalue problem

(K + Cdiag(1− ϕ)M)u = λMu.

In this way, we are able to find numerical minimizers for problem 3.7.1 even when D is not

rectangular (see Figures 3.7,3.10). The drawback is that finding generalized eigenvalues is

more time consuming than finding eigenvalues. When working on a rectangular domain, using

finite differences, we can easily handle discretizations of 500× 500 (250000 points) on a single

machine4. For the finite elements case we use triangulations with roughly 10000 points. The

advantage of this finite elements approach is that once we have a good triangulation of the

domain, the problem can be easily treated, and this inspired the framework we use in Chapter

5 for the study of optimal partitions on manifolds. If we want more precision, in terms of

discretization points, we can use the finite differences formulation and use the same penalization

method to determine the domain D inside the square.

3.8 Discussion of the numerical results

In this section we present some numerical simulations that confirm the theoretical results stated

in Theorem 3.1.3 and the article [31]. Furthermore, the numerical simulations in the periodic

4Processor: i7 quad-core 2.2Gh, 6GB of RAM
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Figure 3.5: k = 1, 200 × 200 non-periodic grid, 3 phases (α = 170, 100, 80) and 4 phases

(α = 250, 150, 100)

case, indicate that as α decreases, the cells of the multiphase configuration are monotonically

increasing. This was also observed in the case of non-periodic conditions, when the domain has

a certain symmetry, which allows a well behaved circle packing. Note that, when the size of

the box is well chosen, there exists an optimal parameter α, such that the optimal configuration

consists of the hexagonal circle packing configuration. If the observed shape monotonicity

property is true, then the actual spectral partitioning problem (α = 0) can be solved, and the

optimal partition is formed of regular hexagons. We note that this result concerning the case

α = 0 is still an open problem, while results of [18] confirm numerically this conjecture (see

Figures 3.6,3.7, as well as Figure 3.5).

In all the cases the lack of triple junction points, proved in [31], is clearly observed, provided

that the parameter α > 0 is large enough. The lack of double points on the boundary of the

square proved in Theorem 3.1.3 can also be noticed in Figures 3.5,3.10. Another phenomenon

that can be observed is that the sets Ωi near the corners of D do not fill the corner. This is a

fact that can be easily proved by adding a ball B (i.e. subsolution for the functional λ1 + α| · |)
outside D, for which the corner of the square lies on the sphere ∂B. Now the claim can be

deduced by the monotonicity Theorem 3.2.4 (B), as in Theorem 3.1.3.

Some fine qualitative properties of the optimal configurations (Ω1, . . . ,Ωh,Ωh+1), which

are still open questions, were observed during the numerical simulations.

• The set of one-phase points ∂Ωj ∩ ∂Ωh+1 on the boundary of the jth optimal cell Ωj is
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Figure 3.6: k = 1, illustration of the monotonicity property. Values of α: 150, 200, 250, 300
(left to right)

Figure 3.7: k = 1, illustration of the monotonicity property in the case of an equilateral triangle.

Values of α: 10, 25, 50 (left to right)

locally a graph of a convex function.

• For each pair of distinct indices i, j ∈ {1, . . . , h}, there are exactly two boundary two-

phase points on the common boundary ∂Ωi ∩ ∂Ωj , i.e.

H0
(
∂Ωi ∩ ∂Ωj ∩ ∂Ωh+1

)
= 2.

• If x0 ∈ ∂Ωi∩∂Ωj ∩∂Ωh+1 is a boundary two-phase point, then the set Ωi∩Ωj has a cusp

in x0. More precisely, for r > 0 small enough, the free boundaries ∂Ωi ∩ ∂Ωh+1 ∩Br(x0)

and ∂Ωj ∩ ∂Ωh+1 ∩ Br(x0) are graphs of convex functions meeting tangentially in the

origin x0.

Finally, we considered the periodic version of the problem (3.1.2) on the square [0, 1]×[0, 1]
and in other rectangular domains, in attempt to simulate a ”partition” of the whole space R

2

(see Figure 3.8, Figure 3.6). For small enough constants α > 0 we obtain a configuration with

touching hexagons with rounded corners, in support of the numerical results in [18].

Most of the tests we made were in the case k = 1, but the algorithm works for k = 2

as well. The main issue in the case of higher eigenvalues concerns the differentiability of
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Figure 3.8: k = 1, 200 × 200 periodic grid, 8 phases, α = 500, 580 and k = 2, 8 phases,

α = 270

Figure 3.9: Optimal configurations on the sphere in the case of four phases, for decreasing

values of α

the eigenvalues with respect to perturbations, which is well known to be closely related to

their multiplicity. Secondly, we were not able to prove that for k ≥ 2 the relaxed formulation

converges to the actual problem when C → +∞. Nevertheless, we were able to obtain some

interesting numerical results also in the case k = 2 and one example can be seen in Figure 3.8.

As stated in Theorem 3.4.3 the theoretical results also extend to the case of the Laplace-

Beltrami fundamental eigenvalues on surfaces. Using the same finite elements procedure as in

the case of non-rectangular domains, we were able to compute numerically some optimal con-

figurations on the sphere, observing the same behaviour as in the plane: the lack of triple points

and monotonicity with respect to α. (see Figure 3.9) We notice that in the cases h ∈ {3, 4, 6, 12}
the optimal configurations converge to the corresponding regular tiling of the sphere (Y parti-

tion, regular tetrahedron, cube, dodecahedron) as α→ 0.
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Figure 3.10: Optimal partitions (α = 0) for some generic domains D
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CHAPTER 4

Boundary eigenvalue problems

Résumé

Ce chapitre traite de quelques aspects théoriques et numériques pour des problèmes aux valeurs

propres définis sur le bord d’un domaine. La différence entre ces problèmes et les problèmes

aux valeurs propres étudiés en chapitres 1 et 3 est le fait que l’équation de valeur propre est

imposée comme une condition au bord et à l’intérieur du domaine les fonctions propres sont har-

moniques. Un première modèle concernant ces types de problèmes est le problème de Steklov:

pour un ouvert Ω à frontière Lipschitz on a




∆u = 0 dans Ω

∂u
∂n

= σu sur ∂Ω.

Les valeurs σ pour lesquelles le probleme ci-dessus admet une solution non triviale forment une

suite croissante divergente

0 = σ0 ≤ σ1 ≤ σ2 ≤ · · · → ∞.
Comme dans les chapitres précédents, on regarde ce problème dans le cas où Ω est un ouvert

variable, et on se demande quels sont les ensembles qui optimisent ce type de valeurs pro-

pres sous différentes contraintes. En regardant l’équation définissant ce problème, on peut voir

que toute fonction constante est une fonction propre correspondant à la valeur propre 0. En

conséquence, on commence la numérotation des valeurs propres par 0 et on pose σ0(Ω) = 0.

Des nombreux travaux traitent ces problèmes d’optimisation des valeurs propres Steklov. On

présente ci-dessous les résultats les plus connus :

• le disque maximise σ1(Ω) parmi les ensembles d’aire fixée (Brock [24]) et parmi les

ensembles simplement connexes de périmètre fixé (Weinstock [93]);

• parmi les ensembles simplement connexes en dimension deux, de périmètre fixé ou d’aire

fixée, les problèmes suivants sont résolus par le disque :

maxσ1(Ω)σ2(Ω), min

(
1

σ1(Ω)
+ ... +

1

σn(Ω)

)
,
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∀n ∈ N (Hersch-Payne-Schiffer [67]).

Hersch-Payne-Shiffer ont prouvé que parmi les ensembles simplement connexes, la deuxième

valeur propre Steklov, σ2(Ω), est bornée supérieurement par la deuxième valeur propre Steklov

de deux disques de même périmètre que Ω. Girouard et Polterovich [55] ont prouvé que cette

borne est optimale dans le cas des ensembles simplement connexes. Dans le cas où on a une

contrainte de périmètre, si on enlève la condition de simple connexité, le disque n’est plus opti-

mal pour σ1. Si on fait un petit trou dans le centre du disque et si on redimensionne l’ensemble

pour avoir le même périmètre, alors la première valeur propre augmente. Ceci montre que le cas

non-simplement connexe nécessite une attention spéciale quand on considère une contrainte de

périmètre.

La première partie de ce chapitre traite la question de stabilité et semicontinuité supérieure

des valeurs propres Steklov pour certains types de convergence des ensembles. Le contenu

de cette première partie est un article, à paraı̂tre dans Applied Mathematics and Optimization.

La motivation de ce résultat est de pouvoir traiter des questions d’existence pour un problème

d’optimisation concernant les valeurs propres Steklov. Tous les résultats d’existence trouvés

dans la littérature concernant le problème de Steklov sont prouvés en identifiant une borne

explicite et en trouvant un ensemble qui réalise cette valeur (par exemple le disque). Le résultat

central de la première partie du chapitre est le suivant :

Théorème. Si Ωn est un suite d’ensembles vérifiant une condition de cône uniforme et

Ωn → Ω pour la topologie de Hausdorff et dans la topologie L1, alors

lim sup
n→∞

σk(Ωn) ≤ σk(Ω).

Si de plus Per(Ωn)→ Per(Ω), alors

σk(Ωn)→ σk(Ω).

Ce théorème permet d’énoncer et de prouver des résultats d’existence des solutions concer-

nant les problèmes Steklov sous contrainte de convexité ou sous contrainte de ε-cône.

La deuxième partie de ce chapitre traite de la conception et de la mise en œuvre d’une

méthode de calcul des valeurs propres Steklov pour des ensembles qui peuvent être paramétrés

par une fonction radiale. Notre approche fait partie de la classe des méthodes basées sur des

solutions fondamentales. L’idée est de considérer des combinaisons linéaires des fonctions qui

vérifient de manière analytique l’équation à l’intérieur du domaine (dans ce cas, des fonctions

harmoniques) et d’imposer les conditions au bord sur un nombre fini de points. Des méthodes

similaires ont été proposées par P. Antunes et P. Alvez en [4],[5] dans le cas des valeurs propres

du Laplacien avec conditions Dirichlet, Neumann ou Robin.

La méthode permet de traiter une classe large de domaines et sa précision est assez im-

portante. On compare la méthode des solutions fondamentales avec des méthodes de maillage
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grâce au logiciel FreeFem++ [61]. On observe qu’en raffinant les maillages, les valeurs pro-

pres obtenues avec les maillages convergent vers les valeurs propres obtenues avec solutions

fondamentales. Un avantage important de la méthode développée est sa rapidité par rapport aux

méthodes basées sur des maillages. Le temps d’exécution est cent fois plus rapide pour notre

méthode, et la précision est meilleure. Pour évaluer cette précision, on a prouvé un résultat

similaire à celui présenté dans [73], dans le cadre du problème de Steklov :

Théorème. Soit Ω borné, régulier, et uε qui satisfait




−∆uε = 0 in Ω
∂uε
∂n

= σεuε + fε on ∂Ω.

avec ‖uε‖L2(∂Ω) = 1 et ‖fε‖L2(∂Ω) = δ < 1. Alors il existe k ∈ N∗ tel que

|σε − σk|
σk

≤ δ.

Ce théorème montre que dans le cas du cercle, la précision de notre méthode est 10−12 et en

général la précision est de 10−6.

Avec cette méthode numérique et la formule de dérivée de forme pour les valeurs propres

Steklov trouvée dans [42] on peut étudier numériquement une classe assez large des problèmes

d’optimisation. En pratique, on observe que si le minimiseur est en dehors de la classe des en-

sembles représentables en paramétrisation radiale, l’algorithme ne converge pas, et il s’arrête en

essayant de déconnecter la forme pour atteindre une autre classe des domaines. On conjecture

le fait que si on considère des contraintes d’aire, l’ensemble qui maximise σk(Ω) existe et il est

connexe. Les formes obtenues numériquement sont présentées à la fin de ce chapitre.

La méthode numérique peut être generalisée à d’autres classes des problèmes. En particulier,

au cours de cet chapitre on étudie numériquement des questions liées aux problèmes suivants :

• Problème de Wentzell 



∆u = 0 dans Ω

−β∆τu+
∂u
∂n

= σu sur ∂Ω,

où ∆τ est l’opérateur Laplace-Beltrami associé à ∂Ω.

• Problème de Steklov modifié



−∆u+ u = 0 dans Ω

∂u
∂n

= σu sur ∂Ω.

en lien avec des inégalités de trace.

La dernière contribution de ce chapitre est une extension de la méthode radiale qui doit

pouvoir traiter tous les domaines simplement connexes. Au lieu de considérer des courbes

paramétrées par une fonction radiale, on peut considérer des courbes paramétriques (x(t), y(t))
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pour t ∈ [0, 2π] avec x, y des fonctions périodiques. On fait la même chose que dans le cas

des fonctions radiales : on développe x, y en séries de Fourier et on retient un nombre fini de

coefficients. On peut calculer la dérivée de la valeur propre par rapport à tous ses coefficients et

on peut étudier de la même manière des problèmes d’optimisation. Cette méthode est nouvelle

et, à ma connaissance, n’a pas été étudié dans la littérature auparavant.

4.1 Introduction

For an open, bounded, simply connected set Ω with Lipschitz boundary, we can consider the

Steklov eigenvalue problem: 


∆u = 0 in Ω

∂u
∂n

= σu on ∂Ω.

The Steklov spectrum of Ω consists of a sequence of the form

0 = σ0(Ω) ≤ σ1(Ω) ≤ σ2(Ω)...→ +∞.

Various optimization problems for functionals of the Steklov spectrum under certain constraints

on the geometric properties of Ω have been studied.

Weinstock [93] observed that σ1(Ω) is bounded above by 2π/Per(Ω) in the class of simply

connected sets. This means that the disk maximizes the first Steklov eigenvalue in the class of

two dimensional simply connected sets, under a perimeter constraint. It is straightforward to

see that this implies that the disk maximizes σ1(Ω) under volume constraint (see Remark 4.2.4).

Girouard and Polterovich proved in [56] that the estimate

σk(Ω) Per(Ω) ≤ 2kπ

provided by Hersch, Payne and Schiffer is sharp in the class of simply connected domains, but

is not attained in that class. We refer to [56],[65, Section 7.3] for further details.

In general, the known results concerning the optimization of functionals of the Steklov

spectrum are proved by finding an optimizer explicitly. Once an optimizer Ω∗ is identified,

it is proved that the value of the functional on Ω∗ is the best possible. In the cases where the

optimal shape is not known explicitly, we would like to be able to provide at least an existence

result.

First, let’s note that in the case of the Steklov eigenvalues, it is only relevant to study opti-

mization problems in which the Steklov eigenvalues are maximized. Indeed, Colbois, El Soufi

and Girouard proved in [37] that the Steklov eigenvalues satisfy the bound

σk(Ω) ≤ cdk
2
d
|Ω| d−2

d

Per(Ω)
. (4.1.1)

Thus, keeping constant volume and increasing the perimeter, we can make the Steklov eigenval-

ues as small as we want.
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A natural way to study optimization problems is to use the classical methods of the calculus

of variations. In order to study the problem

max
Ω∈A

σk(Ω),

where A is an admissibility class (containing, eventually, some constraints), we need a result

concerning the upper semicontinuity of σk with respect to some type of convergence.

We mainly deal with the convergence related to the Hausdorff distance, but in a stronger

sense which is described in the following. Note that maximizing σk(Ω) under perimeter or vol-

ume constraint, together with the bound (4.1.1), means that a maximizing sequence (Ωn) will

have a bound on the perimeters (Per(Ωn)). It is well known that a perimeter bound, together

with a bounding box constraint implies L1 compactness of characteristic functions. These con-

siderations allow us to work directly with maximizing sequences converging in the Hausdorff

distance and in L1.

The main results of the first part of this chapter concern inequalities of the type

lim sup
n→∞

σk(Ωn) ≤ σk(Ω), (4.1.2)

under certain regularity assumptions on (Ωn) and Ω. We work in the framework of sets which

satisfy an ε-cone condition, which is equivalent to a uniform Lipschitz property. In particular,

this allows us to extend functions in H1(Ω) to H1(D), when Ω ⊂ D. Another advantage is that

we can work with graphs of Lipschitz functions instead of dealing with general sets. We believe

that our results could be extended to a more general class of sets described in [88].

We found that in order to prove inequalities of the type (4.1.2) it is essential to have a result

on the lower semi-continuity of traces of Sobolev functions on moving boundaries presented

in Proposition 4.3.2. The main result is Theorem 4.3.5 and it states that if the sequence of

sets (Ωn) satisfy a ε-cone condition and converge to Ω in the Hausdorff topology then (4.1.2)

holds. Moreover, if the perimeters of Ωn converge to the perimeter of Ω then we have equality

in (4.1.2). We give a direct proof that the Steklov spectrum of a convex set is close to zero if the

diameter is large. This result is a direct consequence of the bound (4.1.1), but it avoids the use

of the technical argument presented in [37]. In the end, we are able to provide existence results

in the class of sets satisfying a uniform ε-cone condition, as well as in the class of convex sets.

In Figure 4.8 we present some convex sets obtained numerically for which we have observed the

highest, area normalized, k-th Steklov eigenvalue for k ∈ [2, 10]. These shapes were obtained

using shape gradients and performing a projection on the convex hull.

As stated above, the semi-continuity result, and the existence results are proved in the class

of sets which satisfy a uniform ε-cone condition. It is not clear if these results still hold if

this hypothesis is removed and we work in the class of general Lipschitz domains. In the

case of the area constraint, Brock proved in [24] that the disk maximizes the first non-trivial

Steklov eigenvalue, without any assumptions on the topology of the domain. Ongoing research

suggests that in the case of the volume constraint, an existence result can be obtained for a
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relaxed formulation of the Steklov eigenvalues. Furthermore, numerical results presented in the

end of this chapter show that is likely that in the case of the area constraint we may have an

existence result even without additional topological assumptions.

As you can see in Figure 4.5, the perimeter constraint gives a different behaviour. If we

remove the simple connectedness condition, then the disk is no longer the maximizer of σ1;

making a suitably sized hole in the center of the disk increases the scale invariant Steklov

eigenvalue. This behaviour has been announced in [57].

The second part of this chapter presents a new numerical method for computing the Steklov

spectrum on two dimensional domains. The method is inspired by the work of Alvez and

Antunes [4] and it uses fundamental solutions. The idea is to work with functions which are

already harmonic in an analytic way, and search for those which satisfy the good boundary

eigenvalue condition. In order to do this, we choose a set of points (xi), i = 1, ..., N on ∂Ω and

a set of associated exterior points (yi), i = 1, ..., N . We consider radial harmonic functions φi

with centers yi and we search solutions of the form

u = α1φ1 + ...+ αNφN .

The coefficients α1, ..., αN are the only unknowns here, and they satisfy a generalized eigen-

value equation. The corresponding eigenvalues are good approximations of the Steklov spec-

trum of the domain Ω.

We perform many tests in order to test our method. The first such test is to compare the

eigenvalues obtained using our method with the ones given by an algorithm which uses meshes

for the eigenvalue computation. A straightforward implementation can be done in FreeFem++.

We notice that as the meshes are refined, the corresponding eigenvalues converge to the ones

obtained using fundamental solutions. We applied techniques similar to the ones used in the

result of Moler and Payne [73] and we obtained a theoretical error estimate for our algorithm,

which has the following form

Theorem. 4.6.3 Consider Ω to be a bounded, regular open set and let uε be a solution of



−∆uε = 0 in Ω
∂uε
∂n

= σεuε + fε on ∂Ω.

with ‖uε‖L2(∂Ω) = 1 and ‖fε‖L2(∂Ω) = δ < 1. Then it exists k ∈ N∗ such that
|σε − σk|

σk
< δ.

Using this result, we approximate numerically the error ∂nu− σu on ∂Ω by looking at a family

of points which is 100 times more dense on ∂Ω. The numerical computations and the above

result suggest that the errors made are of order 10−6. The method and the error result can

be extended to a larger class of problems in relation to the Wentzell spectrum, which will be

described in the second part of this chapter.

Once we have a method which is fast and precise, we can perform numerical optimization

algorithms. We can use the same parametrization of the radial functions with Fourier coeffi-

cients that was presented in Chapter 1. With the aid of the shape derivatives formulas presented
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in [42], we are able to compute the gradient of the Steklov/Wentzell eigenvalues with respect

to every Fourier coefficient. This numerical algorithm allows us to study a variety of problems

regarding the Steklov spectrum. The speed of the algorithm computing the spectrum allows us

to perform a thousand iterations in the descent algorithm in just a few seconds.

We would like to remove the rather strict limitation that is to work in the class of star-

shaped domains. We devised a method which consists of parametrizing each of the coordinates

in a general parametrization t 7→ (x(t), y(t)) using Fourier coefficients. In this way, we can

work directly in the class of simply connected domains while still keeping only a finite number

of parameters. We used this parametric method to study the problem of maximizing the k-th

Steklov eigenvalue in the class of sets with fixed area. Using this method we did not obtain any

significant improvements over the results obtained in the radial case. Nevertheless, working

with a general parametrization allowed us to explore a wider class of domains. After obtaining

these results we are more confident that the optimal shapes are indeed star-shaped, and that

working with a radial parametrization is not an assumption which is too strict.

4.2 Preliminaries

We recall below some theoretical tools needed to prove our results.

4.2.1 Convergence of sets

In the study of optimization problems where the variable is the shape of a domain it is often

necessary to define a topology on a family of shapes. The choice of such a topology is not

obvious, and different situations require different topologies. In our study, we use the Hausdorff

compelentary convergence on open sets and the L1 convergence of a of characteristic functions.

We recall that the Hausdorff distance between two compact sets K1, K2 is given by

dH(K1, K2) = max{ sup
x∈K1

inf
y∈K2

d(x, y), sup
y∈K2

inf
x∈K1

d(x, y)}.

If we consider a bounded open setD and the open sets Ω1,Ω2 ⊂ D then we define the Hausdorff

complementary distance as

dHc(Ω1,Ω2) = dH(D \ Ω1, D \ Ω2).

These two types of convergence are not equivalent in general. Still, it is possible to prove

that if we have a bounding box, then any sequence of open sets (Ωn) has a subsequence con-

verging in the Hausdorff topology to Ω. Furthermore, if the sequence of perimeters of (Ωn) is

bounded, then (Ωn) has a subsequence which converges in both topologies presented above. We

will consider this combined convergence, which provides, in addition to the properties of the

Hausdorff convergence, continuity for the volume and lower semi-continuity for the perimeter.
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4.2.2 Uniform cone condition

We recall the following definition from [66, Chapter 2].

Definition 4.2.1. Let y be a point in Rd, ξ a unit vector and ε > 0. We define the cone C(y, ξ, ε)

of vertex y, direction ξ and dimension ε by

C(y, ξ, ε) = {x ∈ R
d : 〈z − y, ξ〉 ≥ cos ε|z − y| and 0 < |z − y| < ε}.

We say that an open set Ω has the ε-cone condition if for every x ∈ ∂Ω there exists a unit vector

ξx such that for every y ∈ Ω ∩B(x, ε) we have C(y, ξx, ε) ⊂ Ω.

In the proof of our results we use the fact that sets which have the ε-cone condition can be

represented locally as the graph of a Lipschitz function. Theorem 2.4.7 from [66] assures us

that the ε-cone condition is equivalent to the following uniform Lipschitz condition.

Definition 4.2.2. We say that a subset Ω of Rd has a uniform Lipschitz boundary if there are

some uniform constants L, a, r such that for any point x0 ∈ ∂Ω there exists an orthonormal

system of coordinates S with origin at x0, a cylinderK = Bd−1(x0, r)×(−a, a), and a function

ϕ : Bd−1(x0, r)→ [−a, a] which is Lipschitz, with constant L and ϕ(0) = 0 such that

∂Ω ∩K = {(y, ϕ(y)) : y ∈ K},

Ω ∩K = {(y, xN) ∈ K : xN > ϕ(y)}.

One advantage of working with sets satisfying an ε-cone condition is the fact that the two

types of sets convergence defined before are connected. The Hausdorff complementary conver-

gence of a sequence of sets implies the convergence of characteristic functions in L1(D) to the

same limit. We refer to [66, Theorem 2.4.10] for a proof. Furthermore, if Ω satisfies a ε-cone

condition, then the constants L, a, r in the above theorem depend only on ε.

The following proposition mentions an interesting property of the sets which satisfy an ε-

cone condition. Using the fact that the boundary of such a set has a local representation as the

graph of a Lipschitz function, we can find a bound on the perimeter.

Proposition 4.2.3. Suppose D is a bounded, open set in Rd and suppose that Ω ⊂ D satisfies

a ε-cone condition. Then Per(Ω) is uniformly bounded by a constant which depends only on ε

and D.

Proof: The above remarks, allow us to say that for every x0 ∈ ∂Ω there exist a cylinderK of

the formBd−1(x0, r)×(−a, a) centred at x0 such that ∂Ω∩K is the graph of a Lipschitz function

with Lipschitz constant L. Furthermore, L, a, r depend only on ε. Note that the perimeter of Ω

restricted to K, denoted PerK(Ω), can be expressed as

PerK(Ω) =

∫

Bd−1(x0,r)

√
1 + |∇ϕ(x)|2dx ≤ |Bd−1(x0, r)|

√
1 + L2.
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Therefore, in every such cylinderK, the relative perimeter of Ω is bounded by a constant which

depends only on ε.

We claim that the boundary of Ω can be covered with M such cylinders K, where M de-

pends on D. To see this, we propose the following construction. Choose x1 ∈ ∂Ω and let K1

be the associated cylinder, like in Definition 4.2.2. At step n, choose xn /∈ K1 ∪ ... ∪ Kn−1

and denote Kn its corresponding cylinder. This operation must end at some point, since pair-

wise distances between xi and xj , with i 6= j are bounded below by a constant c = min{a, r}
depending on ε.

To see that there exist a maximal number of points inside D satisfying this property, it is

enough to cover D with cubes with a diameter c′ < c. Obviously, since D is bounded, it is

possible to cover D with a finite number M of such cubes. Each cube can contain at most one

of the points xi, since it’s diameter is smaller than c. Therefore, the above construction ends in

at n ≤M steps.

As a consequence

Per(Ω) ≤
n∑

i=1

PerKi
(Ω) ≤M |Bd−1(x0, r)|

√
1 + L2.

Thus, the perimeter of Ω is uniformly bounded by a constant depending on ε and D. �

4.2.3 The Steklov spectrum

Let Ω be a simply-connected bounded planar domain with Lipschitz boundary. The Steklov

eigenvalue problem is 


−∆u = 0 in Ω,

∂u
∂n

= σu on ∂Ω,

where ∂
∂n

is the outward normal derivative. The spectrum of the Steklov problem is discrete and

its eigenvalues

0 = σ0 < σ1(Ω) ≤ σ2(Ω) ≤ σ3(Ω) ≤ ...→ +∞

satisfy the following variational characterization

σn(Ω) = min
Sn

max
u∈Sn\{0}

∫
Ω
|∇u|2dx∫
∂Ω
u2dσ

, n = 1, 2, ...

The infimum is taken over all n-dimensional subspaces Sn of H1(Ω) that are orthogonal to

constants on ∂Ω, i.e.
∫
∂Ω
udσ = 0.

The Steklov eigenvalues behave well under domain scaling. Indeed, if we denote tΩ an

image of Ω by a homothety of ratio t > 0 then we have

σk(tΩ) =
1

t
σk(Ω). (4.2.1)
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Remark 4.2.4. In view of property (4.2.1), the quantities σk(Ω) Per(Ω) and σk(Ω)|Ω|1/2 are

scale invariant. Thus maximizing σk(Ω) under perimeter constraint is equivalent to the problem

maxσk(Ω)(Per(Ω))
1

d−1 ,

and maximizing σk(Ω) under volume constraint is equivalent to the problem

maxσk(Ω)|Ω|1/d.

Combining the above formulations with the classical isoperimetric inequality, we can con-

clude that if the ball maximizes σk, or another well behaving function of the Steklov spectrum,

under a perimeter constraint, then the ball also maximizes the same function under volume

constraint.

4.3 Stability of Steklov Spectrum under Hausdorff

Convergence

We recall the following result, which can be found in a similar form in in [50, Theorem 2.3.1].

The weak L2 convergence coupled with the convergence of a certain integral sequence implies

strong L2 convergence.

Lemma 4.3.1. Let Ω be a measurable subset of Rn and suppose F : Rn → R is a strongly

convex function of class C1, i.e. it exists µ > 0 such that

F (y) ≥ F (x) +∇F (x) · (y − x) + µ|y − x|2,

for every x, y ∈ R
n. Furthermore, we assume that F has the property that if u ∈ L2(Ω;Rn)

then ∇F (u) is also in L2(Ω;Rn). Let (uk) be a sequence in L2(Ω,Rn) such that uk ⇀ u in

L2(Ω,Rn). Suppose the following inequality holds:

lim sup
k→∞

∫

Ω

F (uk)dx ≤
∫

Ω

F (u)dx

Then

uk → u in L2(Ω;Rn).

Proof: For every x we have

F (uk(x)) ≥ F (u(x)) +∇F (u(x)) · (uk(x)− u(x)) + µ|uk(x)− u(x)|2.

Integrating on Ω we have

∫

Ω

F (uk(x))dx ≥
∫

Ω

F (u(x))dx+

∫

Ω

∇F (u(x))·(uk(x)−u(x))dx+µ|uk−u|2L2(Ω;Rn). (4.3.1)
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Note that since∇F (u) is in L2(Ω;Rn) and uk ⇀ u weakly in L2(Ω;Rn) we have

lim
n→∞

∫

Ω

∇F (u(x)) · (uk(x)− u(x))dx = 0,

Taking n→∞ in (4.3.1) and using the hypothesis we obtain

0 ≥ µ lim sup
n→∞

‖uk − u‖L2(Ω;Rn),

which implies that uk → u strongly in L2(Ω;Rn). �

We apply this Lemma in the case where F =
√

1 + ‖x‖2. This function is not strongly

convex on all Rn, but it is strongly convex on every bounded open set. Furthermore, ∇F =
x√

1+|x|2
so F satisfies all the hypotheses of Lemma 4.3.1.

The following general proposition is a central result of the first part of this chapter, that will

allow us to prove a result of shape continuity for the Steklov spectrum. It allows us pass to

the limit when considering traces of a weakly H1 convergent sequence on moving boundaries

that converge in the Hausdorff distance. A similar result has been proved in [30] for the more

restrictive class of convex domains.

Proposition 4.3.2. (Convergence of traces) Let D be an open, bounded subset of Rd. Suppose

(Ωn),Ω ⊂ D are open, connected sets which satisfy a uniform ε-cone property and Ωn
Hc

−→ Ω.

(A) For every (un) ⊂ H1(D) which converges weakly to u in H1(D) we have

lim inf
n→∞

∫

∂Ωn

|un|p ≥
∫

∂Ω

|u|p

(B) Consider p ∈ [1, 2]. Then Per(Ωn) → Per(Ω) if and only if for every (un) ⊂ H1(D)

which converges weakly to u in H1(D) we have

∫

∂Ωn

|un|p →
∫

∂Ω

|u|p.

Proof: We start with part (B). Note that if the integral convergence holds for any (un), u

such that un ⇀ u, then taking un, u ≡ 1 we obtain exactly Per(Ωn)→ Per(Ω).

To prove the converse implication, suppose Per(Ωn) → Per(Ω). First, let’s note that is

enough to prove convergence result for a subsequence of (un). Indeed, from the trace theorem,

we know there exists a constant C which depends uniformly on L (see, for example, [51]), such

that

‖un‖L2(∂Ωn) ≤ C‖un‖H1(Ω).

The fact that un converges weakly in H1(D) implies that (un) is bounded in H1(D) and, by the

above inequality, (un) is bounded in L2(∂Ω). Furthermore, if p < 2, the fact that Ωn have finite

perimeter, (Per(Ωn)) is bounded and 2/p > 1 allows us to conclude, via the Hölder inequality,

that (
∫
∂Ωn
|un|p) is also bounded. If we prove the convergence for a subsequence, then any other
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convergent subsequence will have the same limit, so the whole sequence will converge. This

means that in the course of the proof we may pass to a subsequence of (un,Ωn) whenever it is

necessary.

Consider the open sets Ux0 = B(x0, r) × (−a, a) given for each x0 by Definition 4.2.2.

These open sets cover ∂Ω which is compact. Thus we can extract a finite cover {U1, ..., UN}.
We can assume, that for n great enough, each ∂Ωn is representable as the graph of a Lipschitz

function in the same coordinate system as ∂Ω. We refer to [66, Chapter 2] for more details.

Consider a partition of unity φ1, ..., φN subordinated to the cover {U1, ..., UN}. It remains

to prove that ∫

∂Ωn∩Ui

|un|pφidσ →
∫

∂Ω∩Ui

|u|pφidσ.

Since un ⇀ u in H1(D) implies unφ ⇀ uφ in H1(D), we can drop the φi in the above limit

and look only at integrals of un and u.

Denote by gn, g : B = B(x0, r) → R the functions whose graphs represent the boundaries

of ∂Ωn, ∂Ω, respectively, in an orthogonal coordinate system in a neighbourhood if x0. Note

thatB has dimension d−1 so when we speak of almost every x ∈ B we will mean up to a set of

Hd−1 measure zero. The fact that Ωn
Hc

−→ Ω implies ‖gn − g‖∞ → 0. Since g, gn are Lipschitz

continuous functions, they are differentiable almost everywhere and |∇g|, |∇gn| ≤ L, where L

is their common Lipschitz constant. Denote by v the function u after the change of variables in

the new orthogonal coordinate system. It remains to prove that

∫

B

|vn(x, gn(x))|p
√

1 + |∇gn(x)|2dx→
∫

B

|v(x, g(x))|p
√

1 + |∇g(x)|2dx.

The condition Per(Ωn) → Per(Ω), the fact that Hd−1(Ωn ∩ Ui) = 0 and the lower semi-

continuity of the perimeter under L1 convergence imply that

lim
n→∞

Per(Ωn ∩ Ui) ≥ Per(Ω ∩ Ui),

and

lim
n→∞

Per(Ωn \ Ui) ≥ Per(Ω \ Ui).

This, in turn implies that we have equality, namely

lim
n→∞

Per(Ωn ∩ Ui) = Per(Ω ∩ Ui).

Translated into the considered coordinate system this becomes

lim
n→∞

∫

B

√
1 + |∇gn(x)|2dx =

∫

B

√
1 + |∇g(x)|2dx.

Furthermore, considering measurable sets of the form V = B′ × [−a, a] and the fact that

Per(Ωn ∩ V )→ Per(Ω ∩ V ), we deduce that

lim
n→∞

∫

B′

√
1 + |∇gn(x)|2dx =

∫

B′

√
1 + |∇g(x)|2dx, (4.3.2)
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for every measurable set B′ ⊂ B.

Since vn is a H1(D) function, for almost every x ∈ B we have

vn(x, gn(x)) = vn(x, g(x)) +

∫ gn(x)

g(x)

∂vn
∂y

(x, y)dy.

To simplify the computations, we denote Jn(x) =
√
1 + |∇gn(x)|2, J(x) =

√
1 + |∇g|2. We

obviously have Jn(x), J(x) ∈ [1,
√
1 + L2]. We use the inequality

||a+ h|p − |a|p| ≤ p(|h||a|p−1 + |h|p|),

which is trivial for p = 1 and is a direct consequence of the mean value theorem applied to the

function t 7→ |t|p when p > 1.

Thus we have
∣∣∣∣
∫

B

|vn(x, gn(x))|pJn(x)dx−
∫

B

|vn(x, g(x)|pJn(x)dx
∣∣∣∣

≤
∫

B

||vn(x, gn(x))|p − |vn(x, g(x))|p|Jn(x)dx

≤p
∫

B

∣∣∣∣∣

∫ gn(x)

g(x)

∂vn
∂y

(x, y)dy

∣∣∣∣∣

p

Jn(x)dx (An)

+p

∫

B

|vn(x, g(x))|p−1

∣∣∣∣∣

∫ gn(x)

g(x)

∂vn
∂y

(x, y)dy

∣∣∣∣∣Jn(x)dx (Bn)

Study of (An). Since we only know bounds on the L2 norm of the gradient of vn, we apply

Cauchy-Schwarz inequality and then Hölder’s inequality to get

An ≤p
∫

B

|gn(x)− g(x)|
p
2

∣∣∣∣∣∣

[∫ gn(x)

g(x)

∂v2n
∂y

(x, y)dy

]1
2

∣∣∣∣∣∣

p

Jn(x)dx

≤p‖gn − g‖
p
2∞
√
1 + L2

∫

B

[∫ gn(x)

g(x)

∂v2n
∂y

(x, y)dy

]p
2

dx

≤p‖gn − g‖
p
2∞
√
1 + L2

(∫

B

∫ gn(x)

g(x)

∂v2n
∂y

(x, y)dy

)p
2

|B|1/q

≤C ′‖gn − g‖
p
2∞‖∇un‖pH1(D),

where C ′ is a constant which depends on B, p, L and q is chosen such that p
2
+ 1

q
= 1. As a

consequence of the fact that ‖gn − g‖∞ → 0 we have (An)→ 0.

Study of (Bn). We apply Hölder’s inequality for p and its conjugate p
p−1

Bn ≤p
∫

B

|vn(x, g(x))|p−1

∣∣∣∣∣

∫ gn(x)

g(x)

∂vn
∂y

(x, y)dy

∣∣∣∣∣Jn(x)dx

≤p
√
1 + L2

(∫

B

|vn(x, g(x))|pdx
) p−1

p

(∫

B

∣∣∣∣∣

∫ gn(x)

g(x)

∂vn
dy

(x, y)dy

∣∣∣∣∣

p) 1
p

dx
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Using arguments similar as in the study of (An) we can see that the last integral is bounded by

a term of the form C‖gn − g‖
1
2∞. To conclude that (Bn) → 0 it remains to justify that the first

integral is bounded. For this, we apply again Hölder’s inequality for 2
p
≥ 1 and its conjugate q

to get ∫

B

|vn(x, g(x))|pdx ≤
(∫

B

v2n(x, g(x))dx

) p
2

|B| 1q .

Using the trace theorem on ∂Ω we have
∫

B

v2n(x, g(x))dx ≤
∫

B

(v2n(x, g(x))J(x)dx ≤
∫

∂Ω

u2n ≤ C‖un‖2H1(D).

This finishes the proof of the fact that (Bn)→ 0.

To conclude the proof of (B), it is enough to prove that

lim
n→∞

∫

B

|vn(x, g(x))|pJn(x)dx =

∫

B

|v(x, g(x))|pJ(x)dx

First, let’s note that the fact that un → u in L2(∂Ω) implies vn(x, g(x))→ v(x, g(x)) for almost

every x ∈ B.

Since gn, g have Lipschitz constants bounded by L, and B is a bounded set, we deduce that

|∇gn(x)| is bounded in L2(B), so it has a subsequence ∇gnk
that converges weakly in L2(B)

to a function h.

Thus, up to a subsequence, we have∇gn ⇀ h in L2(B;Rn) and

lim
n→∞

∫

Ω

F (∇gn) ≥
∫

Ω

F (h),

where F (x) =
√
1 + |x|2 is a strictly convex function, if we consider it defined on {x ∈ Rn :

‖x‖ ≤ L}. Thus we can apply Lemma 4.3.1 and find that ∇gn → h strongly in L2(B;Rn).

Passing to a subsequence and relabelling, we can assume that ∇gn → h almost everywhere in

B. Since (gn)→ g in L2(B) and∇gn ⇀ h we must have g ∈ H1(B) and h = ∇g.

We define the measures µn = Jn(x)dx, µ = J(x)dx. We note that property (4.3.2) implies

that µn converges set-wise to µ. We use the terminology defined in [83, Chapter 11, Section

4]. This allows us to use versions of the integral convergence theorems provided in the above

reference. We recall these results in Remark 4.3.3.

Using the bounds on Jn, J we have

|vn(x, g(x))|p ≤
√
1 + L2|vn(x, g(x))|p

J(x)

Jn(x)
.

Since un → u in L2(∂Ω) and Per(Ω) is finite, we have

|vn(x, g(x))|pJ(x)→ |v(x, g(x))|pJ(x)

in L1(B), for every p ∈ [1, 2]. This means that

lim
n→∞

∫

B

|vn(x, g(x))|p
J(x)

Jn(x)
dµn →

∫

B

|v(x, g(x))|pdµ.
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Furthermore, since Jn → J almost everywhere, it follows that, up to a subsequence,

|vn(x, g(x))|p
J(x)

Jn(x)
→ |v(x, g(x))|p

almost everywhere.

Applying a generalized integral convergence theorem, stated in Remark 4.3.3 (ii), we deduce

that

lim
n→∞

∫

B

|vn(x, g(x))|pdµn =

∫

B

|v(x, g(x))|pdµ.

This finishes the proof of part (B).

For part (A) the proof is the same, except the last part where instead of applying the inte-

gral convergence theorem we apply the variant of Fatou’s Lemma presented in Remark 4.3.3

(i). Note that general, the measures µn do not necessarily converge set-wise to µ. We have

the weaker hypothesis lim inf
n→∞

µn(B
′) ≥ µ(B′), which combined with the estimate µn(B

′) ≤
√
1 + L2µ(B′) is enough to reach the same conclusions. �

Remark 4.3.3. Let Ω be a measurable set. Suppose fn(x) → f(x) for almost every x ∈ Ω.

Consider the measures µn, µ defined on Ω which satisfy for every measurable set A ⊂ Ω the

equality

lim
n→∞

µn(A) = µ(A).

Following the terminology found in [83, Chapter 11, Section 4] we say that µn converges setwise

to µ.

(i) If (fn), f are non negative functions we have
∫

Ω

fdµ ≤ lim inf
n→∞

∫

Ω

fndµn

(ii) If there exist functions gn such that gn are integrable with respect to µn, |fn| ≤ gn, gn → g

almost everywhere, and

lim
n→∞

∫

Ω

gndµn =

∫

Ω

gdµ <∞

then

lim
n→∞

∫

Ω

fndµn =

∫

Ω

fdµ.

For the part (i), the hypothesis µn(A)→ µ(A) for every measurable set A can be relaxed to

lim inf
n→∞

µn(A) ≥ µ(A), µn(A) ≤ Cµ(A),

where C > 0 is a constant.

Remark 4.3.4. It will be necessary to apply Proposition 4.3.2 part (B) in the case p = 1 without

the absolute values. Under the same hypothesis we want to prove that

lim
n→∞

∫

∂Ωn

un =

∫

∂Ω

u.
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To achieve this it is enough to note that if un ⇀ u in H1(D) then u+n ⇀ u+ and u−n ⇀ u− in

H1(D). We have denoted by u+, u− the positive, respective the negative part of u. We refer to

[66, Corollary 3,1,12] for a proof of this result. We apply Proposition 4.3.2 for u+n ⇀ u+ and

u−n ⇀ u− to find that

lim
n→∞

∫

∂Ωn

u+n =

∫

∂Ω

u+

and

lim
n→∞

∫

∂Ωn

u−n =

∫

∂Ω

u−.

Subtracting these two equalities we get the desired result.

The above proposition helps us to prove the following shape continuity result for the Steklov

spectrum. A general approach has been described in [25] in the case where the operators are

defined on a common space. Another similar result is presented in [30] for the first biharmonic

Steklov eigenvalue in the particular case of convex open sets.

Theorem 4.3.5. (Shape Stability for the Steklov spectrum) Let D be a bounded open subset

of Rd. Suppose (Ωn),Ω ⊂ D are open sets which satisfy a uniform ε-cone condition and

Ωn
Hc

−→ Ω.

(A) The following inequality holds:

lim sup
n→∞

σk(Ωn) ≤ σk(Ω).

(B) If Per(Ωn)→ Per(Ω) then for every k ≥ 1 we have

lim
n→∞

σk(Ωn) = σk(Ω).

Proof: We start with part (B). We divide the proof in two parts:

lim sup
n→∞

σk(Ωn) ≤ σk(Ω) (4.3.3)

and

lim inf
n→∞

σk(Ωn) ≥ σk(Ω) (4.3.4)

For an open set Ω we denote by V (Ω) the space of functions onH1(Ω) which are orthogonal

to constants in L2(∂Ω). Note that if Ω has finite perimeter then V (Ω) is closed under weak

convergence in H1(Ω) (Straightforward application of Proposition 4.3.2 together with Remark

4.3.4).

1. Proof of (4.3.3). Let ε > 0 and consider a k-dimensional subspace Sk of V such that

σk(Ω) + ε ≥ max
u∈Sk\{0}

∫
Ω
|∇u|2∫
∂Ω
u2

.

Let {u1, .., uk} an orthonormal basis for Sk. Since Sk ⊂ H1(Ω) and Ω has Lipschitz boundary,

each ui can be extended to ũi ∈ H1(D).
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For n ≥ 1 we modify each ũi in order to make them admissible as test functions on Ωn.

To do this, we modify them with a constant term in order to have zero averages on ∂Ωn. This

is possible since Ωn has finite perimeter and we can simply define uni = ũi − cni , where cni
is a constant defined by 0 =

∫
∂Ωn

(ũi − cni )dσ =
∫
∂Ωn

ũidσ − cni Per(Ωn). Therefore cni =
1

Per(Ωn)

∫
∂Ωn

ũidσ. Since Per(Ωn) → Per(Ω) > 0 and
∫
∂Ωn

ũidσ →
∫
∂Ω
uidσ = 0, we find that

lim
n→∞

cni = 0 for i = 1, ..., k. This implies that uni → ũi in H1(D).

For n great enough, the functions uni span a k-dimensional subspace Sn
k ⊂ H1(D) which is

admissible as a test subspace for σk(Ωn). This implies that

σk(Ωn) ≤ max
u∈Sn

k \{0}

∫
Ωn
|∇u|2∫

∂Ωn
u2

=

∫
Ωn
|∇vn|2∫

∂Ωn
v2n

,

where we have denoted vn a choice of the maximizers of the Rayleigh quotient on Sn
k . The

maximizer vn exists since Sn
k is finite dimensional.

Consider now u0 ∈ Sk arbitrary. Then there exist coefficients a1, ..., ak such that

u0 = a1u1 + ...+ akuk.

Consider also the functions un0 ∈ Sn
k defined by

un0 = a1u
n
1 + ... + aku

n
k .

It easily follows that un0 → ũ0 in H1(D), since they differ only by a constant term which

converges to 0 as n→∞. The maximality property of (vn) implies

∫
Ωn
|∇un0 |2∫

∂Ωn
(un0)

2
≤
∫
Ωn
|∇vn|2∫

∂Ωn
v2n

. (4.3.5)

We want to prove that lim sup
n→∞

σk(Ωn) ≤ σk(Ω). Without loss of generality, we can assume

that lim
n→∞

σk(Ωn) exists. If not, we take a subsequence which realizes the lim sup. We can find

a decomposition vn = bn1u
n
1 + ... + bnku

n
k . Since the Rayleigh quotient is scale invariant, we

can choose the coefficients such that |bni | ≤ 1. Using a diagonal argument we can choose a

subsequence of vn such that bni → bi for i = 1, ..., m. Up to relabelling the sequence, we can

assume that vn → v in H1(D) where v is given by

v = b1ũ1 + ...+ bkũk.

Taking n→ +∞ in inequality (4.3.5) and using Proposition 4.3.2 we obtain that

∫
Ω
|∇u0|2∫
∂Ω
u20

≤
∫
Ω
|∇v|2∫
∂Ω
v2

.

Since u0 was chosen arbitrary, we have that

max
u0∈Sk\{0}

∫
Ω
|∇u0|2∫
∂Ω
u20

≤
∫
Ω
|∇v|2∫
∂Ω
v2

.
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The restriction of v to Ω is also in Sk, so the above inequality is, in fact, an equality.

We have just proved that

lim sup
n→∞

σk(Ωn) ≤ lim
n→∞

∫
Ωn
|∇un|2∫

∂Ωn
u2n

=

∫
Ω
|∇v|2∫
∂Ω
v2

= max
u∈Sk\{0}

∫
Ω
|∇u|2∫
∂Ω
u2
≤ σk(Ω) + ε.

Taking ε→ 0 we obtain the lim sup inequality.

2. Proof of (4.3.4). Consider ε > 0 and subspaces Sn
k of H1(D) such that

σk(Ωn) + ε ≥ max
u∈Sn

k \{0}

∫
Ωn
|∇u|2∫

∂Ωn
u2

. (4.3.6)

We want to prove that lim infn→∞ σk(Ωn) ≥ σk(Ω). We can assume that the limit exists by

taking a subsequence which realizes it. Consider for each Sn
k an orthonormal basis {un1 , ..., unk}.

Up to choosing a diagonal subsequence, we can assume that each (uni ) converges weakly in

H1(D) to some ui, i = 1, ..., k. Using Proposition 4.3.2 and Remark 4.3.4 it follows that∫
∂Ω
ui = 0, so Sk = Span{u1, ..., uk} is admissible as a test space for σk(Ω).

Take u = a1u1 + ... + akuk ∈ Sk \ {0}. Then vn = a1u
n
1 + ... + aku

n
k ∈ Sn

m \ {0} satisfies

vn ⇀ u in H1(D). The inequality (4.3.6) implies that

σk(Ωn) + ε ≥
∫
Ωn
|∇vn|2∫

∂Ωn
v2n

.

The weak convergence of (vn) to u and Proposition 4.3.2 imply that

lim inf
n→∞

∫

Ωn

|∇vn|2 ≥
∫

Ω

|∇u|2 and lim
n→∞

∫

∂Ωn

v2n =

∫

∂Ω

u2.

As a consequence, we have

lim inf
n→∞

σk(Ωn) + ε ≥
∫
Ωn
|∇u|2∫

∂Ωn
u2

.

Since u was chosen arbitrary, we can take the maximum for u ∈ Sk \ {0} in the right hand side

of the above inequality and we get

lim inf
n→∞

σk(Ωn) + ε ≥ max
u∈Sk\{0}

∫
Ωn
|∇u|2∫

∂Ωn
u2
≥ σk(Ω).

Taking ε→ 0 se obtain

lim inf
n→∞

σk(Ωn) ≥ σk(Ω).

Combining the two parts of the proof we conclude that under the hypotheses we considered

we have

lim
n→∞

σk(Ωn) = σk(Ω).

132



In order to prove part (A) we argue by contradiction. Suppose that lim sup
n→∞

σk(Ωn) > σk(Ω).

The variational formulation implies the existence of some ε > 0 and a k dimensional subspace

Sk of V (Ω) such that up to a subsequence we have

lim
n→∞

σk(Ωn) > σk(Ω) + ε > max
u∈Sk

∫
Ω
|∇u|2∫
∂Ω
u2

.

Therefore, for n great enough we have

σk(Ωn) > σk(Ω) + ε > max
u∈Sk

∫
Ω
|∇u|2∫
∂Ω
u2

.

Consider a basis {u1, ..., uk} of Sk. Like in the proof of part (B), we construct the functions uni

which are perturbations by constants of H1 extensions of ui to the wholeD such that
∫
∂Ωn

uni =

0. In this way we construct the k-dimensional subspaces Sn
k = {un1 , ...unk} which are admissible

as test spaces for σk(Ωn). Thus we have

max
u∈Sn

k

∫
Ωn
|∇u|2∫

∂Ωn
u2
≥ σk(Ωn) > σk(Ω) + ε > max

u∈Sk

∫
Ω
|∇u|2∫
∂Ω
u2

.

Denote vn a choice of maximizers of the Rayleigh quotient on Sn
k . We have the representation

vn = bn1u
n
1 + ...+ bnku

n
k = bn1 ũ1 + ...+ bnk ũk − (bn1c

n
1 + ...+ bnkc

n
k). Like in the first part we have

cni = 1
Per(Ωn)

∫
∂Ωn

ũidσ, and we can choose the coefficients (bni ) such that |bni | ≤ 1. Note that in

this setting we do not necessarily have cni → 0 as n→∞, but there is a uniform bound for (cni ).

We can choose a subsequence and relabel it such that vn → b1ũ1 + ...+ bkũk −C = u0 −C in

H1(D).

Using Proposition 4.3.2 part (B), we have

lim inf
n→∞

∫

∂Ωn

v2n ≥
∫

∂Ω

(u0 − C)2 =
∫

∂Ω

u20 − 2C

∫

∂Ω

u0 + C2 Per(Ω) ≥
∫

∂Ω

u20,

since
∫
∂Ω
u0 = 0. Furthermore, the fact that vn → u0 − C in H1(D) and χΩn → χΩ in L1(D)

imply that

lim
n→∞

∫

Ωn

|∇vn|2 =
∫

Ω

|∇u0|2.

Taking n→∞ in the following inequality

∫
Ωn
|∇vn|2∫

∂Ωn
v2n

≥ σk(Ωn) > σk(Ω) + ε

we obtain

max
u∈Sk

∫
Ω
|∇u|2∫
∂Ω
u2

< σk(Ω) + ε ≤ lim sup
n→∞

∫
Ωn
|∇vn|2∫

∂Ωn
v2n

≤
∫
Ω
|∇u0|2∫
∂Ω
u20

.

This is a contradiction, since u0 ∈ Sk. �

The hypothesis that Per(Ωn)→ Per(Ω) was crucial in the proof of part (B) of the above the-

orem, and cannot be discarded. To justify this fact, we propose the following counterexample.
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Example 4.3.6. Denote by S the unit square and by Sn the unit square where we have added

a saw-tooth shape with 2n sides on the upper side of S. For example, we can take S1 to be S

with a right isosceles triangle glued to S. S2 can be obtained by cutting a square of length
√
2/4

from the top of the ”tooth” of S1. S3 can be obtained from S2 by cutting squares of side
√
2/8

from the top of each tooth of S2. This procedure constructs inductively the sets Sn. Note that

the sets Sn satisfy a uniform cone condition.

Furthermore, all the shapes Sn have the same perimeter, equal to 3 +
√
2, thus Per(Sn) →

3 +
√
2 > 4 = Per(S). We will show that the Steklov spectrum of Sn does not converge to the

Steklov spectrum of S.

Proof: In the proof we will denote by T the edge of the square S to which the saw-tooth

is glued, and B the other three edges of the square S. We denote by gn the function whose

graph represents the sawtooth in an orthogonal system of coordinates where the horizontal axis

is directed by T . Note that in this case |g′n(x)| = 1 for almost every x ∈ T . Denote by Tn the

graph of gn on T .

Let u ∈ H1(S) be an eigenfunction of S, corresponding to σ1(S). Since S is a Lipschitz

domain, u can be extended to H1(R2), and then take the restrictions of u to Sn as test functions

in the definition of σ1(Sn).

To do this, we need to make these restrictions admissible by modifying them with a constant

in order to have the orthogonality to a constant function on Sn. We define un = u− cn such that

0 =

∫

∂Sn

un =

∫

∂Sn

u− cn Per(Sn).

This implies cn = 1
Per(Sn)

∫
∂Sn

u.

With the above notations we have
∫

Tn

u =

∫

T

u(x, gn(x))
√

1 + |g′n(x)|2dx

=
√
2

∫

T

u(x, 0)dx+
√
2

∫

T

∫ gn(x)

0

∂u

∂y
(x, y)dydx.

Using techniques similar to the ones involved in the proof of Proposition 4.3.2, we find that
∫

Tn

u→
√
2

∫

T

u as n→∞.

In the same way, we can prove that
∫

Tn

u2 →
√
2

∫

T

u2 as n→∞.

We evaluate
∫

∂Sn

(u− cn)2 =
∫

∂Sn

u2 − c2n Per(Sn)

=

∫

B

u2 +

∫

Tn

u2 −
(
∫
B
u+

∫
Tn
u)2

3 +
√
2
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and we see that for n→∞ we have

lim
n→∞

∫

∂Sn

u2n =

∫

B

u2 +
√
2

∫

T

u2 − (
√
2− 1)2

3 +
√
2

(∫

T

u

)2

.

=

∫

∂S

u2 + (
√
2− 1)

∫

T

u2 − (
√
2− 1)2

3 +
√
2

(∫

T

u

)2

>

∫

∂S

u2,

by the Cauchy-Schwarz inequality. The equality could take place only if u is constant zero on

T , but if this happens for every side of the square, then u is zero on the whole S, which is a

contradiction.

Thus

σ1(S) =

∫
S
|∇u|2∫
∂S
u2

> lim
n→∞

∫
Sn
|∇un|2∫

∂Sn
u2n

≥ lim inf
n→∞

σ1(Sn).

Therefore the sequence of first Steklov eigenvalues of Sn does not converge to the first Steklov

eigenvalue of S. �

There exist examples in the literature which illustrate the fact that the ε-cone condition is

also essential. Girouard and Polterovich consider in [55] one such examples. It consists of

taking Ωε being two disks of radius 1 connected by a thin tube of length ε and width ε3. In the

limit, these connected disks converge to Ω which is formed of two tangent disks. Obviously,

such sets do not satisfy a uniform cone condition. We have Per(Ωε)→ Per(Ω), but the Steklov

eigenvalues of Ωε converge to zero.

4.4 Existence results for the optimization of

functionals of the Steklov spectrum

In this sections we present some consequences of the facts proved in the previous sections.

We are able to establish some existence results for the problem of maximizing the Steklov

eigenvalue of Ω under different constraints.

Theorem 4.4.1. Suppose D is a bounded, open set in R
d. Denote by Oε the class of open

subsets of D which satisfy an ε-cone property and have unit volume. Then the problem

max
Ω∈Oε

σk(Ω)

has a solution.

Proof: Take (Ωn) a maximizing sequence. The Hausdorff convergence is compact, Oε is

closed under this convergence and therefore there exists an open set Ω ∈ Oε such that up to

taking a subsequence and relabeling, we have Ωn
Hc

−→ Ω. Proposition 4.2.3 or the estimate

(4.1.1) implies that there exists an upper bound for Per(Ωn). The compactness properties of
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the perimeter (see for example [70, Theorem 12.26]) imply that there exists a subsequence

denoted again (Ωn) such that (Ωn) converges to Ω in the sense of characteristic functions and

furthermore, lim
n→∞

Per(Ωn) ≥ Per(Ω) and applying Theorem 4.3.5 (A) we deduce that

lim sup
n→∞

σk(Ωn) ≤ σk(Ω).

The fact that (Ωn) is a maximizing sequence coupled with the above inequality proves that Ω is

the set which maximizes σk(Ω) in the class Oε. �

Note that convex sets Ω satisfy a ε-cone condition, with ε depending on the radius of a ball

contained in Ω, as well as of the box D containing Ω. We would like to give a general existence

result for the maximization of σk(Ω) in the family of the convex sets. In order to apply the

results of the previous section, we would need a bounding box for Ω. The result given below

proves that a maximizing sequence for σk(Ω) is always confined in a bounded open set D.

Proposition 4.4.2. Suppose that (Ωn) is a sequence of open, convex sets with unit volume, which

satisfy the property that diam(Ωn)→∞. Then σk(Ωn)→ 0.

Proof: This result is a consequence of the bound (4.4.1) proved in [37], which states that if

we denote by I(Ω) = Per(Ω)/|Ω| d−1
d then

σk(Ω) ≤ cdk
2
d
|Ω| d−2

d

Per(Ω)
. (4.4.1)

Indeed, we could consider a diameter of length M and make a Steiner symmetrization in the

direction of the diameter. There exists a section ω orthogonal to the diameter which maximizes

Hn−1(ω). The fact that Ω has unit volume implies Hn−1(ω) ≥ 1/M . Consider the cone C

generated by ω and the considered diameter. This cone is contained in Ω, and by convexity,

the perimeter of Ω is bounded from below by the perimeter of the cone C. Using techniques

similar to those in our proof presented below, we can see that the Per(C) ≥ cM
1

d−1 , where c is

a dimensional constant. This, together with (4.4.1) implies that σk(Ω)→ 0 as M →∞.

In the case of convex sets it is possible to give a direct proof, which we present below. This

proof avoids the technical measure theory result used in [37] to prove (4.4.1).

Let Ω be an open, convex set of Rd, having unit volume. Denote by M its diameter, and

denote X0Xk one of its diameters. In order to make the proof easier to read, we divide it into

several parts.

Part 1. Bound from below of the volume of a region. We call a cap of Ω the part of Ω

contained in a halfspace determined by a hyperplane α orthogonal to the diameter X0Xk. We

call region of Ω a subset of Ω contained between two hyperplanes α, β which are orthogonal to

X0Xk.

Let’s start by giving a lower bound for the volume of a cap. Denote Y = α ∩X0Xk and the

length X0Y by L. Denote Ω− and Ω+ the caps of Ω determined by α, which contain X0 and

Xk, respectively. Denote C− the cone with vertex X0 and base Ω∩α. Denote also with C+ the
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cone which is the dilated of C− with center X0 and a factor M/L. The convexity of Ω implies

C− ⊂ Ω− and C+ \ C− ⊃ Ω+.

Therefore we have
|Ω−|
|Ω+| ≥

|C−|
|C+| − |C−| =

Ld

Md − Ld
,

which, in turn, implies |Ω−| ≥ Ld/Md|Ω|.
If instead of a cap, we consider a region, we can apply two times the above bound and find

a similar lower bound. Denote Ω− the part of Ω contained in the halfspace determined by γ

which containsX0, Ω
+ the part of Ω contained in the halfspace determined by β whcih contains

Xk and Ω0 the region determined by α and β. Denote also A = α ∩X0Xk, B = β ∩X0Xk.

Using the bound on a cap, we have

|Ω0| ≥
ABd

AXd
k

|Ω0 ∪ Ω+|,

and

|Ω+ ∪ Ω0| ≥
AXd

k

X0X
d
k

|Ω|.

Combining the two bounds, we arrive at

|Ω0| ≥
Ld

Md
|Ω|,

where we have denoted the length of AB by L.

Part 2. Bound from below of the perimeter of a region. Suppose we have a region Ω0 of

width L, like in the previous section. In the following, we will denote by cd a constant which de-

pends only on the dimension of the space. We perform a Steiner-symmetrization of this region

with respect to the direction AB, which we denote Ω∗
0. For an introduction to Steiner sym-

metrization see [66, Chapter 6] or [27, Chapter 6]. It is known that performing a Steiner sym-

metrization preserves the volume, preserves the convexity and decreases the perimeter. Thus, as

a first consequence, Per(Ω∗
0) ≤ Per(Ω0). Another property of the Steiner symmetrized set Ω∗

0

is that all slices with a hyperplane orthogonal to AB are d− 1-dimensional balls. Among these

balls, there is one, denoted ω, having radius r0, which has the maximal Hd−1 measure. Denote

a = d(A, ω), b = d(B, ω). Obviously, we have a + b = L. Since

|Ω∗
0| ≥

Ld

Md
,

we deduce thatHd−1(ω) ≥ Ld−1

Md , which gives us a lower bound r ≥ cd
L

M
d

d−1
.

We denote ω1 = α ∩ Ω, ω2 = β ∩ Ω. The fact that Ω0 is convex, and its d − 1-dimensional

slices orthogonal to AB are disks, means that the truncated cones determined by T1 = (ω, ω1)

and T2 = (ω, ω2) are contained in Ω.

We know from [27, Lema 2.2.2] that since T1 ∪ T1 ⊂ Ω∗
0 and T1 ∪ T2,Ω∗

0 are convex,

we have Per(T1 ∪ T1) ≤ Per(Ω∗
0). If we denote by R the region of Rd situated between the
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hyperplanes α, β, then Per(T1 ∪ T2, R) ≤ Per(Ω∗
0, R). This inequality is true because the part

of the perimeters of Ω∗
0 and T1 ∪ T2 which is contained in ∂R is the same for both sets.

All we need in order to conclude, is to bound from below the lateral area of a truncated

cone. If we denote by r1, r the two radii of ω1, ω, then we have two cases. If r1 = r then T1 is

a cylinder and the lateral area of T1 is equal to aHd−2(ω) = cdar
d−2. If r1 < r then the lateral

area is given by

∫

ω\projωω1

√
1 +

a2

(r − r1)2
≥ cda

rd−1 − rd−1
1

r − r1
≥ cdar

d−2.

Thus the lateral area of T1 ∪ T2 is bounded below by

Per(T1 ∪ T2, R) ≥ cdLr
d−2.

Combining all the above estimates, we arrive at

Per(Ω0) ≥ cd
Ld−1

M
d(d−2)
d−1

.

Thus for a region Ω0 of Ω with width L = αM we have

Per(Ω0) ≥ cdα
d−1M

1
d−1 .

Part 3. Upper bound on the Steklov spectrum

For k ≥ 1 divide the diameter X0Xk into k equal parts using points Xi, and use orthogonal

hyperplanes αi through Xi to divide Ω into k subsets of width M/k (in the direction of X0Xk).

We define k functions (ui) ⊂ H1(Ω) such that ui is supported in region i. We choose them to

depend only on the distance from the bounding hyperplanes. One choice is the following:

• ui starts from 0 on αi−1 and increases with gradient 1 until it reaches 1.

• ui is constant for a while.

• ui descends with gradient 1 until it reaches −1.

• ui is constant for a while.

• ui increases with gradient 1 until it reaches 0.

A schematic picture can be found in Figure 4.1. Furthermore, we can translate the part

where ui grows from −1 to 1 so that
∫
∂Ω
ui = 0. With this construction we have the following

bound on the Rayleigh quotient corresponding to ui:

∫
Ω
|∇ui|2∫
∂Ω
u2i
≤ 1

Hd−1(∂Ω ∩ {ui = ±1})
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Figure 4.1: Form of the function ui in the direction of the diameter

Using the bounds obtained in the previous section, we have

Hd−1(∂Ω ∩ {ui = 1}) ≥ cdα
d−1
1 (M/k)

1
d−1

Hd−1(∂Ω ∩ {ui = −1}) ≥ cdα
d−1
2 (M/k)

1
d−1

where α1 + α2 ≥ 1− 4k
M

. Thus

Hd−1(∂Ω ∩ {ui = 1}) +Hd−1(∂Ω ∩ {ui = −1}) ≥ cd(α1 + α2)
d−1(M/k)

1
d−1 .

These bounds allow us to conclude that as M →∞ we have

∫
Ω
|∇ui|2∫
∂Ω
u2i
≤ cd

k
1

d−1

(1− 4k/M)d−1M
1

d−1

M→∞−→ 0.

As a consequence, we have the bound

σk(Ω) ≤ max

∫
Ω
|∇∑ aiui|2∫

∂Ω
(
∑
aiui)2

≤ max

∫
Ω
|∇ui|2∫
∂Ω
u2i

,

where we have used the fact that the functions ui have disjoint support in Ω. This means that

σk(Ω)→ 0 as M →∞.

�

Using the previous result, we can deduce the existence of a maximizer for the k-th Steklov

eigenvalue in the class of convex sets.

Corollary 4.4.3. The problem

max
|Ω|=1

σk(Ω)

has a solution in the class of convex sets.

Proof: Take (Ωn) a sequence of sets with measure 1 such that σk(Ωn) → sup|Ω|=1 σk(Ω).

If (Ωn) contains a subsequence such that diam(Ωn) → ∞, then by Theorem 4.4.2, σk(Ωn)

would have a subsequence converging to zero. This is impossible, since (Ωn) is a maximizing

sequence. Thus the diameters of (Ωn) are bounded from above, and therefore we can assume

that all the sets Ωn are contained in a bounded open set D.
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The by the compactness of Hausdorff convergence, there exists a subsequence denoted (Ωn)

such that Ωn
Hc

−→ Ω. The properties of the Hausdorff convergence imply that Ω is also convex

and contains a compact ball B (see [66, Chapter 2]). Proposition 2.2.15 in [66] proves that for

n large enough, we must have B ⊂ Ωn. Proposition 2.4.4 in [66] allows us to say that for n

large enough, the sets Ωn and the set Ω satisfy a uniform cone condition. Thus, we can apply

Theorem 4.3.5 to conclude that

lim sup
n→∞

σk(Ωn) ≤ σk(Ω).

The Hausdorff convergence implies the convergence of characteristic functions inL1(D), which,

in turn implies that |Ω| = lim
n→∞

|Ωn| = 1. Thus Ω maximizes σk(Ω) among convex sets of the

same measure. �

Remark 4.4.4. The treatment of the perimeter constraint, in the case of convex sets, is also

straightforward, since we can apply Theorem 4.3.2 directly, for a maximizing sequence.

Corollary 4.4.5. In the following, we consider A to be the class of ε-cone sets contained in a

bounded open set D, or the class of convex sets.

(A) If F : Rk → R is upper semi-continuous and increasing in every variable, then the

problem

max
Ω∈A

F (σ1(Ω), ..., σk(Ω)).

has a solution.

(A) If G : R
k → R is lower semi-continuous and increasing in every variable, then the

problem

min
Ω∈A

G(1/σ1(Ω), ..., 1/σk(Ω)).

has a solution.

We may ask if this existence result can be improved by dropping or weakening the hypoth-

esis on the regularity of the domain. We discuss below the perspectives by treating separately

the perimeter and area constraints.

• Perimeter constraint. Recent works announced by I. Polterovich and his PhD student ...

suggest that if we drop the ε-cone condition, we do not have existence. Their argument

is based on the fact that making small holes in certain well chosen spots in the domain

increases the first rescaled Steklov eigenvalue. Thus, having no constraint on the number

of holes or on the simple connectedness of the domains does not seem allow us to have

an existence result.

• Area constraint. The case of the area constraint is different, and this can be seen from

the study of the first Steklov eigenvalue. Brock’s optimality result in the case of the area
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constraint does not assume any regularity of the domain. On the other hand, Weinstock’s

result depends crucially on the fact that only simply connected domains are admitted.

Numerical results shown in further sections suggest that in the case of the area constraint,

optimal domains exist in general and are simply connected.

4.5 A numerical method for computing the

Steklov/Wentzell spectrum

Steklov eigenvalues can be computed using mesh-based methods. The difficulty is the fact that

we need to work with boundary meshes for the treatment of the boundary condition equation.

This can be done rather quick in FreeFem++ [61], and an example code is given in Section

4.11. The mesh-based method has the disadvantage that high precision computations needs a

fine mesh. On the other hand, as meshes become more and more refined, computations become

slower. We present below a numerical method which is fast and precise for computing the

Steklov spectrum in cases where the boundary behaves nice enough. This method can be applied

to a more general class of problems. The Steklov eigenvalue problem can be seen as a particular

case of the following type of problems called Wentzell eigenvalue problems.



−∆u = 0 dans Ω,

−β∆τu+ ∂un = σu sur ∂Ω.

It is easy to see that the Steklov case corresponds to β = 0. We consider the case of star-

shaped domains, which have the advantage that their boundary can be parametrized by a radial

function. In the end of this chapter we present a different approach which can treat general

simply connected domains.

The method of fundamental solutions, introduced in [69], is a part of the class of so called

mesh-free numerical methods. The goal is to approximate the solution of a problem of the type




Au = 0 in Ω

Bu = 0 on ∂Ω
, (4.5.1)

where A,B are suitable linear differential operators. In contrast to methods using meshes, the

method of fundamental solutions considers a sufficiently rich class of functions which satisfy

Au = 0 analytically in Ω. Thus a linear combination satisfies directly Au = 0 in Ω, and the

coefficients in the linear combination are be chosen such that Bu = 0 is close to zero on ∂Ω.

As we will see in the following, the condition Bu = 0 can only be imposed in a finite number

of points, so the condition Bu = 0 will be satisfied only in an approximate manner on ∂Ω.

To justify our numerical approach, an error bound is provided in Section 4.6, which basically

says that if Bu is small enough, then u is close to the real solution. This type of method was

successfully used in [4] in the study of the eigenvalues of the Dirichlet Laplacian in two and

three dimensions.
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In our case, the operatorA is the Dirichlet Laplacian and the operatorB is given by−β∆τ +
∂

∂n
− σu, where ∆τ is the Laplace-Beltrami operator associated to ∂Ω. Our set of fundamental

solutions will consist of harmonic, radial functions, with centers outside Ω. In this way, any

linear combination of such functions will still solve ∆u = 0. The only thing we need to do is to

find the right coefficients so that the condition −β∆τu+
∂u

∂n
= σu is satisfied on ∂Ω. In order

to compute the Laplace-Beltrami on ∂Ω we use the expression

∆u = ∆τu+H
∂u

∂n
+
∂2u

∂n2
,

which is valid on ∂Ω. We have used the notation
∂2u

∂n2
to denote (D2u.n).n. As usual,H denotes

the curvature of ∂Ω. For more details we refer to [66, Chapter 5].

In R2 \ {0} a radial solution of the Laplace equation is given by φ(x) = ln |x|. Note that

this solution has a singularity at x = 0. For every y ∈ R2 the function ψy(x) = φ(x − y) is

harmonic in R2 \ {y} and radial with center y. Given Ω ⊂ R2 we choose y1, ..., yN ∈ R2 \ Ω
and x1, ..., xN ∈ ∂Ω. The function x 7→ α1ψy1(x) + ...+ αNψyN (x) is harmonic in Ω for every

choice of the coefficients (αi)
N
i=1. We impose the boundary relation

(
−β∆τ +

∂

∂n

)
(α1ψy1(xi) + ...+ αNψyN (xi)) = λ(α1ψy1(xi) + ...+ αNψyN (xi)), i = 1...N

(4.5.2)

This amounts to solving a generalized eigenvalue problem for square matrices.

In this statement, it is straightforward to find the first eigenvalues corresponding to the gen-

eralized eigenvalue problem determined (4.5.2), using, for example the eigs solver in Matlab.

One of the main difficulties is the choice of the points (xi)
N
i=1, (yi)

N
i=1. As noted in [4], an arbi-

trary choice for (xi), (yi) may give fail to give us a valid approximate solution for the desired

eigenvalue problem. We have noticed the same behavior, and for this, we discuss below the

choice of the points (xi), (yi).

We use two choices for the points (xi). The first one consists in taking a uniform division

(θi) of [0, 2π] into N intervals and then choose xi = ρ(θi)(cos θi, sin θi), where ρ is the radial

function which parametrizes ∂Ω. A second choice is choosing xi at equal arclength distances

on the boundary ∂Ω. Having chosen (xi), we can compute the corresponding outer normals (~ni)

and we define yi = xi + 0.1 · ~ni (for figures with diameter roughly equal to 2). It seems that

the choice of the factor 0.1 is essential in our setting. Even slight perturbations of this factor

give results which are far from the actual Steklov eigenvalues of Ω. This is due to the fact that

for larger or smaller values of this parameter, the matrices involved in the computation are ill

conditioned.

4.6 Error estimates

In the case of the Dirichlet Laplacian, the result proved by Moler and Payne in [73], states that

if a function u satisfies −∆u = λu in Ω and u is sufficiently small on ∂Ω then λ is close to an
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Test figure. Positions of (xi), (yi)

Figure 4.2: Figure given by Fourier coefficients: [1, 0.1, 0, 0, 0, 0.1, 0, 0.1, 0, 0,−0.1]

eigenvalue of the Dirichlet-Laplace operator associated to Ω. In order to validate our numerical

computations, we provide a similar result below, in the case of the Steklov eigenvalue problem.

In the following paragraphs we assume that Ω has Lipschitz boundary and that it has finite

perimeter. In the following we denote V (Ω) = {u ∈ L2(∂Ω) :
∫
∂Ω
u = 0}.

As in [42] we introduce the Hilbert spaceH(Ω) = {u ∈ H1(Ω) : Tr(u) ∈ H1(∂Ω),
∫
∂Ω
u =

0} where Tr is the trace operator. In the case β = 0 it suffices to take H(Ω) = {u ∈ H1(Ω) :∫
∂Ω
u = 0}. Consider for f ∈ V (Ω) the minimization problem

min
u∈H(Ω)

1

2

(∫

Ω

|∇u|2 + β

∫

∂Ω

|∇τu|2
)
−
∫

∂Ω

uf

which has a unique solution. This solution satisfies the weak formulation
∫

Ω

∇u · ∇ϕ+ β

∫

∂Ω

∇τu∇τϕ =

∫

∂Ω

fϕ, ∀ϕ ∈ C1(Ω), (4.6.1)

of the partial differential equation




−∆u = 0 in Ω

−β∆τu+
∂u
∂n

= f on ∂Ω.
, (4.6.2)

where ∆τ is the Laplace-Beltrami operator and ∇τ is the tangential gradient associated to ∂Ω.

Thus, we can define the resolvent operator Rβ : V (Ω)→ H(Ω) associated to this problem. The

trace operator T : H(Ω)→ V (Ω) being continuous it follows that the operator T◦Rβ : V (Ω)→
V (Ω) is compact and injective. We can define its inverse Aβ : D(Aβ) ⊂ V (Ω) → V (Ω).

Since T ◦ Rβ is a compact operator, the spectrum of the operator Aβ consists of an increasing

sequence of eigenvalues λk,β(Ω) which diverges. The corresponding eigenfunctions form a

Hilbert basis for V (Ω). By considering the constant function 1 associated to the zero eigenvalue

of this operator, we can say that the set of corresponding eigenfunctions forms a Hilbert basis

of L2(∂Ω). The following result proves that the operator T ◦ Rβ is bounded and gives an idea

of how to find its norm. By abuse of notation we denote the trace of a function w ∈ H1(Ω) by

w.
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Proposition 4.6.1. Let Ω be a bounded, open domain with Lipschitz boundary. Suppose f ∈
V (Ω) and w = Rβf ∈ H1(Ω). Then there exists a constant C, depending only on Ω, such that

‖w‖L2(∂Ω) ≤ C‖f‖L2(∂Ω).

Proof: The trace inequality (Chapter 4.3 [51]) for Ω implies the existence of a constant C1

(depending only on Ω) such that ‖u‖L2(∂Ω) ≤ C1‖u‖H1(Ω) for every u ∈ H1(Ω). The Poincare-

Wirtinger inequality implies the existence of a constant C2 which depends only on Ω such that

‖w̃‖L2(Ω) ≤ C2‖∇w‖L2(Ω), where w̃ = w− 1
|Ω|‖w‖L2(Ω). The weak formulation of the equation

Aβw = f and the Cauchy-Schwarz inequality imply that

∫

Ω

|∇w̃|2 + β

∫

∂Ω

|∇τ w̃|2 =
∫

∂Ω

fw̃ ≤ ‖f‖L2(∂Ω)‖w̃‖L2(∂Ω).

Using the remarks above, we obtain

‖w̃‖2L2(∂Ω) ≤ C2
1(‖w̃‖2L2(Ω) + ‖∇w̃‖2L2(Ω)) ≤ C2

1 (1 + C2
2 )‖∇w̃‖2L2(Ω).

Thus

‖w̃‖2L2(∂Ω) ≤ C2
1 (1 + C2

2)‖f‖L2(∂Ω)‖w̃‖L2(∂Ω),

which implies

‖w̃‖L2(∂Ω) ≤ C2
1 (1 + C2

2 )‖f‖L2(∂Ω).

On the other hand, since w has average 0 on ∂Ω, we know that the L2(∂Ω) norm of w + c is

minimal when c = 0 (here c is a constant). Therefore

‖w‖L2(∂Ω) ≤ ‖w̃‖L2(∂Ω) ≤ C2
1(1 + C2

2)‖f‖L2(∂Ω).

�

Using ideas similar to the ones used by Moler and Payne in [73], we are able to prove the

following error estimate. For simplicity of notation we omit the reference to β from Rβ.

Theorem 4.6.2. Consider Ω a bounded, open, regular domain, and suppose that uε satisfies the

following approximate eigenvalue problem:




−∆uε = 0 in Ω

−β∆τuε +
∂uε
∂n

= λεuε + fε on ∂Ω.
(4.6.3)

Denote wε = Rfε. Let δ =
‖wε‖L2(∂Ω)

‖uε‖L2(∂Ω)

and suppose that δ < 1. Then there exists an Wentzell

eigenvalue λk satisfying
λε

1 + δ
≤ λk ≤

λε
1− δ .
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Proof: We know that there exists a Hilbert basis of L2(∂Ω) formed of Wentzell eigenfunc-

tions (un) corresponding to the Wentzell eigenvalues λn of Ω. We denote the standard scalar

product in L2(∂Ω) by (u, v) =

∫

∂Ω

uv. Let an = (uε, un), bn = (wε, un). The resolvent opera-

tor R is symmetric and therefore (uε, Run) = (Ruε, un). This implies that R(λεuε + fε) = uε

and Run =
1

λn
un. Thus

an = (uε, un) = (R(λεuε + fε), un)

= (λεuε + fε, Run)

=
1

λn
(λεuε + fε, un)

=
1

λn
(λεan + λnbn).

Thus, for every n we have
λn − λε
λn

=
bn
an

. Since (λn) is increasing and divergent, there exists

an index k such that
|λk − λε|
|λk|

= min
n

|λn − λε|
|λn|

.

For this index k we have
|λk − λε|
|λk|

|an| ≤ |bn|,

for all n and
|λk − λε|2
|λk|2

∞∑

n=1

a2n ≤
∞∑

n=1

b2n.

This is exactly
|λk − λε|
|λk|

≤ δ,

which finishes the proof. �

The only hypothesis in the above theorem which needs to be verified in order to apply it in

our case is that we can solve the partial differential equation Aβwε = fε in the case where fε

is a combination of our fundamental solutions. It is a standard application of Lax-Milgram’s

theorem ([22] Chapter 5) to see that the necessary and sufficient condition is that
∫
∂Ω
f = 0.

Note that this condition can always be satisfied by adding a constant function to the family of

fundamental solutions.

4.7 Testing the numerical method

Let’s note that the first Wentzell eigenvalue of Ω is λ0,β(Ω) = 0, corresponding to a constant

eigenfunction. We will denote λk,β(Ω) the k-th Wentzell eigenvalue after λ0,β(Ω). There are

few shapes for which the Wentzell spectrum (or the Steklov spectrum in the case β = 0) is

known analytically. One such shape is the unit disk D1, which has the eigenvalues

λk,β(D1) =

⌊
k + 1

2

⌋
+ β

⌊
k + 1

2

⌋2
.
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Figure 4.3: Absolute errors for β ∈ [0, 100] - the case of the disk

As an initial test for our algorithm, we computed the Wentzell spectrum of the disk. With

N = 300 points on ∂D1 and 300 corresponding fundamental solutions. For β = 0 we have 10

digits of precision for the first 10 lowest eigenvalues. In Figure 4.3 we plot the absolute error

for the first 10 Wentzell eigenvalues β ∈ [0, 100]. We note that for β = 100 we still have 6

digits of precision.

In order to test our algorithm for shapes for which no analytical expression is known for

the Wentzell eigenvalues, we used FreeFem++ [61], which uses meshing in order to solve the

problem. The tests we performed show that as the number of triangles increase, the values

found with FreeFem++ approach the values found with our algorithm. The downside of the

mesh-based method is the execution time, which is significantly more important. An example

of implementation is presented in Section 4.11. In Tables 4.1, 4.2, 4.3 we compare the Wentzell

eigenvalues computed with our method (MFS) and the ones obtained with FreeFem++. As a

test case we take the shape found in Figure 4.2, for various values of β. Note that as the number

of triangles increases, the values computed with the FreeFem++ method approach the values

found with our algorithm. We underline the fact that our algorithm runs in approximately 0.1

seconds1, whereas the FreeFem++ algorithm, with over 450000 triangles takes about a minute

on the same machine.

Another way of testing our algorithm is to do numerical optimization procedures for shape

optimization problems with known optimizers. There are many such results for the case k = 0

(the Steklov eigenvalue problem). We start from a random shape and look if the algorithm

converges to the expected shape. We mention that all computations are made in the class of

simply connected sets. We were able to test our algorithm in the following cases:

• max σ1(Ω) is achieved when Ω is a disk, in the case of perimeter and area constraints

([93],[24]);

• max σ1(Ω)σ2(Ω) is achieved when Ω is a disk, in the case of perimeter and area con-

straints ([67]);

1Machine configuration: 2.2 Ghz quad-core i7 processor, 6 Gb RAM memory
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our algorithm FreeFem++ (refined meshes)

k MFS 19146 N 53236 N 211290N 474634N

1 0.712751 0.712989 0.712837 0.712773 0.712761

2 0.940247 0.940538 0.940352 0.940274 0.940259

3 1.381278 1.38211 1.38158 1.38135 1.38131

4 1.443204 1.44411 1.44353 1.44329 1.44324

5 3.146037 3.14712 3.14643 3.14614 3.14608

6 3.443637 3.44496 3.44411 3.44376 3.44369

7 3.757833 3.761 3.75897 3.75812 3.75796

8 3.922821 3.9263 3.92407 3.92313 3.92296

9 4.274362 4.28034 4.27651 4.2749 4.2746

10 4.693206 4.70035 4.69578 4.69385 4.6935

Table 4.1: Comparison with FreeFem++, β = 0 (Steklov) for the shape given in Figure 4.2

our algorithm FreeFem++ (refined meshes)

k MFS 19146 N 53236 N 211290N 474634N

1 2.375744 2.37628 2.37594 2.37579 2.37577

2 2.644741 2.6453 2.64494 2.64479 2.64476

3 8.042223 8.04527 8.04332 8.0425 8.04234

4 8.257585 8.26043 8.25861 8.25784 8.2577

5 16.909967 16.9197 16.9135 16.9108 16.9104

6 17.383930 17.3932 17.3873 17.3848 17.3843

7 28.883924 28.9094 28.8931 28.8862 28.8849

8 29.113307 29.1374 29.122 29.1155 29.1143

9 43.718607 43.77 43.7371 43.7232 43.7207

10 44.142742 44.1996 44.1632 44.1479 44.145

Table 4.2: Comparison with FreeFem++, β = 2 for the shape given in Figure 4.2

our algorithm FreeFem++ (refined meshes)

k MFS 19146 N 53236 N 211290N 474634N

1 4.750048 4.75121 4.75047 4.75015 4.75009

2 5.02106 5.02224 5.02148 5.02117 5.02111

3 17.557103 17.5638 17.5595 17.5577 17.5574

4 17.774667 17.781 17.777 17.7752 17.7749

5 38.179237 38.2016 38.1873 38.1812 38.1801

6 38.65575 38.6771 38.6634 38.6577 38.6566

7 66.764114 66.8228 66.7852 66.7694 66.7665

8 66.995238 67.0507 67.0152 67.0002 66.9975

9 102.91875 103.038 102.962 102.929 102.924

10 103.34252 103.474 103.39 103.354 103.348

Table 4.3: Comparison with FreeFem++, β = 5 for the shape given in Figure 4.2
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• min

n∑

k=1

1

σk(Ω)
is achieved when Ω is a disk, in the case of perimeter and area constraints

[67]);

• max σk(Ω) under a rotational symmetry of order q is achieved by a disk in the case of the

perimeter constraint ([13]).

We may ask whether this method of fundamental solutions can be adapted to compute the

Laplace-Beltrami spectrum of a two dimensional closed simple curve. We can consider solving

the equation

∆τ (α1ψy1(xi) + ...+ αNψyN (xi)) = λ(α1ψy1(xi) + ...+ αNψyN (xi)), i = 1...N (4.7.1)

which also leads to a generalized eigenvalue problem. The Laplace-Beltrami spectrum of a

one dimensional curve depends only on its length and is given by λk =

⌊
k + 1

2

⌋2(
2π

L

)2

. The

method of fundamental solutions computes these values with a relative error of order 10−7 (with

the same parameters: 300 boundary points and exterior points at distance 0.1 of the boundary).

We may use Theorem 4.6.2 in order to have a more precise evaluation of the error on a

general domain. The result cited above states that the relative error made in the numerical com-

putations are of the order of ‖fε‖L2(∂Ω), where fε is the error term in (4.6.3). We may estimate

numerically fε as follows: given a shape Ω, we compute its Steklov/Wentzell eigenvalues with

the algorithm presented in previous sections. We know that the eigenvalue equation is satisfied

to machine precision on the discretization points chosen on ∂Ω. In order have a more precise

evaluation of what happens between these points, we make a refinement containing 100 times

more points on ∂Ω, which gives 100 supplementary points between every two discretization

points. We evaluate the error made in the eigenvalue equation (that is fε) in each of these points.

The maximal point wise error will give us information on the general error. Below you can see

plots of fε for the first 10 eigenvalues in three different cases. By looking at the maximal errors,

we can observe that ‖fε‖L2(∂(Ω)) is of order 10−6 or smaller. As expected, different domains

give different behaviours, and the precision can be much higher.

4.8 Numerical optimization of functionals depending

on the Wentzel spectrum

Using the algorithm presented in the previous sections, we can study numerically shape opti-

mization problems regarding the Wentzell spectrum, in the particular setting where the domains

are star-shaped.

We consider our domain parametrized by its radial function ρ : [0, 2π)→ R+. We approxi-

mate ρ by the truncation of its Fourier series to 2n+ 1 coefficients:

ρ(θ) ≈ a0 +

n∑

i=1

ai cos(iθ) +

n∑

i=1

bi sin(iθ).
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Figure 4.4: Graph of the error term in the computation of the Steklov and Wentzell eigenvalues

(various values of β).

In this way, we express an approximation of σk(Ω) using a finite number of parameters. Using

the shape derivative formula provided in [42, Section E] we can deduce that

∂σk
∂ai

=

∫ 2π

0

(
|∇τuk|2 − |∂nuk|2 − λH|uk|2 + β(HI − 2D2b)∇τuk.∇τuk

)
ρ(θ) cos(iθ)dθ

and

∂σk
∂bi

=

∫ 2π

0

(
|∇τuk|2 − |∂nuk|2 − λH|uk|2 + β(HI − 2D2b)∇τuk.∇τuk

)
ρ(θ) sin(iθ)dθ

We use the notation H for the mean curvature of ∂Ω. We denote by D2b the hessian of the

signed distance function, or equivalently, the differential of the normal vector. We have denoted

uk the eigenfunction corresponding to σk(Ω) normalized in L2(∂Ω).

Since we can approximate σk(Ω) by a function σk(a0, a1, ..., an, b1, ..., bn) for which we

know the gradient with respect to every component, we can use a gradient descent approach for

solving different optimization problems related to the Steklov eigenvalues. This approach was

used in [78] and [9] for optimizing functionals of the eigenvalues of the Dirichlet Laplacian.

In the recent article of Dambrine, Lamboley and Kateb [42], the authors prove that the ball

is a local minimizer for the first non-zero Wentzel eigenvalue if β ≥ 0, under volume constraint.

Using the fact that λ1,β(BR) is decreasing with respect to R (we denote BR the ball of radius
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R), we can deduce that if the ball is a maximizer for the perimeter constraint, then it is also a

maximizer for the volume constraint. It is a well known fact, due to Weinstock [93] and Brock

[24], that when β = 0, the ball is the optimizer for both volume and perimeter constraints. Using

our algorithm, we searched for the shape which optimizes λ1,β(Ω) in two dimensions. For both

perimeter and volume constraints, we obtained that the disk is the numerical maximizer of λ1,β

among two dimensional simply connected shapes. We performed tests for β ∈ [0, 100], but we

believe it to be true for every β > 0 since for large values of β, λ1,β(Ω)/β converges to the first

Laplace-Beltrami eigenvalue of ∂Ω. We also performed tests in the case of the area constraint

for k = 2, 3, 4, 5 and we present the results in Table 4.4.

We present some interesting conjectures, verified numerically using our algorithm. Many

of them are related to results known to be true in the Steklov case (β = 0), namely, the Hersch-

Payhe-Schiffer results [67]. All these results are for domains which are simply connected with

a radial parametrization.

• max λ1,β(Ω) is acheived by the disk;

• min
n∑

k=1

1

λk,β(Ω)
is achieved by the disk;

• We say that A ⊂ {0, 1, 2, 3, ...} has the property (P ) if 1 ∈ A and 2k ∈ A⇒ 2k− 1 ∈ A.

If A has the property (P ) then
∑

k∈A

1

λk,β(Ω)
is minimized by the disk in the case of a

volume and perimeter constraint. For example
1

λ1,β(Ω)
+

1

λ3,β(Ω)

+
1

λ4,β(Ω)
is minimized

by the disk in the case of the volume constraint and the perimeter constraint. This was

verified for various sets A with property (P ) with A ⊂ {0, 1, ..., 15}.

As underlined before, in the Steklov case with perimeter constraint, the simple connected-

ness is essential. Making a small hole in the center of the disk and rescaling in order to have the

same perimeter increases the first eigenvalue. This behaviour can be seen in Figure 4.5 in some

computations made with FreeFem++.

As proved by Brock [24], if we impose an area constraint then the simple connectedness

condition is not necessary. The disk maximizes the first Steklov eigenvalue. We may ask if this

is the case for Wentzell eigenvalues. The answer is negative, as can be seen in Figure 4.6 for

β = 0.1. Making a small hole and rescaling to have the same area increases the first Wentzell

eigenvalue of a disk.

In the case of the volume constraint, for Lipschitz domains, it is possible to prove that

suppressing holes increases the normalized Steklov eigenvalue. It is enough to observe that

filling holes modifies all the quantities in the variational characterization in the right way.
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λ1 λ2 λ3 λ4 λ5

β = 0
Steklov

λ1 = 1 λ2 = 1.64 λ3 = 2.33 λ4 = 2.97 λ5 = 3.66

β = 0.1
λ1 = 1.1 λ2 = 1.80 λ3 = 2.65 λ4 = 3.42 λ5 = 4.3

β = 0.5
λ1 = 1.5 λ2 = 2.39 λ3 = 4 λ4 = 4.53 λ5 = 7.5

β = 100
(large)

λ1 = 101 λ2 = 101 λ3 = 402 λ4 = 402 λ5 = 903

Table 4.4: Numerical maximizers for the first five Wentzell eigenvalues for different values of

β. The areas of the domains are equal to π

Figure 4.5: Behaviour of the Steklov eigenvalue when making holes. The images represent

a unit disk with holes of radii 0.03 and 0.04, rescaled to have total perimeter 2π. Note that

the corresponding first eigenvalues are higher than 1 which is the first eigenvalue of a disk of

perimeter 2π.
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Figure 4.6: Behaviour of the Wentzell eigenvalue when making holes. The images represent

two disks with holes in their centers rescaled to area π. The first eigenvalues are higher that 1.1
which is the Wentzell eigenvalue of a disk for β = 0.1.

• ∂Ω is Lipschitz, and thus every function in H1(Ω \ B) can be extended to H1(Ω). Thus,

the admissible set of test functions is the same for Ω \B and Ω.

• The numerator increases passing from Ω \B to Ω.

• The denominator decreases passing from Ω \B to Ω.

• The volume increases by filling holes.

Thus, it is not restrictive to assume that the optimal domain for the Steklov eigenvalues, in the

case of the volume constraint, does not have any holes.

To illustrate the flexibility of our numerical framework, we present in Table 4.5 the results

for various shape optimization problems depending on the Steklov spectrum in the case of the

area constraint. Some of the functionals studied numerically, like for example the sum of the

first Steklov eigenvalues, are of interest in the literature (see for example [54])

4.9 Treatment of general parametric simply connected

domains

As mentioned before, restricting the class of study to star-shaped domains is not satisfactory.

Indeed, proving that the optimal set for a shape optimization problem belongs to this class is

hard or impossible, unless other stronger properties, like convexity, are present (see Chapter

1 for the optimization of λk with the perimeter constraint). The purpose of this section is to

propose a new method for the study of general parametric simply connected domains.
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maxσ1 + σ2 = 3.75 maxσ1 + σ2 + σ3 = 4
√
π maxσ1 + ...+ σ4 = 6

√
π

maxσ1 + ...+ σ5 = 9
√
π maxσ1 + σ4 = 6.49 maxσ1 + σ6 = 8.93

maxσ4 + σ6 = 10.8 maxσ5 + σ6 = 12.99 maxσ4 + σ7 = 11.86

min
1

σ1
+

1

σ4
= 0.82 min

1

σ3
+

1

σ5
= 0.46 min

1

σ5
+

1

σ11
= 0.26

min
1

σ4
+

1

σ6
+

1

σ10
= 0.49 maxσ2 · σ3 = 8.69 maxσ3 · σ4 = 17.18

Table 4.5: Various numerical optimizations of functionals depending on the Steklov spectrum
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The idea is to consider a general parametrization γ : t 7→ (x(t),y(t)) for t ∈ [0, 2 ∗ pi]. The

coordinate functions x,y are supposed to be periodic of period 2π. Thus, these functions have

the following Fourier series expansions

x(t) = a0 +

∞∑

j=1

aj cos(jθ) +

∞∑

j=1

bj sin(jθ)

y(t) = c0 +

∞∑

j=1

cj cos(jθ) +

∞∑

j=1

dj sin(jθ).

Supposing that the shape Ω bounded by the curve γ is regular enough, the coefficients (aj), (bj),

(cj), (dj) deccay very rapidly to 0. Thus, we expect that truncating these Fourier series to their

first coefficients up to a certain treshold, we don’t lose much information on the shape Ω.

As in the radial case, the general shape derivative formula provided in [42, Section E]

allows us to find the derivatives of the Steklov eigenvalues with respect to the coefficients

(aj), (bj), (cj), (dj):

dσk
daj

=

∫ 2π

0

(|∇τuk|2 − (∂nuk)
2 − σkHu2k)y′(θ) cos(jθ)dθ

dσk
dbj

=

∫ 2π

0

(|∇τuk|2 − (∂nuk)
2 − σkHu2k)y′(θ) sin(jθ)dθ

dσk
dcj

= −
∫ 2π

0

(|∇τuk|2 − (∂nuk)
2 − σkHu2k)x′(θ) cos(jθ)dθ

dσk
ddj

= −
∫ 2π

0

(|∇τuk|2 − (∂nuk)
2 − σkHu2k)x′(θ) sin(jθ)dθ,

where uk is L2(∂Ω) unit normalized eigenfunction associated to σk. All quantities containing

the eigenfunction uk in the above integrals are always evaluated in (x(θ),y(θ)).

Having all these formulas we can perform numerical optimizations just as in previous sec-

tions. We underline the fact that the actual computation of the Steklov eigenvalue is the same as

before, using fundamental solutions. In the course of optimization we must pay more attention

to the size of the descent step, since large steps may produce artificial self intersections. Thus,

a basic gradient descent algorithm with small descent step is used in the optimisation process.

In Figure 4.7 we present the numerical candidates for the maximizers of σk(Ω) under area

constraint for k ∈ [2, 10]. All the computations performed using the general parametrization

give the same shapes as in the radial parametric case. This gives us confidence in the fact that

the optimizers do indeed belong to the class of star-shaped domains. We notice some interesting

properties of these maximizers:

• The numerical shape which maximizes σk seems to have a dihedral symmetry of order k.

• As in other eigenvalue optimization problems, we are interested in the multiplicity of the

optimal eigenvalues. It turns out that for all k ∈ [2, 10] the shape which maximizes σk is
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σ2 = 2.91 σ3 = 4.14 σ4 = 5.28

σ5 = 6.49 σ6 = 7.64 σ7 = 8.84

σ8 = 10.00 σ9 = 11.19 σ10 = 12.35

Figure 4.7: Shapes which maximize the k-th Steklov eigenvalue under area constraint, k =
2, 3, ..., 10.

such that the eigenvalue σk is multiple. Moreover, the multiplicity clusters begins at σk,

i.e σk > σk−1. This is exactly opposite as the behavior observed in the minimization of

the Dirichlet eigenvalues λk, where the multiplicity cluster ends at λk. We believe that

this behaviour is due to the fact that here we study a maximizing problem, as opposed to

the case mentioned above, where we have a minimizing problem.

In previous sections we proved that the problem of maximizing the k-th Steklov eigenvalue

under fixed area constraint has a solution in the class of convex domains. We use the numerical

method developed in previous sections to find some candidates for these convex optimal shapes.

Performing optimizations in the class of convex sets is not straightforward. In our computations

we chose to use a gradient descent algorithm together with an operator which, at each iteration,

projects the shape onto its convex hull. These numerical results can be seen in Figure 4.8.
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σ1 = 1 σ2 = 2.88 σ3 = 3.91 σ4 = 4.64 σ5 = 5.66

σ6 = 6.29 σ7 = 7.43 σ8 = 8.03 σ9 = 9.21 σ10 = 9.79

Figure 4.8: Convex shapes with unit area which give highest k-th Steklov eigenvalue in our

numerical observations

4.10 A modified Steklov problem

In this section, we study numerically the domain which optimizes the following quantity related

to the best constant in the trace inequality:

σ(Ω) = min

∫
Ω
|∇u|2 +

∫
Ω
u2∫

∂Ω
u2

. (4.10.1)

It is not hard to see that σ(Ω) is the first eigenvalue associated to the following eigenvalue

problem: 


−∆u+ u = 0 in Ω

∂u
∂n

= σu on ∂Ω,
(4.10.2)

which is a modified Steklov problem. It is conjectured that the disk maximizes σ(Ω) among

the simply connected planar domains with the same area. In the following paragraphs, we give

an idea for computing σ(Ω) numerically, using the method of fundamental solutions, and we

confirm numerically the stated conjecture.

The only point which is a bit different from the Steklov case previously studied is the family

of fundamental solutions involved. Indeed, we need to work with radial functions which satisfy

−∆φ + φ = 0. Suppose that φ(x) = f(r) where r = |x|. We obtain that f satisfies the

following differential equation

r2f ′′(r) + rf ′(r)− r2f(r) = 0,

which is the modified bessel equation of order 0. Once we have the form of the fundamental

solution, we perform the same procedure described in the previous sections in order to compute

the eigenvalues of a shape Ω. The operator −∆ + I is self-adjoint, thus the shape derivative

formula is the same as in the Steklov case. Performing the numerical optimization we observe

that the disk maximizes σ in the plane in both cases of the area constraint and the perimeter
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constraint. We make the same remark that here we work in the class of simply connected

domains.

4.11 The FreeFem++ code for solving the Wentzell

eigenvalue problem

int i;

real t,beta = 2;

// Domain definition using a radial function

border C(t=0,2* pi){x=cos(t)*(1+0.1*cos(t)+0.1*cos(5*t)+

0.1*sin(2*t)-0.1*sin(5*t));

y=sin(t)*(1+0.1*cos(t)+0.1*cos(5*t)+

0.1*sin(2*t)-0.1*sin(5*t));}

mesh Th = buildmesh (C(500));

fespace Vh(Th,P1); // Build P1 finite element space

Vh uh,vh;

// Define the problem via weak formulation

varf va(uh, vh) = int2d(Th)( dx(uh)*dx(vh)+dy(uh)*dy(vh))+

int1d(Th,1)(beta*(dx(uh)*dx(vh)-

dx(uh)*N.x*(N.x*dx(vh)+N.y*dy(vh))-

dx(vh)*N.x*(N.x*dx(uh)+N.y*dy(uh))+

N.x*(dx(vh)*N.x+dy(vh)*N.y)*N.x*(dx(uh)*N.x+dy(uh)*N.y)+

dy(uh)*dy(vh)-

dy(uh)*N.y*(dx(vh)*N.x+dy(vh)*N.y)-

dy(vh)*N.y*(dx(uh)*N.x+dy(uh)*N.y)+

(N.y)ˆ2*(dx(vh)*N.x+dy(vh)*N.y)*(dx(uh)*N.x+dy(uh)*N.y)));

varf vb(uh, vh) = int1d(Th,1)(uh * vh);

// Solve the generalized eigenvalue problem

matrix A = va(Vh, Vh ,solver = sparsesolver);

matrix B = vb(Vh, Vh);

real cpu=clock(); // get the clock

int eigCount = 10; // Get first Eigenvalues

real[int] ev(eigCount); // Holds Eigenfunctions

Vh[int] eV(eigCount); // Holds Eigenfunctions

// Solve Ax=l*Bx

int numEigs = EigenValue(A,B,sym=true,sigma=0,

value=ev,vector=eV);

for(int i=0;i<eigCount;i++) // Plot the spectrum
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plot(eV[i],fill=true,value=true,cmm= ev[i]);

cout << " CPU time = " << clock()-cpu << endl;

for(i = 0;i<eigCount;i++)

cout << ev[i] << endl;
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CHAPTER 5

Optimal partitions on manifolds

Résumé

Dans ce chapitre on propose une méthode pour étudier les partitions optimales sur des surfaces.

L’idée générale est d’étendre les méthodes utilisées en dimensions deux, au cas des surfaces.

On voudrait utiliser des fonctions densités pour représenter les formes, et traiter la condition

de partition en imposant que la somme des fonctions représentatives est égale à 1 partout. Les

deux ingrédients essentiels sont alors de

• trouver une bonne discrétisation de la surface en utilisant un algorithme de triangulation,

• trouver une formulation relaxée adaptée pour la fonctionnelle à optimiser.

On arrive à construire des méthodes qui nous permettent d’étudier deux problèmes de partition-

nement optimal sur des surfaces :

1. Minimiser la somme des périmètres d’une partition de la surface en aires égales.

2. Minimiser la somme des premières valeurs propres Laplace-Beltrami correspondant aux

ensembles d’une partition d’une surface.

Pour ces deux problèmes l’étape initiale est la même : construire une triangulation qualitative

de la surface et représenter les fonctions densités comme des fonctions linéaires sur chaque

triangle du maillage (éléments finis P1).

Le premier problème consiste à étudier les partitions qui minimisent le périmètre sous con-

trainte d’aire. Ce problème a été étudié par Cox et Flikkema en [39] en utilisant le solveur

Evolver [21]. Ils font le calcul direct du périmètre de chaque cellule, et ils ont besoin de trou-

ver la topologie optimale dans chaque situation. L’approche utilisant les densités proposée ici a

l’avantage que la topologie ne doit pas être imposée au cours de l’algorithme. Pour implémenter

cette méthode on a besoin d’un résultat de relaxation du type Modica-Mortola pour le périmètre

sur des surfaces. Un tel résultat est présenté en [12] et il consiste juste à remplacer le gradient

par le gradient tangentiel dans la formulation relaxée.
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Un autre avantage de cette méthode est qu’elle peut être utilisée pour n’importe quelle sur-

face, à condition de pouvoir fournir un maillage de bonne qualité. On présente des exemples des

partitions obtenues pour la sphère, le tore et d’autres surfaces. Il n’est pas possible de comparer

directement nos résultats avec ceux de Cox et Flikkema, car la valeur donnée par notre fonction-

nelle est une valeur approchée du périmètre. Pour pouvoir faire cette comparaison on profite de

la structure spéciale de ces partitions sur la sphère (cf. [74]). Vu que les frontières des cellules

sont des arcs de cercles on extrait la structure topologique et on fait une nouvelle optimisation

en calculant exactement les périmètres et les aires a l’aide du théorème de Gauss-Bonnet. La

conclusion est que notre methode nous permet d’obtenir tous les résultats de Cox et Flikkema

et les valeurs optimales obtenues sont les mêmes.

Le deuxième problème considéré consiste à trouver les partitions d’une surface en ensem-

bles qui minimisent la somme de leurs premières valeurs propres. Cette étude est motivée par

les questions ouvertes, de nature théorique, qui sont liées à ce problème. Même pour les par-

titions dans un nombre petit de cellules il n’existe pas de résultats théoriques concernant la

structure ou les composantes d’une partition optimale. Une première étude numérique a été

faite par Elliott et Ranner dans [48] en utilisant une formulation énergétique du problème et des

méthodes d’éléments finis sur des surfaces.

Notre méthode est inspirée des méthodes utilisées dans [18] et dans le chapitre 3. Pour

chaque densité représentant un ensemble de partitions on résout un problème pénalisé qui nous

permet de trouver une approximation numérique de la valeur propre en travaillant sur un do-

maine fixe. Cette première étape nous permet de trouver une bonne approximation de la parti-

tion optimale. On peut observer que les partitions optimales sont formées par des ensembles

qui sont des polygones géodésiques, aspect qui motive une deuxième étape d’optimisation.

La deuxième étape, de raffinement, est faite en faisant une extraction de la topologie opti-

male et en calculant précisément les valeurs propres en faisant un maillage de chaque cellule.

Pour calculer les valeurs propres d’un tel ensemble on utilise deux méthodes :

• des éléments finis ;

• des solutions fondamentales.

Ayant un candidat pour la partition optimale, ayant une structure de polygones géodésiques,

on peut optimiser la position des sommets de cette partition pour obtenir une description plus

fine de la partition. On observe que si la topologie obtenue n’est pas optimale, l’algorithme de

raffinement détecte cet aspect et il s’arrête en essayant de changer la topologie.

On présente les candidats pour les partitions optimales sur la sphère pour n ∈ [3, 24]∪{32}.
On observe que pour n ∈ {3, 4, 6, 12} on obtient une partition régulière de la sphère. En général

les partitions optimales ne sont pas des équi-partitions, cela signifie que, les valeurs propres ne

sont pas les mêmes pour toutes les cellules de la partition. Ceci nous montre que les partitions ne

sont pas en fait des partitions optimales pour la fonctionnelle maxλLB1 (Ωi). En faisant quelques

tests numériques on observe que si au lieu de minimiser la somme on minimise le maximum
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des premières valeurs propres, la topologie de la partition ne change pas, mais les sommets de

la partition changent leurs positions pour que les valeurs propres de toutes les cellules soient

égales.

Dans cette deuxième partie on présente aussi une méthode de calcul des valeurs propres sur

la sphère en utilisant des solutions fondamentales. Elle est inspirée de la méthode présentée

en chapitre 4. Au lieu de travailler avec des fonctions définies uniquement sur la surface, on

considère des fonctions harmoniques en espace qui vérifient la condition de valeur propre en

un nombre fini des points sur la surface. En faisant des tests numériques, on observe que cette

méthode nous permet d’avoir une précision de calcul importante.

5.1 Introduction

As we have seen in previous chapters, relaxation formulations are useful in studying partitioning

or multiphase problems in the plane. In this chapter we extend the previously studied methods

in the case of closed surfaces in R3. There are two main difficulties:

• The theoretical aspect concerning the relaxations of the functionals considered;

• A numerical framework which is well adapted for these problems.

We study two partitioning problems:

1. Minimizing the sum of surface perimeters of n cells of equal areas which partition a

closed three dimensional surface. This problem has been considered in the case of the

sphere by Cox and Flikkema in [39]. They used the software Evolver [21] in order to

study these optimal partitions. One drawback of their method is that they need to do a

combinatorial optimization in order to find the topology of the optimal partition.

2. Minimizing the sum of the fundamental Laplace-Beltrami eigenvalues of the cells of a n-

partition of a closed three dimensional surface. This problem was studied theoretically by

[64],[63] and numerically by Elliott and Ranner in [48] for three three types of surfaces:

the sphere, a torus and another closed surface. Their method is based on a penalized

energy formulation presented in [33] and they used finite elements on surfaces in order to

compute the eigenvalues.

We begin by the study of the equi-areal perimeter minimizing partitions. In the two dimen-

sional case we have the Modica-Mortola theorem which provides the appropriate relaxation.

This theorem extends in the three dimensional case by simply replacing the gradient by a tan-

gential gradient with respect to the considered surface. A similar result was provided on general

manifolds by Baldo and Orlandi in [12]. They did not prove that the functionals Γ-converge, but

they did provide a proof for the important property which interests us: any limit of a sequence

of minimizers for the relaxed formulations converges to a minimizer of the geodesic perimeter.
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Of course, one needs to extend this result in the case of the partitions, and this is not trivial. We

did not manage to give a complete proof of the Γ-convergence result, as the technical details of

the proof are still a work in progress.

The numerical framework needs to allow us to compute all the quantities required for the

computation of the relaxed formulation. Furthermore, the fixed areas constraint needs to be

treated in a simple manner. A good way to address all these concerns is to consider a triangula-

tion of the surface. On this triangulation we can construct a finite element space and this allows

us to compute the value of the functional. We present an orthogonal projection algorithm which

allows us to treat the constant area constraint and the partition constraint at the same time. Of

course, one needs also to address the choice of the parameter ε which must be large enough in

the beginning to allow the cells to move in the right position. Then, the parameter is decreased

at the same time as we refine the discretization in order to have more refined results. The param-

eter ε is always chosen larger than the sides of the triangles. We are able to apply this method

for a number of surfaces: the sphere, a torus, a double torus, etc. Any closed surface can be

studied, as soon as a qualitative triangulation is found. The computation of the well behaved

triangulation is made using the publicly available software DistMesh [77]. In the particular

case of the sphere we can construct manually triangulations which are successive refinements

starting from the icosahedron.

One further objective which we manage to achieve only in the case of the sphere is to

perform a refined optimization computing exactly the perimeter of the cells. The advantage of

starting with the optimization in the relaxed formulation is that there is no need to take care

of the topology of the cells. In a second step we can extract the topological structure, i.e. the

triple points, edge connections and faces. The results of F. Morgan [74] say that such optimal

partitions exist, that the boundaries between two cells are curves of constant geodesic curvature

and that at junction points boundaries meet in threes making angles of measure 2π/3. This

result allows us to deduce that in the case of the sphere boundaries between two cells are arcs

of circles (not necessarily geodesics). Furthermore, the Gauss-Bonnet formula gives an explicit

expression for the areas of the cells in this case.

The second problem we study in this chapter deals with the optimization of the sum of the

first Laplace-Beltrami eigenvalues of partitions of a surface. We propose a relaxed framework

inspired from [18]:

• We construct a triangulation of the surface.

• We construct a finite element space on this triangulation, which allows us to compute the

mass matrix M and the stiffness matrix K.

• In order to compute the eigenvalues of a shape ω ⊂ S we consider the penalized formula-

tion, inspired from the euclidean form given by Dal Maso and Mosco [40]:

−∆τu+ C(1− ϕ)u = λu,
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where C >> 1 and ϕ is an approximation of the characteristic function of ω, χω.

• We use a gradient descent algorithm in order to find the optimal densities. In order to

impose the partition condition, we use the projection operator

Π(ϕl) =
|ϕl|∑n
i=1 |ϕi| ,

which was also used in [18] and in Chapter 3.

We observe the boundaries of the optimal structure and we notice that, when the number of

cells is great enough, they are close to being geodesic arcs. This behaviour was also noticed in

[48]. This motivates us to perform a refined optimization procedure in the case of the sphere for

the particular case when the boundaries of the cells are geodesic polygons. We do not claim that

these refined partitions are optimal, but we believe that they give a reasonable upper bound for

the energy, at least for a large number of cells. We provide theoretical and numerical arguments

suggesting that in general the optimal cells are not geodesic polygons.

In order to do the optimization in the class of geodesic polygons we need do devise a way

to compute the eigenvalues of such a subset of the sphere. We have two ways of doing this:

• using fundamental solutions.

• using a finite element approach.

In each of these two methods, a meshing procedure is needed in order to find triangulations of

each such polygon. It is not hard to devise a fast triangulation algorithm, by using, for example,

multiple refinements, starting from a generic configuration.

We propose a method of computing the Laplace-Beltrami eigenvalues on the three dimen-

sional sphere using fundamental solutions. As in Chapter 4, the idea is to consider linear com-

binations of function which already satisfy the partial differential equation, and find the coeffi-

cients by imposing the boundary conditions. The problem here is that we only have an equation

on the boundary of S2. In order to have a fundamental solutions framework, we consider func-

tions which are defined in R3, not only on S2, and which are harmonic. The choice of harmonic

fundamental solutions becomes evident once we write the decomposition of the Laplacian in

the Laplace-Beltrami part and the normal part:

∆u = ∆τu+H∂nu+ ∂2nu.

Thus, if u is harmonic, then the the Laplace-Beltrami operator applied to u can be computed

using only normal derivatives with respect to S
2, which can be expressed explicitly. This is a

key point in the numerical computations.

We choose a family of source points outside or inside the ball determined by S2, and and

a family of evaluation points on S2 where we impose the boundary condition equation. We

note the following difference with respect to the Steklov problem: since we are not constrained
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on considering functions which are harmonic inside or outside the unit ball, we may choose

which variant we want. We prefer to work with exterior points since we observe an increase in

precision. We notice that the method is precise and we study the errors in the following cases:

• We study the error made as the distance from the source points to S2 varies;

• We study the error made when computing eigenvalues of certain pieces of the sphere

by considering certain spherical shapes for which some of the eigenvalues are known

analytically.

This method of fundamental solutions has some drawbacks. If the number of points is too large

or the source points are too close, then we lose precision. This is due to the poor conditioning of

the matrices involved. Another aspect concerns an upper limit on the number of source points

we can consider. The eigenvalue computation problem is reduced to a generalized eigenvalue

matrix problem, and the matrices involved are full. Thus, beyond matrices of size 5000× 5000

the algorithm becomes very slow. When the fundamental solution methods fail we turn to

classical finite element methods which produce sparse matrices. Thus, in the case of partitions,

when we have more than 16 cells we switch to a finite elements approach.

5.2 Perimeter minimizing equi-areal partitions

Given a partition (ωi)
n
i=1 of a three dimensional surface S, we associate to it the sum of the

lengths of the boundaries of the cells ωi. The problem of finding a partition of S into equal area

cells which minimizes the sum of perimeters has been considered before from both numerical

and theoretical points of view. The case where S is a sphere has been studied by Toth [52] and

he proved that under certain hypothesis on the regularity of the partition, the regular ones are

optimal for n ∈ {3, 4, 6, 12} (partitions corresponding to regular polyhedra). As in the case of

the study of the honeycomb conjecture the difficult part is to be able to prove the same result

without convexity or connectedness assumptions. T. Hales was able to apply the method used

in the proof of the honeycomb conjecture [60] to prove that in the case n = 12 the minimal

partition corresponds to the partition generated by the dodecahedron. His method did not work

for smaller n and positive results are known only for n ∈ {2, 3, 4} [49]. General qualitative

properties of the optimal partitions are given by F. Morgan in [74]. In particular, the cells of

the optimal partition have boundaries which have piecewise constant curvature and the bound-

aries meet in triple points with equal angles of measure 2π/3. Numerical studies of minimal

perimeter partitions of the sphere were preformed by Cox and Flikkema [39] using the software

Evolver [21]. They presented candidates for the optimal partitions for n ≤ 32.

We may ask ourselves if the problem can be tackled using the same methods developed in

Chapter 2 and [80]. First we need to find a suitable relaxed form for the problem. In [12] the

authors present a candidate for the Γ-convergence approximation of the perimeter on surfaces.
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In fact, the functional has the same structure as the Modica-Mortola theorem, but instead of a

gradient term we have a tangential gradient. As the proofs in [12] involve the use of rectifiable

currents instead of classical finite perimeter sets introduced in Chapter 2 we were not able

generalize directly the results of [12] to the case of partitions. Nevertheless, we propose a

conjectured result analogue to the partition approximation in Chapter 2. The technical details

of the proof are still a work in progress.

Given a smooth, compact surface S ⊂ R
3 we define Fε : (L

1(S))n → [0,∞] by

Fε((ui)) =





n∑

i=1

(
ε

∫

S

|∇τui|2 +
1

ε

∫

S

W (ui)

)
(ui) ∈ X and are sufficiently regular

∞ otherwise .

where W : R → [0,∞) is a double-well potential with zeros at 0 and 1 and X is the subspace

of L1(S)n which satisfies the additional partition constraint u1+ ...+un = 1 and the constraints∫
S
ui = ci with

∑n
i=1 ci = A, where A is the area of S.

Define also F : (L1(S))n → [0,∞] by

F ((ui)) =






∑n
i=1 cPerS(ωi) (ui) ∈ X, ui = χωi

, (ωi) have finite perimeter on S

∞ otherwise .

As usual c denotes 2
∫ 1

0

√
W (s)ds.

Conjecture. We have that Fε
Γ−→ F in the L1(S) topology.

The proof of this conjecture is a work in progress. The fact that this result is a natural

generalization of the two dimensional results presented in [80] and Chapter 2 and the fact that

numerical computations presented in the next section give the expected results suggest the va-

lidity of the result. As in Chapter 2, in order to approximate numerically partitions into cells

of equal areas of a surface, we search for minimizers of Fε for ε small enough. The numerical

algorithm and some results are presented in the next section.

5.2.1 Numerical framework and results

In order to perform numerical computations we need a framework which allows us to compute

the quantity

ε

∫

S

|∇τu|2 +
1

ε

∫

S

u2(1− u)2,

in fast, efficient way. In order to do this we triangulate the surface S and we compute the

mass matrix M and the stiffness matrix K associated to this triangulation. Then, if by abuse of

notation, we use the same notation u for the P1 finite element approximation of u, we have
∫

S

|∇τu|2 = uTKu

and ∫

S

u2(1− u)2 = vTMv,
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where v = u.2. × (1 − u).2. We have used the Matlab convention that adding a point before

an operation means that we are doing component-wise vector computations. Note that once the

matrices K,M are computed, we only have to perform matrix-vector multiplications, which is

really fast. In this setting we use the discrete gradients of the above expressions given by:

∇uu
TKu = 2Ku,

∇uv
TMv = 2Mv.× (1− 2u).

The partition condition and the equal areas constraint are imposed by making an orthogonal

projection on the linear constraints as follows. We write the discrete vectors representing P1

discretization of the density functions in the following matrix form

M = (ϕ1 ϕ2 ... ϕn).

The partition constraint implies that the sum of the elements on every line of M is equal to 1

and the equal area constraint implies that for every column of the matrixM we have the relation

〈v, ϕi〉 = A/n, where v = 11×N ·M.

Here the constant A is the total area of the surface, N is the total number of points in the

triangulation and the notation 1p×q represents the p × q matrix whose entries are all equal to

1. These conditions are discretizations in the finite element setting of the conditions that the

integrals of the density functions ui are all equal to A/n. Indeed, given a triangulation T of S

and its associated mass matrix M , we have

∫

S

1 · ui = 11×N ·M · ϕi, where ϕi is the vector

containing the values of ui at the vertices of the triangulation. The projection routine can be

found in Algorithm 4.

Once we have this discrete formulation we use an optimized LBFGS gradient descent proce-

dure [86] in order to compute the numerical minimizers. In order to avoid local minima where

one of the phases ϕl is constant, which arise often when the number of phases is greater than 5,

we add a Lagrange multiplier which penalizes the constant functions. In this way, we optimize

n∑

i=1

ε

∫

S

|∇τϕ
i|2 + 1

ε

∫

S

(ϕi)2(1− ϕi)2 + λ(std(ϕi)− starget)2,

where std(ϕl) is the standard deviation of ϕl and starget is the standard deviation of a character-

istic function of area Area(S)/n.

In order to have a nice view of the optimal partition, we want do decrease ε so that the

width of the interface is small. We notice that if we chose ε of the same order as the sides of

the mesh triangles the algorithm converges. Furthermore, we cannot make ε smaller, since then

the gradient term will not contain any real information, as the width of the interface is of size

ε. In order to avoid this problem, we consider refined meshes associated to each ε. At each

step where we decrease ε we interpolate the values of the previous optimizer on a refined mesh
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Figure 5.1: Minimal perimeter partitions on the sphere into n equal area cells for n ∈
{2, 3, ..., 24, 32}.
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Figure 5.2: Minimal perimeter partitions on the torus with outer radius R = 1 and inner radius

r = 0.6 together with their associated flattenings for n ∈ [2, 11]. The center rectangle is repre-

sents the torus, while periodic continuations are made to easily see the topological structure.

Figure 5.3: Minimal perimeter partitions on a double torus for n ∈ {2, 4, 6}.

Figure 5.4: Minimal perimeter partitions on a Banchoff-Chmutov surface for n ∈ {2, 4, 6, 8}.
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Algorithm 4 Orthogonal projection on the partition and area constraints

Require: A = (aij) ∈ RN×n, c ∈ R1×n, d ∈ RN×1, v;

1: (ei) =
∑

j aij − ci; (line sum error; N × 1 column vector)

2: (fi) =
∑

i viaij − dj; (column scalar product error; n× 1 column vector)

3: Define the matrix C of size n× n by

{
ckl = ‖v‖22/n if k 6= l

ckk = ‖v‖22 − ‖v‖22/n;

4: (qj) = (fj)− 〈v, e〉/n; (n× 1 column vector)

5: Compute (λj) ∈ Rn×1 with λn = 0 such thatC|(n−1)×(n−1)(λj)|n−1 = (qj)|n−1. The indices

indicate a sub-matrix with the first n − 1 lines and columns, or the sub-vector formed by

the first n− 1 components.

6: S =
∑

j λj ;
7: ηi = (ei − S · vi)/n; (N × 1 column vector);

8: Aorth = (ηi) · 11×n + v · (λj)T , where 1p×q is the p× q matrix with all entries equal to 1;

9: A = A−Aorth ;

return A

and we consider this interpolated densities as starting point for the descent algorithm on the

new mesh. In the case of the sphere we make four refinements ranging from 10000 to 160000

points. In order to keep things simple, we only used a nearest point interpolation, as this was

good enough for our purposes for two reasons: it is fast and simple to implement and we only

need an approximation of the optimal partition, since we re-optimize the interpolated densities.

Some optimal configurations, in the case of the sphere, are presented in Figure 5.1. A detailed

study of the case of the sphere along with a comparison with the known results of Cox and

Flikkema [39] are presented in the next section.

As underlined before, our approach allows a direct treatment of any surface, as long as

a qualitative triangulation is found. We were able to perform some numerical computations

on various shapes like a torus, a double torus, and a more complex surface called Banchoff-

Chmutov of order 4. A few details about the definitions of these surfaces are provided below:

• We consider a torus of outer radius R = 1 and inner radius 0.6 (see Figure 5.2). This

torus is defined as the zero level set of the function

f(x, y, z) = (x2 + y2 + z2 +R2 − r2)2 − 4R2(x2 + y2).

• The double torus used in the computation (see Figure 5.3 is given by the zero level set of

the function

f(x, y, z) = (x(x− 1)2(x− 2) + y2)2 + z2 − 0.03.

• The complex Banchoff-Chmutov surface (see Figure 5.4) is given by the zero level set of

the function

f(x, y, z) = T4(x) + T4(y) + T4(z),
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where T4(X) = 8X4 − 8X2 + 1 is the Tchebychev polynomial of order 4.

5.2.2 Refined optimization in the case of the sphere

The method described in the previous section can be used on general surfaces but has the draw-

back that the value of the relaxed cost functional is close to the real value of the perimeter only

when the parameter ε is very small, which means that the discretization needs to be fine enough.

In the case of the sphere we can surpass this difficulty by noting that the results of [74] allow

us to deduce that cell boundaries are arcs of circles. This follows at once from the fact that cell

boundaries are curves of constant geodesic curvature and cf. for example [85, Exercise 2.4.9]

in the case of the sphere the only such curves are portions of circles. The results of Cox and

Flikkema [39] show that optimal configurations are not made of geodesic polygons. In order to

perform an optimization procedure which captures this effect they chose to make an initial op-

timization in the class of geodesic polygons and then divide each geodesic arc into 16 smaller

arcs and restart the procedure with more variable points. They manage to approximate well

enough the general optimal structure but they still work in the class of geodesic polygons with

additional vertices. Our approach presented below is different in the sense that we consider

general circle arcs (not necessarily geodesics) which connect the points.

The first step is to extract the topology from the previous density results, i.e. locate the triple

points, the edge connections and construct the faces. In order to perform the refined optimiza-

tion procedure we need to be able to compute the areas of portions of the sphere determined by

arcs of circles. This is possible using the Gauss-Bonnet formula. If M is a smooth subset of a

surface then ∫

M

KdA +

∫

∂M

kg = 2πχ(M), (5.2.1)

where K is the curvature of the surface, kg is the geodesic curvature and χ(M) is the Euler

characteristic of M . This result extends to piecewise smooth curves and in this case we have
∫

M

KdA+

∫

∂M

kg +
∑

θi = 2πχ(M), (5.2.2)

where θi are the turning angles between two consecutive smooth parts of the boundary. In the

case of a polygon the turning angles are the external angles of the polygon. The formula (5.2.2)

allows the computation of the area of a piece of the sphere bounded by arcs of circle. In this

case the Euler characteristic is equal to 1, the curvature of the unit sphere is K = 1 and the

geodesic curvature is piecewise constant. For more details we refer to [45, Chapter 4].

A first consequence of the Gauss-Bonnet theorem in connection to our problem is noting the

fact that, apart from cases where we have a certain symmetry like n ∈ {3, 4, 6, 12} the optimal

cells are not geodesic polygons. This is made clear in cases where we have a hexagonal cell.

If the arcs forming the boundary of such a hexagonal cell would be geodesic polygons then its

area would be equal to 6 · 2π/3− 4π = 0. Thus a spherical shape bounded by six arcs of circle

can never be a geodesic polygon without being degenerate.
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In order to perform the optimization we take the vertices as variables and we add one sup-

plementary vertex for each edge. This is enough to contain all the necessary information since

an arc of circle is well defined by three distinct points on the sphere. In the sequel we denote

Pn the set of partitions of the sphere into n cells and with An the partitions in Pn having equal

areas. In order to have a simpler numerical treatment of the problem we can incorporate the

area constraints in the functional by defining for every partition (ωi) ∈ Pn the quantity defined

for every ε > 0 by

Gε((ωi)) =
n∑

i=1

Per(ωi) +
1

ε

n−1∑

i=1

n∑

j=i+1

(Area(ωi)− Area(ωj))
2.

If we denote

G((ωi)) =





∑n
i=1 Per(ωi) if (ωi) ∈ An

∞ if (ωi) ∈ Pn \ An.

then we have the following Γ-convergence result.

Theorem 5.2.1. We have that Gε
Γ−→ G for the L1(S2) convergence of sets.

Proof: For the (LI) property consider a sequence (ωε
i ) ⊂ Pn which convergence in L1(S2)

to (ωi). It is clear that we have Area(ωε
i ) → Area(ωi) and the perimeter is lower semicon-

tinuous for the L1 convergence. Thus we have two situations. If (ωi) ∈ Pn \ An then

limε→0Gε((u
ε
i )) = ∞. If (ωi) ∈ An then the lower semicontinuity of the perimeter implies

that lim infε→0Gε((ω
ε
i )) ≥ G((ωi)).

The (LS) property is immediate in this case. Choose (ωi) ∈ An, or else there is nothing to

prove. We may choose the recovery sequence equal to (ωi) for every ε > 0. Thus the property

is verified immediately. �

Remark 5.2.2. We note that in the above proof the simplicity of the proof of the (LS) property

is due to the fact that the functionals Gε are well defined on the space {G <∞}, which makes

possible the choice of constant recovery sequences. This is not the case in the Modica-Mortola

theorem and in the results proved in Chapters 1 and 2.

This Γ-convergence result proves that minimizers of Gε converge to minimizers of G. As

a consequence, in the numerical computations, we minimize Gε for ε smaller and smaller in

order to approach the minimizers of G, which are in fact the desired solutions to our problem.

Since the parameters are of two types: triple points and edge points, we prefer to use an

optimization algorithm which is not based on the gradient. The algorithm is described below.

• For each point P consider a family of m tangential directions (vi)
m
i=1 chosen as follows:

the first direction is chosen randomly and the rest are chosen so that the angles between

consecutive directions are 2π/m.
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Figure 5.5: The difference between optimal configuration (black) and the geodesics connecting

the points (red). Notice that the difference is really small when the number of cells is large.

• Evaluate the cost function for the new partition obtained by perturbing the point P in each

of the directions vi according to a parameter ε.

• Choose the direction which has the largest decrease and update the partition accordingly.

• Do the same procedure for each edge point by performing the two possible orthogonal

perturbations of the point with respect to the edge.

• If there is no decrease for each of the points of the partition, then decrease ε.

This algorithm converges in each of the test cases and the results are presented in Table 5.1.

In the optimization procedure we start with ε = 1 and we reiterate the optimization decreasing

ε by a factor of 10 at each step until we reach the desired precision on the area constraints. We

are able to recover the same results as Cox and Flikkema for n ∈ [4, 32]. Furthermore, unlike in

the case of geodesic polygons, all triple points consist of boundaries which meet at equal angles

of measure 2π/3. In Figure 5.5 you can see the results for n = 9 and n = 20. The red arcs are

geodesic connecting the points and are drawn to visually see that not all the boundaries of the

optimal structure are geodesic arcs.

Thus we can conclude that the relaxed formulation presented in the previous section is able

to match the best known configurations in the literature. Furthermore for n ∈ [5, 25] ∪ {32}
the algorithm finds the good configuration without much effort, while for n ∈ [26, 31] multiple

tries with different initial conditions were needed in order to find the best configuration.

172



our results Cox-Flikkema our results Cox-Flikkema

N geodesics area tol. geodesics non-geo. area tol. non-geo.

4 11.4637 2× 10−6 11.464 11.4637 5× 10−7 11.464
5 13.4518 4× 10−6 13.452 13.4304 2× 10−7 13.430
6 14.7715 2× 10−6 14.772 14.7715 2× 10−7 14.772
7 16.3604 8× 10−6 16.360 16.3519 3× 10−7 16.352
8 17.7108 6× 10−7 17.710 17.6927 3× 10−7 17.692
9 18.8672 6× 10−6 18.867 18.8504 2× 10−7 18.850
10 20.0152 8× 10−6 20.015 19.9997 4× 10−7 20.000
11 21.1629 6× 10−6 21.163 21.1398 4× 10−7 21.140
12 21.8918 4× 10−7 21.892 21.8918 5× 10−7 21.892
13 23.1117 1× 10−6 23.112 23.0953 4× 10−7 23.095
14 23.9644 8× 10−7 23.964 23.9581 3× 10−7 23.958
15 24.8908 7× 10−7 24.891 24.8821 2× 10−7 24.882
16 25.7359 1× 10−6 25.736 25.7269 2× 10−7 25.727
17 26.6488 2× 10−6 26.649 26.6365 3× 10−7 26.637
18 27.4783 6× 10−6 27.478 27.4647 2× 10−7 27.465
19 28.2901 5× 10−6 28.290 28.2735 2× 10−7 28.274
20 29.0154 6× 10−6 29.015 28.9992 1× 10−7 28.999
21 29.7924 5× 10−6 29.792 29.7748 2× 10−7 29.775
22 30.5282 2× 10−6 30.528 30.5094 2× 10−7 30.509
23 31.2462 5× 10−6 31.246 31.2260 2× 10−7 31.226
24 31.9326 4× 10−6 31.933 31.9117 3× 10−7 31.912
25 32.6392 4× 10−6 32.639 32.6172 8× 10−8 32.617
26 33.2897 4× 10−6 33.290 33.2675 2× 10−7 33.268
27 33.9185 4× 10−6 33.918 33.8968 9× 10−8 33.897
28 34.5746 4× 10−6 34.575 34.5521 4× 10−7 34.552
29 35.2303 4× 10−6 35.230 35.2065 6× 10−7 35.207
30 35.8436 4× 10−6 35.844 35.8199 5× 10−7 35.820
31 36.4167 5× 10−6 36.417 36.3941 4× 10−6 36.394
32 36.9514 3× 10−6 36.951 36.9310 4× 10−6 36.931

Table 5.1: Comparison between our results and the results of Cox and Flikkema in the case of

the sphere. The left part of the table presents the optimal costs in the class of geodesic polygons,

while the right part deals with the general case where the boundaries of partition cells are not

necessarily geodesics.
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5.3 Spectral optimal partitions

In the following sections we present a numerical study of the partitions (ωi)
n
i=1 of a compact

surface S without boundary which solve the problem

minλLB1 (ω1) + ...+ λLB1 (ωn).

We denote by λLBk (ω) the k-th Laplace-Beltrami eigenvalue of a set ω contained in S. The

existence and the regularity of such optimal partitions has been studied before (see, for example

[38], [63], [64], [27]). Here we deal mainly with the problem of finding numerically candidates

for the optimal configurations. Such a numerical study has been performed by Elliott and Ran-

ner in [48]. They made computations for n ∈ {3, 4, 5, 6, 7, 8, 16, 32} using a method based on

finite elements and a penalized formulation of the partitioning problem which can be found in

[35],[33]. The method presented in the following is based on a relaxed formulation inspired

from [18]. The optimization procedure has two steps: first we find the optimizers in the relaxed

form and secondly we extract the structure and continue the optimization procedure by meshing

each cell of the partition and optimizing the cost function with respect to the position of the ver-

tices. We are able to perform optimizations using the relaxed formulation on general surfaces,

but the refinement procedure is only applied in the case of the sphere. Based on fundamental so-

lutions methods used in Chapter 4 we provide an algorithm for computing the Laplace-Beltrami

eigenvalues on the sphere or on portions of the sphere. This algorithm seems to be very efficient

and precise when the domains we consider are not small relative to the surface of the sphere.

5.3.1 Laplace-Beltrami eigenvalues on the sphere

Motivated by the fact that the Laplace-Beltrami eigenvalues of a closed curve in R2 can be

found using fundamental solutions, as noted in Chapter 4, we extend the method to the case of

the unit sphere in R3. In order to do this we consider the extended problem





−∆τu = λu on S2

−∆u = 0 in a neighborhood of S2.
(5.3.1)

The motivation behind this consideration is the following decomposition of the Laplacian

∆u = ∆τu+H
∂u

∂n
+
∂2u

∂n2
. (5.3.2)

For a proof of (5.3.2) and more details we refer to [66]. As usual,H denotes the mean curvature

of the surface. We denote
∂2u

∂n2
= (D2n.u).u.

As before, we seek u as a linear combination of radial harmonic functions in R3 which do not

have singularities on S2. We consider the fundamental solution of the Laplace equation in three

dimensions given by φ(x) = 1/|x|. We choose a family ofN evaluation points (xi) on S2 which

are uniformly distributed. We can do an explicit construction starting from a dodecahedron in
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Figure 5.6: Absolute errors - approximation of the first 10 Laplace-Beltrami eigenvalues of S2.

the case of the sphere, or we can use DistMesh [77] in general situations. The source points

(yi) are chosen on the normals at S2 in xi at a fixed distance r. As we will see below, the

behaviour of the error depends on r and N . These parameters must be chosen such that the

matrices involved in the computations are well conditioned, in order to have meaningful results.

For each yi we consider the fundamental solution centered in yi defined by ψi(x) = φ(|x− yi|).
We seek u in the form

u = α1ψy1 + ...+ αNψyN .

We impose the eigenvalue condition in each of the points (xi) and we obtain the equations

−∆τ (α1ψy1(xi) + ...+ αNψyN (xi)) = λLB(S2)(α1ψy1(xi) + ... + αNψyN (xi)), i = 1...N.

(5.3.3)

Solving this generalized eigenvalues problem we expect to find the values of the Laplace Bel-

trami eigenvalues on the unit sphere. The explicit eigenvalues are of the form ℓ(ℓ + 1) with

multiplicity 2ℓ + 1, with ℓ ≥ 0. We recall that r is the distance from the exterior points (yi) to

the boundary of the sphere. The choice of the sample points (xi) is not random. As noted in [8],

the sample points should be distributed evenly across the surface in order to obtain meaningful

results. We tried multiple choices for the points (xi):

• Uniform sphere mesh found with Distmesh [77].

• The layer method described in [8]

• A uniformly refined mesh of the sphere starting from an icosahedron.

For all these choices of points we observe that the values obtained with our algorithm are very

close to the analytical ones. An analysis of the dependence of the absolute error of the parameter

r and on the number of sample points is given in Figure 5.6. We can see that the error decreases

drastically with r. We also observe that when we have a large number of points and large r the

computation is not stable anymore. These estimates are valid for the first 10 eigenvalues.

We can use the method of fundamental solutions in order to compute the Laplace-Beltrami

eigenvalues with Dirichlet boundary conditions of a shape ω ⊂ S2. In order to do this we
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consider only sample points xi ∈ ω and approximate λLB(ω) using a variation of equation

(5.3.3). Indeed, let (xi)
N−M
i=1 be points in the interior of ω (relative to S

2) and (zi)
M
i=1 be points on

∂ω (relative to S2). Using the same method of fundamental solutions, the eigenvalue condition

is exactly (5.3.3). The boundary conditions can be written as

α1ψy1(zj) + ...+ αNψyN (zj) = 0, j = 1...M. (5.3.4)

It is possible to couple the systems (5.3.3) and (5.3.4) into one single generalized eigenvalue

problem in the form (
A

B

)
v = λ

(
X

O

)
v (5.3.5)

where

• A = (−∆τψyj (xi)), i = 1...N −M, j = 1...N

• B = (ψyj (zk)), k = 1...M, j = 1...N

• X = (ψyj (xi)), i = 1...N −M, j = 1...N

• O is the zero matrix of size (N −M)×N .

• v = (α1, ..., αN)
T .

The points (xi), (zj) are chosen by performing a triangulation of the set ω ⊂ S, which in our

computations will always be a geodesic polygon. In order to compute such a triangulation, we

divide the polygon in to triangles and then refine this triangulation multiple times by considering

the classical midpoint refinement.

In order to test our computational method, we consider some particular subsets of the sphere

for which some of the eigenvalues are known explicitly. In the following we call lens of angle θ,

a portion of the sphere contained between two half-meridians which make angle θ. We denote

the first eigenvalue of a lens of angle θ by L(θ). We call a double-right triangle of angle θ

a half (divided by the ecuatorial circle) of a lens of angle θ. We denote the first eigenvalue

of a double-right-triangle of angle θ by R(θ). The following analytical values are known for

R(θ), L(θ):

• L(θ) = π

θ

(π
θ
+ 1
)

(see [91]) - numerical example in Figure 5.7.

• R(π/3) = 20, R(π/2) = 12, R(π) = 6 (see [91]) - numerical examples in Figure 5.8)

Another interesting spherical triangle is the one which realizes the partition of the sphere

into 4 congruent equilateral triangles. We denote one such triangle by T . The computation of the

first eigenvalue of this triangle came up in [81] in the study of the expected capture time of some

brownian motion predators on the line. The numerical value computed in the above reference

is λLB1 (T ) = 5.1589 (represented by the green line in Figure 5.9). We compute numerically its
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Figure 5.7: Behavior of the L(2π/3) eigenvalue approximation with respect to the parameter r,

for 217 and 817 sample points

Figure 5.8: Behavior of the approximation of R(π/3) (left) and R(π/2) (right) with respect to

r

first eigenvalue and compare it to the values presented in the cited article (see Figure 5.9). We

observe that for r ∈ [1.8, 1.9] the error made by our algorithm is really small. We see again

the instability in the computation as r increases. In order to further test this numerical value,

we used a finite element discretization of the triangle T , and we compute the first eigenvalue

in terms of on a mesh having 98000 points. We obtain λLB1 (Tfem) = 5.1593, which is close

to both the result of [81] and our values. We note, though, that in order to reach this precision,

more than 50 times more points are needed in the discretization.

Until now we only considered exact subsets of S2. We can extend our method to compute

the spectrum associated to an approximation ϕ of χω. In order to do this, we use the relaxed

formulation inspired from [40], [18] given by

−∆τu+ µu = λu,

where µ is a capacitary measure which penalizes points outside ω. This relaxed formulation

includes the classical case. We can compute the eigenvalues of ω ⊂ S2 by imposing µ = +∞
in S2 \ ω and µ = 0 in ω. The advantage is that we work on the whole sphere and the measure

µ takes into account the change of shape. Using this technique, it is possible to study the

partitions of the sphere which minimize the sum of their first Laplace-Beltrami eigenvalues.
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Figure 5.9: Behavior of the approximate first eigenvalue of T with respect to r (left), corre-

sponding first eigenfunction (right)

The Euclidean case of this problem was considered by Bourdin, Bucur and Oudet in [18], while

the spherical case was recently treated by Elliott and Ranner in [48] using a different method.

We choose µ = C(1− ϕ)dσ and the penalized formulation becomes

−∆τu+ C(1− ϕ)u = λu. (5.3.6)

This can be written in matrix form as

(A+ Cdiag(1− ϕ)B)v = λBv,

where

• A = (−∆τψj(xi)), i, j = 1...N

• B = (ψj(xi)), i, j = 1...N

• v = (α1, ..., αN)
T

• diag(1− ϕ) is the diagonal matrix with diagonal entries 1− ϕ.

For the generalized eigenvalues computations we use the Matlab eigs function. In order to be

able to perform an optimization, we need to compute the gradient of the eigenvalue with respect

to ϕ. For this we have two options:

• Compute the gradient in the analytic setting and obtain ∇λ(ϕ) = −Cv2 where v is the

associated eigenfunction. This was proved in [18].

• Compute the gradient in the discrete setting, by differentiating the generalized eigenvalue

problem. In order to do this, we need the corresponding right eigenvector v and the left

eigenvector w. We obtain that

∇λ(ϕ) = −Cw ⊗ Bv/(wTBv),

where ⊗ is the usual tensor product.
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Both of the above methods work, but the second needs to perform two times the amount of

computations as the first, since we need both the left and right corresponding eigenvectors. In

our computations we prefer the first approach, as it is faster. The optimization is made using a

standard gradient descent algorithm. We need to impose the partition condition at each iteration,

and we do this by applying the following projection operator

Π(ϕl) =
|ϕl|∑n
i=1 |ϕi| .

5.3.2 Numerical optimal partitions

There is an interest in computing numerically the spectral optimal partitions on the sphere. This

interest is motivated by the fact that problems that are simple to state regarding these optimal

partitions are still open. Bishop proved that the partition of S2 into two parts ω1, ω2 which

minimizes λLB1 (ω1)+λLB1 (ω2) consists of two half-spheres. The similar problem of finding the

minimizer of

λLB1 (ω1) + λLB1 (ω2) + λLB1 (ω3), (ω1, ω2, ω3) partition of S2,

is still open. In the same article [17] it is conjectured that the optimal partition in the case n = 3

is made of three 2π/3-lens. A similar problem, which is a consequence of Bishop’s conjecture,

was treated by Helffer et al. in [64]. They proved that the partition of the sphere into three

2π/3-lens minimizes the quantity

max
i=1,2,3

λLB1 (ωi), (ω1, ω2, ω3) partition of S2.

Initial numerical computations of optimal spectral partitions on S2 were computed by Elliott and

Ranner in [48]. They confirmed numerically Bishop’s conjecture, and they made computations

for n = 3, 4, 5, 6, 7, 8, 16, 32. Their method is based on a penalized energy formulation of the

partitioning problem introduced in [33].

In the following, we propose a different approach, inspired by the two dimensional case

studied by Bourdin, Bucur and Oudet [18]. We represent each phase ωi of the partition by a

density function ϕi : S2 → [0, 1] . The partition condition then translates to
∑n

i=1 ϕi = 1.

Given ϕ, a density function approximating ω, we consider the problem

−∆τu+ C(1− ϕ)u = λLB1 (C, ϕ)u on S
2 (5.3.7)

with C >> 1. As in [18], it can be proved that the mapping ϕ 7→ λLB1 (C, ϕ) is concave and as

C →∞ we have λLB1 (C, χω)→ λLB1 (ω).

We were able to compute numerically the optimal partitions for

n∑

i=1

λLB1 (ωi), (ω1, ..., ωn) partition of S2,
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Figure 5.10: The optimal configuration for n = 8 (left) and n = 5(right). The black lines are

geodesic arcs connecting the vertices of a face.

for n ∈ [3, 24] ∪ {32}, using about 5000 sample points. It is interesting to note that for n ∈
{3, 4, 6, 12} we obtain the regular tiling of the sphere. For n ∈ {5, 7, 8, 32} we obtain the same

results as Elliott and Ranner. For n = 16 we obtain something slightly different: they obtained a

configuration of 4 equal hexagons, 4 equal pentagons and another 8 equal pentagons. We obtain

4 equal hexagons and 12 equal pentagons, which is plausible, since this is the most regular 16

tiling of the sphere.

In [48] it is conjectured that the common boundary of two adjacent cells is a geodesic arc.

This fact can be can be seen for he case n = 8 in Figure 5.10, where we plotted some geodesic

arcs on top of the results obtained using density functions. In our density results we can observe

that for n ≥ 8 the common boundary of any two cells is really close to being a geodesic arc.

This motivated us to search for the optimal partitions among geodesic polygons which is a

problem depending only on a low number of parameters. We discuss later the fact that even

if for large n the optimal partition cells are close to being geodesic polygons, this is not true

for n ∈ {5, 7}. Moreover Gauss-Bonnet theorem (5.2.2) implies that as soon as we have a

hexagonal cell, its boundary cannot be made of geodesic arcs. Indeed, regularity results proved

in [38] imply that at singularity points the boundaries meet with equal angles. Thus, if we have

a hexagonal cell whose boundaries are geodesic arcs and whose angles are all equal to 2π/3,

Gauss-Bonnet formula implies that the area of this cell is zero, which is a contradiction.

A first step in the optimization procedure in the class of geodesic polygons is to extract the

topological structure from the optimal densities. For each polygon in the partition we compute

the corresponding first eigenvalue using the method presented in equation (5.3.5). In order

to optimize the position of the vertices it is possible to write derivatives with respect to each

coordinate of the vertices. Instead of doing this we use a simpler algorithm, which avoids the

computation of numerical integrals on the surface of the sphere. We use the following discrete

algorithm with a probabilistic touch, which is similar to the one used to study the first problem

presented in this chapter:

• For each point P consider a family of q tangential directions (vi)
q
i=1 chosen as follows:
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the first direction is chosen randomly and the rest are chosen so that the angles between

consecutive directions are 2π/q.

• Evaluate the cost function for the new partition obtained by perturbing the point P in each

of the directions vi according to a parameter ε.

• Choose the direction which has the largest decrease and update the partition.

• If there is no decrease for each of the points of the partition then decrease ε.

This algorithm converges and it has been tested by choosing different starting configurations

and observing the convergence. The optimal densities and the optimal partitions consisting of

geodesic polygons are presented in the following figures. We present the results obtained in

the cases corresponding to n ∈ [3, 24] ∪ {32}. We remark the fact that for n ≥ 14 optimal

partitions seem to consist of 12 pentagons and n − 12 hexagons. The same argument based

on Gauss-Bonnet formula implies that for n = 11 and n ≥ 13, cases in which we observe the

appearance of hexagonal cells, the boundaries of these hexagonal cells cannot all be geodesic

arcs.

We observe that for n ∈ {4, 6, 12} the optimal partition cells are regular geodesic polygons

corresponding to the tetrahedron, the cube and the dodecahedron. For n large enough, the

partition cells become so close to geodesic polygons that we cannot visualize the difference.

However, the case n = 5, seen in Figure 5.10, raises some questions about the validity of the

claim that boundaries are geodesics. We have devised a numerical test of this claim which is

presented below.

• take the optimal partition into geodesic polygons and add supplementary variable points

at the midpoint of every edge;

• perform again the optimization in this new setting.

To illustrate this better, we give more details concerning the case n = 5. The optimal partition

into geodesic polygons consists of two triangles and four rectangles. Adding the midpoints as

variables gives us a new configuration of two hexagons and three octagons. What we observed

in the cases n = 5, n = 7 is that adding vertices at midpoints we get a new optimal partition

which has a slightly lower value of the cost function. We believe that this decrease in the cost

function allows us to conclude that the optimal cells do not always consist of geodesic polygons.

The test cases n = 5 and n = 7 mentioned above is presented in Figure 5.11. For n = 5 we

obtain a decrease of 0.04 in the cost function, while for n = 7 we obtain a decrease of 0.02.

This numerical observation, together with the argument based on the Gauss-Bonnet formula

suggest that it is probable that the boundaries of the cells are not geodesic curves, except for the

regular cases corresponding to n ∈ {3, 4, 6, 12}. This observation is in accordance with the two

dimensional planar case studied in Chapter 3 where numerical results show that boundaries of

the cells are not always segments.
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Figure 5.11: The study of the cases n ∈ {5, 7}; the regions correspond to the non-geodesic

optimal partition and the red arcs are geodesics. Adding midpoints as variables reduces the

value from 34.46 to 34.42 for n = 5 and from 68.99 to 68.97 for n = 7.

It is possible to perform similar computations for surfaces which are more complex than the

sphere. The examples we considered are similar to the ones considered in the perimeter case: a

torus with outer radius R = 1 and the inner radius r = 0.6 and the Banchoff-Chmutov surface

of order 4. Using the proposed algorithm, we can deal with any surface, as soon as we have

a qualitative triangulation. On more complex surfaces only the optimization algorithm using

density functions is used, since the boundaries of the cells cannot be easily characterized.

An equally interesting problem is finding the partition which minimizes the greatest eigen-

value among λLB1 (ωi). Theoretical aspects of the problem as well as a complete analysis of the

case n = 3 were given in [64]. It is known that if the solution of the problem corresponding to

the sum consists of cells with the same eigenvalue, then this is also a solution of the maximum

problem. In our computations, only the regular partitions corresponding to n ∈ {3, 4, 6, 12}
have this property, and thus they are solutions for the maximum problem as well. In all re-

maining cases we obtained at least two cells with different eigenvalues, which means that our

partitions are not optimal for the maximum. Optimizing the maximum is not straightforward

since we are dealing with a non-differentiable functional. We may expect that minimizing a p-

norm for high p will get us close to the optimal partition for the maximum. Some experiments

done in this direction indicate that the topology of the optimal partition for the maximum is the

same as the one for the sum, but the boundaries are just slightly moved in order to have the

same eigenvalue for every one of the cells.

n = 3 : three 120◦ lens. This is

a conjecture proposed by Bishop

[17].

optimal cost = 45/4

lens eigenvalue = 15/4.
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n = 4 : the optimal partition

consists of the tiling generated by

a regular tetrahedron inscribed in

the sphere.

optimal cost = 20.635

triangle eigenvalue = 5.1588

n = 5 : two equal equilateral trian-

gles and three equal rectangles.

optimal cost = 34.44.

triangle eigenvalue = 7.26

rectangle eigenvalue = 6.57.

n = 6 : regular tiling generated by

the cube

optimal cost = 48.6.

square eigenvalue = 8.10

n = 7 : two regular pentagons tri-

angles and 5 equal rectangles.

optimal cost = 69.

pentagon eigenvalue = 8.62

rectangle eigenvalue = 10.35.

n = 8 : four equal quadrilaterals

and four equal pentagons.

optimal cost = 91.01.

pentagon eigenvalue = 10.82

quadrilateral eigenvalue = 11.93.
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n = 9 : 3 equal squares and 6

equal pentagons.

optimal cost = 115.9.

square eigenvalue = 13.64

pentagon eigenvalue = 12.38.

n = 10 : two equal squares and 8

equal pentagons

optimal cost = 142.33.

square eigenvalue = 15.85

pentagon eigenvalue = 13.95.

n = 11 : one hexagon, two equal

quadrilaterals, eight pentagons of

three types

optimal cost = 175.38.

n = 12 : regular tiling generated

by the dodecahedron

optimal cost = 203.84.

pentagon eigenvalue = 16.99

n = 13 : one rectangle, two equal

hexagons, 10 pentagons of three

types

optimal cost = 245.55.

n = 14 : two equal hexagons and

12 equal pentagons

optimal cost = 283.93.

hexagon eigenvalue = 17.47

pentagon eigenvalue = 20.75.
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n = 15 : 3 equal hexagons and 12

pentagons of two types

optimal cost = 327.21.

n = 16 : 4 equal hexagons and 12

equal pentagons

optimal cost = 371.76.

n = 17 : 5 hexagons and 12 pen-

tagons

optimal cost = 422.77.

n = 18 : 6 hexagons and 12 pen-

tagons

optimal cost = 475.08.

n = 19 : 7 hexagons and 12 pen-

tagons

optimal cost = 530.5.
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n = 20 : 8 hexagons and 12 pen-

tagons

optimal cost = 585.98.

n = 21 : 9 hexagons and 12 pen-

tagons

optimal cost = 648.05.

n = 22 : 10 hexagons and 12 pen-

tagons

optimal cost = 711.96.

n = 23 : 11 hexagons and 12 pen-

tagons

optimal cost = 779.1.

n = 24 : 12 hexagons and 12 pen-

tagons

optimal cost = 847.39.
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n = 32 : 20 equal hexagons and

12 equal pentagons

optimal cost = 1504.71.

Figure 5.12: Minimal spectral partitions on a torus for n ∈ [2, 9]. The two dimensional pictures

represent flattenings of the torus

Figure 5.13: Minimal spectral partition on the Banchoff-Chmutov surface of order 4 for n ∈
{2, 4, 8}
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Boston, Inc., Boston, MA, 2005.

[28] Dorin Bucur, Giuseppe Buttazzo, and Antoine Henrot. Minimization of λ2(Ω) with a

perimeter constraint. Indiana Univ. Math. J., 58(6):2709–2728, 2009.

[29] Dorin Bucur, Giuseppe Buttazzo, and Bozhidar Velichkov. Spectral optimization problems

for potentials and measures. SIAM J. Math. Anal., 46(4):2956–2986, 2014.

[30] Dorin Bucur and Filippo Gazzola. The first biharmonic Steklov eigenvalue: positivity

preserving and shape optimization. Milan J. Math., 79(1):247–258, 2011.

[31] Dorin Bucur and Bozhidar Velichkov. Multiphase shape optimization problems. SIAM J.

Control Optim., 52(6):3556–3591, 2014.

[32] Giuseppe Buttazzo. Gamma-convergence and its Applications to Some Problems in the

Calculus of Variations. School on Homogenization ICTP, Trieste, September 6-17, 1993.

[33] L. A. Caffarelli and Fang-Hua Lin. Singularly perturbed elliptic systems and multi-valued

harmonic functions with free boundaries. J. Amer. Math. Soc., 21(3):847–862, 2008.

[34] Luis A. Caffarelli, David Jerison, and Carlos E. Kenig. Some new monotonicity theorems

with applications to free boundary problems. Ann. of Math. (2), 155(2):369–404, 2002.

[35] L. A. Cafferelli and Fang Hua Lin. An optimal partition problem for eigenvalues. J. Sci.

Comput., 31(1-2):5–18, 2007.

[36] Shu-Ming Chang, Chang-Shou Lin, Tai-Chia Lin, and Wen-Wei Lin. Segregated nodal

domains of two-dimensional multispecies Bose-Einstein condensates. Phys. D, 196(3-

4):341–361, 2004.

[37] Bruno Colbois, Ahmad El Soufi, and Alexandre Girouard. Isoperimetric control of the

Steklov spectrum. J. Funct. Anal., 261(5):1384–1399, 2011.

[38] M. Conti, S. Terracini, and G. Verzini. An optimal partition problem related to nonlinear

eigenvalues. J. Funct. Anal., 198(1):160–196, 2003.

[39] S. J. Cox and E. Flikkema. The minimal perimeter for N confined deformable bubbles of

equal area. Electron. J. Combin., 17(1):Research Paper 45, 23, 2010.

191



[40] Gianni Dal Maso and Umberto Mosco. Wiener’s criterion and Γ-convergence. Appl. Math.

Optim., 15(1):15–63, 1987.

[41] Gianni Dal Maso and François Murat. Asymptotic behaviour and correctors for Dirichlet

problems in perforated domains with homogeneous monotone operators. Ann. Scuola

Norm. Sup. Pisa Cl. Sci. (4), 24(2):239–290, 1997.

[42] M. Dambrine, D. Kateb, and J. Lamboley. An extremal eigenvalue problem for the

Wentzell-Laplace operator. ArXiv e-prints, January 2014.

[43] E. B. Davies. Heat kernels and spectral theory, volume 92 of Cambridge Tracts in Math-

ematics. Cambridge University Press, Cambridge, 1989.

[44] Guido De Philippis and Bozhidar Velichkov. Existence and regularity of minimizers for

some spectral functionals with perimeter constraint. Appl. Math. Optim., 69(2):199–231,

2014.

[45] Manfredo P. do Carmo. Differential geometry of curves and surfaces. Prentice-Hall, Inc.,

Englewood Cliffs, N.J., 1976. Translated from the Portuguese.

[46] Ahmad El Soufi and Saı̈d Ilias. Riemannian manifolds admitting isometric immersions by

their first eigenfunctions. Pacific J. Math., 195(1):91–99, 2000.

[47] Ahmad El Soufi and Saı̈d Ilias. Domain deformations and eigenvalues of the Dirichlet

Laplacian in a Riemannian manifold. Illinois J. Math., 51(2):645–666 (electronic), 2007.

[48] Charles M. Elliott and Thomas Ranner. A computational approach to an optimal partition

problem on surfaces, 2014.

[49] Max Engelstein. The least-perimeter partition of a sphere into four equal areas. Discrete

Comput. Geom., 44(3):645–653, 2010.

[50] Lawrence C. Evans. Weak convergence methods for nonlinear partial differential equa-

tions, volume 74 of CBMS Regional Conference Series in Mathematics. Published for

the Conference Board of the Mathematical Sciences, Washington, DC; by the American

Mathematical Society, Providence, RI, 1990.

[51] Lawrence C. Evans and Ronald F. Gariepy. Measure theory and fine properties of functions.

Studies in Advanced Mathematics. CRC Press, Boca Raton, FL, 1992.
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