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Introduction

Dans ce projet de these, nous étudions du point de vue qualitatif et numérique quelques problemes
d’optimisation de formes associés a des fonctionnelles spectrales et/ou géométriques. De facon

générique, un probleme de ce type peut étre formulé comme
min{J(Q) : Q € Upa},

ou J est une fonctionnelle cofit définie sur une classe d’ensembles (ouverts, quasi-ouverts ou
mesurables) notée .

Nous avons organisé la présentation de ce mémoire, suivant les problemes étudiés :

e optimisation de la k-¢éme valeur propre du Laplacien avec des conditions de Dirichlet au

bord, sous contrainte de périmetre (chapitre 1),

e partitions d’un domaine donné en cellules d’aire prescrite minimisant une longueur ani-

sotrope des contours (chapitre 2),

e un probleme d’optimisation de formes multiphasique pour des fonctionnelles spectrales
(chapitre 3 ),

e optimisation de fonctionnelles associées au spectre de Steklov et Wentzell (chapitre 4),

e partitions optimales de surfaces dans R3, pour des fonctionnelles associées au spectre de
I’opérateur Laplace-Beltrami avec conditions de Dirichlet, ainsi que pour des fonction-

nelles purement géométriques (chapitre 5).

Concernant I’analyse qualitative de ces problémes, mes contributions portent sur 1’étude des
conditions d’optimalité dans le cadre des valeurs propres multiples sous contrainte de périmetre,
I’analyse de la stabilité du spectre de Steklov pour des perturbations géométriques du domaine,
I’analyse des points de jonction des cellules dans une partition optimale, 1’estimation de I’erreur

dans le calcul du spectre de Steklov par une méthode de type solutions fondamentales.



Dans tout ce travail, un point commun des méthodes numériques mises en ceuvre est I’absence
de maillage spécifique associé aux domaines variables. En effet, on utilise I’'une des deux ap-

proches suivantes :

1. Pour des problémes de partitionnement optimal, il convient d’identifier un ensemble (2
par sa fonction caractéristique et ensuite de 1’approcher par une fonction de champ de
phase. Ceci nous permet a la fois de travailler sur un maillage et un domaine fixe et de
transformer la condition géométrique de partition en une condition algébrique, plus facile

a appréhender numériquement.

2. Pour des problemes d’optimisation de formes associés aux fonctionnelles spectrales, nous
utiliserons systématiquement une approche basée sur des solutions fondamentales. Le dé-
veloppement de cette méthode dans le contexte de 1’optimisation de formes a été initié
par Antunes, Freitas, Osting, qui se sont concentrés sur des conditions au bord de type
Dirichlet, Robin ou Neumann. Cette méthode s’avere a la fois trés rapide et trés précise.
Dans ce mémoire, nous I’avons étendue a des problemes de Steklov et Wentzell, mais
aussi pour I’opérateur Laplace-Beltrami associé aux surfaces bi-dimensionnelles de R?

(voir chapitres 4 et 5)

Le manuscrit est divisé en cinq chapitres qui traitent de problémes distincts. On peut identi-
fier des connexions entre certains chapitres, mais chaque chapitre peut étre lu indépendamment
des autres. Les chapitres 1, 3 et 4 font 1’objet d’articles soumis pour publication.

Dans la suite de I’introduction, on présente plus en détail les problemes considérés ainsi que
les principaux résultats.

Chapitre 1

Dans ce chapitre on étudie le probleme de la minimisation de la k-eéme valeur propre du
laplacien Dirichlet sous contrainte de périmetre. Ce probleme a été étudié pour la premiere fois
par D. Bucur, G. Buttazzo et A. Henrot dans [28] dans le cas particulier £ = 2 en dimension
deux. C’est le premier cas intéressant car pour £ = 1 la forme optimale est connue : c’est une
boule en toute dimension. Les auteurs ont prouvé que la forme optimale (notée dans la suite 25)
existe et est de classe C'™°. De plus, 02, ne contient pas de segments ou d’arcs de cercles. G. de
Philippis et B. Velichkov ont prouvé dans [44] un résultat général d’existence pour le probleme

PeIrI(lgiZI)l:c (), Q C R” (1)
et le fait que les formes optimales sont de classe C'>*® en dehors d’un ensemble de mesure H" %
nulle.

Pour £ > 2 on ne connait pas avec exactitude les formes optimales solutions de ce probleme,
ce qui motive une recherche numérique de ces formes. Une premiere étape a été d’utiliser une
méthode développée par B. Osting [78] et P. Antunes, P. Freitas [9], qui consiste a représenter

la frontiere de la forme Q par sa fonction radiale. Evidement, cette procédure n’est possible
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que si §2 est étoilé, mais dans le cas du probléme (1) on peut voir facilement qu’en dimension
deux la forme optimale est nécessairement convexe, et est par conséquence étoilée. La fonction
radiale est approchée par une série de Fourier tronquée. Ainsi cette discrétisation fournit une
approximation de A\ (€2) par une fonction qui ne dépend que d’un nombre fini de paramétres.
Un algorithme d’optimisation basé sur le gradient nous permet alors de trouver de bonnes ap-
proximations numériques des formes optimales.

Il n’est pas difficile de voir que le probleme (1) est équivalent, a une homothétie pres, a
la minimisation de A\(€2) + Per(€2). Récemment, chacune des deux composantes de cette
expression a été étudiée numériquement en utilisant une procédure de relaxation. Dans chacune
de ces deux procédures, on remplace la forme (2 par une fonction ¢ : D — [0,1]. Ici ¢ est
destinée a représenter une approximation de yq, (la fonction caractéristique de 2). Le domaine
ouvert et borné D est simplement une boite choisie assez large pour que la forme optimale y soit
contenue. Il est important de remarquer que le probleme (1) admet une solution sans imposer
une contrainte de boite et que les solutions ont un diametre borné. Par conséquent, si la boite D
est assez large, les problémes avec ou sans contrainte de boite sont équivalents.

La valeur propre \;(€2) a été approchée en utilisant une formulation avec pénalisation du
type

—Au+ CO(1 — p)u = \u, u € HY(D). )

Cette formulation a été utilisée dans [18] pour étudier numériquement un probléme de parti-
tionnement spectral. La méme formulation nous a permis d’étudier un probleme d’optimisation
multiphase pour des valeurs propres décrites plus loin dans le chapitre 3. Le périmetre admet

une relaxation classique par I'-convergence, en utilisant un théoreme dii a Modica et Mortola,
2, 1 2 2
cPer(Q) =e | |[Vo|>+- [ ¢*(1—¢) 3)
D €Jb

Cette approximation du périmetre a été utilisée par E. Oudet dans 1’étude des partitions en
cellules de méme aire qui minimisent la somme des périmetres en deux et trois dimensions.
La question est a présent de savoir si on peut combiner ces deux approches pour trouver
une approximation de la fonctionnelle A\ (£2) + Per(€2). La réponse est ici positive, et un
résultat d’approximation par I'-convergence est proposé dans le chapitre 1. Ce résultat de I'-
convergence nous suggere une approche numérique que nous avons mise en ceuvre, avec des
résultats tres satisfaisants en dimension deux et trois.

Les résultats qualitatifs de [28] ne peuvent, a priori, pas étre généralisés pour k quelconque
car on ne sait pas si la valeur propre optimale A\ (€2) est simple. En effet, les calculs numériques
effectués suggerent qu’a quelques exceptions prés, la valeur propre optimale A\ (2) est multiple.
Il est important de noter qu’une valeur propre \; est différentiable si et seulement si elle est
simple. Comme conséquence, on ne peut utiliser les propriétés de différentiabilité pour trouver
une condition d’optimalité dans le cas ou )\, est multiple. Pour pouvoir déduire des propriétés

qualitatives que dans le cas général, on aurait besoin d’une condition d’optimalité qui peut tre
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écrite méme dans ce type de situation. Une telle condition a été trouvée en [47] pour le probleme
avec contrainte de volume. En utilisant des outils similaires, nous avons réussi a montrer que
si Q est un minimiseur local pour le probleme (1), de classe C?, alors il existe une famille de

fonctions propres (u;)™, associées aux Ay telle que

m

Z(anuz)z = H7
i=1
ou H est la courbure moyenne du bord de €2. Ce résultat nous permet de trouver quelques

propriétés qualitatives des minimiseurs :
1. Un minimiseur ne peut pas contenir de parties plates dans sa frontiere.

2. En utilisant un processus de bootstrap similaire a celui de [28], on peut déduire que les
minimiseurs sont de classe C* s’ils sont de classe C3. Ainsi pour déduire la régularité
des solutions du probleme (1), il suffit de prouver qu’un minimiseur de classe C® est
C3.

La fin du chapitre présente deux autres études numériques concernant les valeurs propres
du Laplacien Dirichlet. La premiére concerne la minimisation de A (2) sous contrainte d’aire
en dimension deux. On améliore les résultats de [9] en faisant les calculs pour k € [5,21]. La
deuxieme est une étude numérique de la conjecture de Polya. Cette conjecture affirme que la
premiere valeur propre d’un polygone d’aire fixée a nombre de cotés donné est minimisée par
le polygone régulier. On vérifie cette conjecture pour les polygones avec au plus 15 cotés. Pour
calculer les premieres valeurs propres des polygones réguliers on utilise une méthode basée sur
des solutions fondamentales de I’équation elliptique associée.

Resumé et originalité : On montre un résultat d’approximation par I'-convergence de A\ + Per,
qui nous permet de formuler et d’implémenter une méthode nouvelle pour calculer numériquement les
optimiseurs de (1). On montre une condition d’optimalité pour (1), qui est valide méme dans le cas ol
la valeur propre optimale est multiple. Cette condition d’optimalité nous permet de trouver quelques
propriétés concernant la structure et la régularité des ensembles optimaux et d’évaluer la qualité des
résultats numériques.

Chapitre 2

Dans ce chapitre on étudie un probleme de partitionnement optimal. Le cofit associé a
chaque ensemble de la partition est un périmetre anisotrope. On pourra considérer, pour un

ensemble assez régulier, la définition suivante du périmetre classique :

Per(Q):/ da:/ |7 do.
o0 o0

On voit que dans cette formulation on mesure toute partie de 02 avec le méme poids, sans tenir
compte de son orientation. Si a la place de la norme euclidienne on considere une autre norme

© qui privilégie certaines directions, on définit alors un périmetre qualifié de anisotrope associé
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a o pour la quantité :
Per,(Q2) = / ()do.
o0
Ainsi, le probleme consiste a trouver la partition d’un domaine D en un nombre fixe de sous
parties de méme aire telles que la somme des périmetres anisotropes est minimisée.
Pour étudier ce probleme, on utilise une relaxation du périmetre anisotrope en utilisant la
I'-convergence: pour ¢ — 0 les minimiseurs des fonctionnelles

- /D o(Vu)? + X /D (1 — u)? @)

3

convergent dans la topologie L'(D) vers un minimiseur de 1 Per,(-). L’avantage de cette repré-
sentation est qu’en étudiant des problemes de partitionnement optimal, la condition ”(2;) est

une partition de " devient
o1+ @2+ ... +pn=1surD.

Cette derniere condition est plus facile a implémenter numériquement. L’ approximation du péri-
metre total d’une partition est simplement la somme des approximations du périmetre anisotrope
de chaque cellule de la partition. La preuve du résultat théorique de ['-convergence n’est pas
immédiate, car si on a deux suites £, G. qui ['-convergent vers I et (G, respectivement, il n’est
pas vrai que F. + G, L F4+G. Un algorithme de minimisation et des résultats numériques
sont présentés.

Nous terminons ce chapitre en montrant une extension de I’étude présentée dans [80] dans
le cas isotrope, en considérant des domaines généraux et une formulation utilisant des éléments
finis. Cette nouvelle formulation nous permet d’améliorer certains des résultats de [80]. Par
ailleurs, en considérant des aires fixées qui ne sont pas toutes égales, on peut étudier le probleme
des configurations d’équilibre des bulles de savon.

Resumé et originalité : On prouve un résultat de I"-convergence qui nous permet d’étudier numé-
riquement les partitions optimales pour certains périmetres anisotropes. On présente une formulation
basée sur des éléments finis qui nous permet d’étudier les partitions optimales sur des ensembles 2D
généraux.

Chapitre 3

Ce chapitre traite quelques aspects qualitatifs et numériques d’un probléme multiphase spec-
tral. Il s’agit de I’étude du probleme

h

i A (9 ), 5
i, 3 0u(62) + el ®

ou A est I’ensemble des ouverts (€2;)"_; contenus dans un ouvert borné D. On note que pour

a = 0 on retrouve le probleme de partition spectrale étudi¢ dans [18]. Le cas a > 0 a été
étudié dans [31], le but ici est d’étudier si on observe numériquement les propriétés qualitatives

obtenues dans [31]. Une des propriétés intéressante dans le cas o > 0 est le fait que (€2;) n’est
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plus une partition de D. Par ailleurs, on ne peut pas avoir des points triples x € 9€2;N0§2; NOCY,
(4, 7, k distincts). Les tests numériques fournissent des informations complémentaires : les
formes optimales ne présentent pas d’angles et on ne peut pas avoir de points triples sur 9D.
En fait I’ensemble de ces observations peut étre déduit des résultats prouvés en [31] si 9D ala
propriété du disque extérieur. On établit aussi dans ce chapitre une formule de monotonie pour
deux phases qui nous permet de prouver le résultat suivant : si 9D est Lipschitz, alors on ne
peut pas avoir des points triples sur la fronticre.

Concernant la partie numérique on utilise 1’approche de [18], ou on calcule les valeurs
propres a I’aide de la formulation pénalisée (2). Le point clé est de pouvoir gérer la condition de
non-intersection. Une maniere astucieuse de faire ¢a est de considérer une phase supplémentaire
pour modéliser I’espace vide. Ce processus transforme le probleme multiphase en un probleme
de partition optimale, avec une phase dont la fonction cofit n’apparait pas.

On réalise une étude numérique et théorique de I’erreur du calcul des valeurs propres fait
en utilisant la formulation (2). On compare les dix premieres valeurs propres obtenues avec
celles données par MpsPack [14]. En utilisant des résultats de [29], on trouve aussi une borne
théorique pour I’erreur relative obtenue en calculant les valeurs propres par (2). On observe
qu’il y a une concordance intéressante entre les erreurs observées numériquement et ce résultat
théorique. On calcule quelques configurations optimales sur des régions rectangulaires en util-
isant des différences finies et on propose un cadre pour étudier des régions plus générales, par
éléments finis ou différences finies.

Resumé et originalité : On prouve une estimation quantitative de I’erreur faite en utilisant la formu-
lation (2). On ajoute une phase supplémentaire pour transformer le probleme multiphase en un probléme
de partition. On étudie le probléme sur des domaines généraux, et on montre que la méthode peut étre
étendue aux surfaces tridimensionnelles.

Chapitre 4

Ce chapitre traite de quelques aspects théoriques et numériques concernant des problemes
aux valeurs propres définis sur le bord d’un ensemble régulier. On appelle valeur propre de
Wentzell correspondant au § > 0, une valeur ¢ pour laquelle 1’équation suivante admet une

solution non-triviale :
—Au =0 dans (2,

—BA U+ Oyu = ou  sur 02,

(6)

ou A, est le Laplacien Beltrami associé a 0€2. Dans le cas = 0, on retrouve le probleme de
Steklov. Les valeurs pour lesquelles le probleme (6) admet des solutions non triviales forment

une suite croissante divergente
O=09<0; <0<+ — 00.

La premiere partie de ce chapitre étudie le comportement du spectre de 1’opérateur de
Steklov associé a différents types de convergences d’ensembles. Ce comportement est impor-

tant quand on regarde des problemes d’existence d’ensembles optimaux pour des problemes
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d’optimisation de fonctionnelles qui dépendent du spectre de 1’opérateur Steklov. A ce jour,
seuls des résultats d’existence pour 1’optimisation d’une fonctionnelle qui dépend du spectre
de Steklov sont connus en identifiant précisément la forme optimale (par exemple le disque).
En général, trouver la forme optimale explicitement n’est pas possible, ce qui rend ce type
d’approche essentielle. On peut observer ce fait dans la partie numérique de ce chapitre pour
le probleme ‘rsr)llzz 09(£2). Le résultat de continuité/semicontinuité supérieure prouvé dans cette
premigre partie nous permet de montrer que sous certaines contraintes de régularité sur €) (con-
vexité ou propriété de c-cone) on peut déduire des résultats généraux d’existence pour des
problemes d’optimisation associés a des éléments du spectre de Steklov.

Le résultat clé qui nous permet de déduire ces propriétés de continuité/semincontinuité est
un résultat de convergence des traces des fonctions Sobolev sur des frontieres variables. On
observe en plus, qu’une condition suffisante pour que le spectre de Steklov d’une suite (£2,,)
converge vers le spectre de Steklov du domaine (2 est le fait que les périmetres des ensembles
(€2,,) convergent vers le périmetre de €).

La deuxieéme partie de ce chapitre traite de 1’étude numérique des problémes d’optimisation
pour les problemes de Steklov et de Wentzell. Un premier aspect est le calcul des valeurs propres
Steklov/Wentzell de maniere efficace et précise. Une méthode qui a suscité beaucoup d’intérét
récemment consiste 2 utiliser des solutions fondamentales. Etant donne que I’on cherche des
fonctions qui sont harmoniques a I’intérieur de (2, on peut travailler directement avec des fonc-
tions harmoniques fondamentales. Si on choisit des points source (y;)!_, a I’extérieur de €2 et

que I’on considére les fonctions harmoniques ¢; = log |« — y;|, alors toute combinaison linéaire,
U= a10; + ... + Qydp

est harmonique dans (2. Pour trouver une solution il reste ainsi a imposer la condition au bord
du domaine. On impose cette condition au bord sur un nombre fini de points sur €2, et on se
retrouve avec un probleme aux valeurs propres généralisé.

On observe dans des cas particuliers, pour lesquels les valeurs propres sont connues, comme
le disque, que la méthode est trés précise. Dans le cas général, on fait une comparaison avec
des méthodes avec maillage en utilisant FreeFem++. On observe qu’en raffinant le maillage, les
valeurs données par FreeFem++ s’approchent des valeurs obtenus avec notre methode utilisant
les solutions fondamentales. Il est possible de donner une borne théorique de I’erreur en utilisant
une méthode similaire a celle présenté par Moler et Payne en [73]. L’idée est de considérer le

probléme aux valeurs propres approchées

—Au. =0 dans ()
(7
—BAu, + Opue — ocue = f. sur 02
et de remarquer que si ||uc|| = 1 et || f-||z2a0)(= 0) est petit, alors o, est proche d’une vraie

valeur propre de 1’opérateur de Steklov/Wentzell, avec une erreur relative d’ordre O(9). Grice
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a cette observation, on déduit numériquement que la precision de notre méthode peut atteindre
105,

Une fois convaincu que la méthode fournit de bonnes estimations des valeurs propres, nous
avons mené a bien des calculs d’optimisation en utilisant les formules de dérivées de forme
données de [42]. On travaille, dans un premier temps, dans le cas des formes simplement-
connexes €étoilées, pour s’appuyer sur une représentation radiale. On retrouve les résultats clas-
siques en faisant des tests concernant la minimisation ou maximisation de certaines quantités
dépendant du spectre Steklov/Wentzell. On vérifie plusieurs conjectures proposées par Hersch,
Payne et Schiffer [67], et on observe les comportements qualitatifs des optimiseurs.

Pour traiter les ensembles simplement connexes en général, et ne pas restreindre 1’étude aux
formes étoilées, on propose une méthode 1égerement différente, qui consiste a paramétrer la
courbe en coordonnées cartésiennes ¢ € [0, 27|, t — (z(t),y(t)) et de représenter x,y par des
séries de Fourier.

Resumé et originalité : On présente un résultat théorique de (semi-)continuité du spectre de 1’opérateur
de Steklov, qui permet d’établir 1’existence de formes optimales. On propose une méthode numérique
pour calculer de maniére rapide et efficace les premicres valeurs propres de Steklov/Wentzell, et on
mene a bien plusieurs expériences d’optimisation qui nous permettent de tester et de proposer un certain
nombre de conjectures. On propose une approche nouvelle en optimisation numérique, qui consiste a
paramétrer séparément les deux coordonnées du bord du domaine. Cette méthode permet de traiter des
problemes généraux dans le cas de formes simplement connexes.

Chapitre 5

Ce chapitre traite du probléme des partitions optimales sur des surfaces tridimensionnelles.
On utilise la méthode générale présentée aux chapitres 2 et 3 : on représente chaque cellule de
la partition par une fonction a valeurs dans [0, 1]. Ainsi, la condition de partition est simplement
le fait que la somme des fonctions représentatives est égale a 1.

Dans la premiere partie du chapitre on étudie les partitions en cellules de méme aire qui
minimisent la somme des périmetres géodésiques. Le cas bidimensionnel a été étudié par Cox
et Flikkema [39] en utilisant le logiciel Evolver [21] et par Oudet [80] en utilisant une relax-
ation par ['-convergence. L’avantage d’une méthode de relaxation est le fait qu’on ne doit pas
prescrire la topologie de la configuration optimale. Les points triples/multiples sont gérés de
maniere naturelle sans poser de problemes d’implémentation. Pour étudier le cas des surfaces,
on propose dans un premier temps un résultat de relaxation pour le périmetre géodésique en
généralisant le résultat de Modica et Mortola [72]. Ensuite on décrit un algorithme qui nous per-
met de raffiner I’optimisation en faisant des calculs exacts pour I’aire et le périmetre dans le cas
particulier de la sphere. Ces calculs nous permettent de voir que nos résultats sont comparables
a ceux connus dans la littérature.

Le deuxieme probleme étudié dans ce chapitre traite des partitions d’une surface qui min-
imisent leur somme des premieres valeurs propres de 1’opérateur de Laplace-Beltrami. Ce

probleme a été étudié récemment par Elliott et Ranner [48] avec une méthode de pénalisation
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développée dans [33]. Le premier obstacle a franchir concerne le calcul du spectre de Laplace-
Beltrami pour un ensemble contenu dans une surface. Une méthode directe consisterait a
mailler la surface et a utiliser des espaces d’éléments finis. Une autre méthode, plus précise
et plus rapide dans certains cas, est donnée en utilisant des solutions fondamentales. Au lieu
de considérer des fonctions qui sont définies seulement sur la surface, on peut considérer leur
extension harmonique en dimension trois. On analyse la précision de cette méthode en étudiant
quelques sous domaines de la sphere unité pour lesquels les valeurs propres ont une expression
analytique.

Afin d’étudier les partitions optimales, on utilise une formulation pénalisée similaire a (2).
Apres avoir trouvé les fonctions densités qui sont proches de la partition optimale, on regarde
I’interface entre deux phases et on observe que les frontieres sont proches d’arcs géodésiques.
Dans le cas de la sphere on extrait la structure topologique, et on fait une optimisation raffinée
en supposant que les ensembles sont des polygones géodésiques. Pour calculer la valeur propre
de chaque polygone, on considere le maillage de chaque polygone et on utilise successivement
la méthode des solutions fondamentales et la méthode des éléments finis.

Resumé et originalité : On justifie et on propose une méthode pour trouver les partitions minimales
pour le périmetre et pour des fonctionnelles spectrales sur des surfaces. On propose une méthode basée
sur les solutions fondamentales pour calculer le spectre de Laplace-Beltrami d’un sous ensemble d’une

variété.
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CHAPTER 1

Optimization of the Dirichlet Laplacian
eigenvalues - perimeter constraint

Résume

Dans ce chapitre on étudie le probleme de minimisation de la premiere valeur propre du Lapla-
cien Dirichlet sous contrainte de périmétre: Pe?(lgizl)l:1 Ak(€2). Le probleme d’optimisation sous
contrainte de volume: ‘Ig)1|1:nl Ak(£2) a été tres largement étudié, et malgré les travaux intensifs
qui ont été faits, on sait trés peu des choses concernant les minimiseurs de cet probleme pour
k > 3. Le probleme sous contrainte de périmetre a été étudié que tres récemment. Le cas k = 2
en dimension deux a été étudié par D. Bucur, G. Buttazzo and A. Henrot [28]. Les auteurs ont
prouvé que la forme optimale existe et qu’elle est de classe C'*°. En plus, un résultat qualitatif
a été donné: la forme optimale ne contient ni segments ni arcs des cercles sur son bord. Le
cas général a été étudié par G. Philippis et B. Velichkov en [44]. Ils ont prouvé que la solution
existe pour tout £ et toute dimension. De plus, la solution est bornée, connexe et son bord est
de classe O en dehors d’un ensemble de mesure d — 8. Le contenu de ce chapitre est un
article écrit en collaboration avec Edouard Oudet, soumis pour publication dans STAM Journal
on Control and Optimization.

Les résultats qualitatifs prouvés pour k£ = 2, d = 2 montrent que les minimiseurs n’ont pas
une structure simple et les trouver analytiquement n’est pas envisageable. 1l y a ainsi un réel
intérét de trouver numériquement les ensembles optimaux. Des études similaires ont été faites
pour I’optimisation sous contrainte de volume par E. Oudet [79] et P. Antunes, P. Freitas [9].

La premiere contribution originale de ce chapitre est un résultat théorique de I'-convergence
pour approximer la fonctionnelle A\ (£2)+ Per(£2). La recherche de ce résultat de I'-convergence

a été motivée par quelques calculs numériques.

e E. Oudet a étudié dans [80] les partitions optimales en cellules de méme aire qui min-

imisent la somme des périmetres en utilisant I’approximation par I'-convergence du périmetre
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(le théoreme de Modica et Mortola)

e B. Bourdin, D. Bucur et E. Oudet ont étudié le probléme de partitionnement spectral en

dimension deux, en utilisant une relaxation pour calculer les valeurs propres.

L’idée principale est de connecter ces deux résultats pour retrouver 1I’approximation désirée. On
souligne le fait que notre résultat de ['-convergence n’est pas trivial, car la ['-convergence n’est
pas stable pour la somme.

La deuxiéme contribution originale est la construction d’une méthode numérique a partir
de ce résultat de I'-convergence. On utilise cette méthode pour étudier les minimiseurs pour
k < 20 en dimension deux et k¥ < 10 en dimension trois. Pour vérifier les résultats on utilise une
méthode de paramétrisation radiale et le logiciel MpsPack [14] pour trouver une approximation
assez précise des ensembles optimaux. On extrait ensuite les ensembles de niveaux égal a
0.5 des densités optimales obtenues grace a la la méthode basée sur la I'-convergence. En
comparant les résultats obtenus par ces deux méthodes on voit que la méthode basée sur la I'-
convergence est trés précise. On mentionne le fait que la méthode basée sur MpsPack permet
de faire des calculs d’optimisation pour k € [1,50] (et peut étre plus). Les résultats obtenus ont
été comparés avec ceux obtenus par P. Antunes et P. Freitas récemment en [10]. En dimension
deux on trouve quelques formes optimales qui ont une valeur optimale plus basse que celles
d’ Antunes et Freitas. En dimension trois la situation est inversée. Antunes et Freitas ont étudié
les formes optimales pour k € [1, 20] et nos formes optimales sont proches pour k € [1, 6]. Pour
k > T leurs résultats sont meilleurs. Cet effet est dii au manque de précision en dimension trois
de la méthode basée sur la I'-convergence.

La troisieme contribution originale consiste a trouver une condition d’optimalité générale,
qui peut étre écrite méme quand les valeurs propres optimales sont multiples. Un résultat clas-
sique nous dit qu’une valeur propre d’un ensemble (2 est différentiable par rapport a une per-
turbation réguliere si et seulement si elle est simple. Les résultats numériques obtenus nous
montrent que c’est n’est pourtant pas toujours le cas. On utilise des méthodes similaires a celles
utilisées par El-Soufi et Ilias [47] pour déduire que si ) est un minimiseur local du A\, sous
contrainte de périmétre et si (2 est de classe C?, alors il existe une famille de fonctions propres
(u;)™, telle que

(Opur)* 4 ... + (Opu)* = H,

ou H est la courbure moyenne du bord de 2. Cette condition d’optimalité nous permet de

prouver les résultats qualitatifs suivants :
e La frontiere d’un ensemble optimal ne contient pas des parties plates ;

e Cette condition d’optimalité permet d’utiliser un processus de bootstrap similaire a celui

qui a été utilisé dans [28] pour conclure que € est de classe C'™°.

Pour conclure la question de régularité pour le probleme sous contrainte de périmetre, il est

suffisant de pouvoir passer de C'* 2 C3. Afin de vérifier les résultats numériques, on cherche nu-
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mériquement les fonctions propres qui donnent I’erreur minimale dans la condition d’ optimalité.
Pour k < 15 on trouve des erreurs d’ordre inférieur & 10™%, ce qui signifie qu’il est trés probable
que les solutions numériques sont des minimas locaux.

En fin de ce chapitre on utilise quelques outils développés au cours de 1’étude précédente

pour étudier deux problémes spectraux.

1. On continue I’étude du probléme sous contrainte d’aire en dimension deux pour k €
[5,21]. L’étude de Freitas et Antunes [9] s’arrétant a k = 15.

2. On vérifie numériquement la conjecture de Polya pour des polygones ayant n arétes avec
n € [5,15]. Les résultats numériques confirment le fait que les polygones réguliers min-
imisent la premiere valeur propre sous contrainte d’aire. Ces tests numériques sont faits

a I’aide de deux ingrédients:
e en utilisant la méthode des solutions fondamentales on construit un algorithme in-
spiré de [4] pour calculer les valeurs propres d’un polygone.

e on déduit I’expression de la dérivée de la premiere valeur propre par rapport aux

coordonnées des sommets du polygone.

1.1 Introduction and previous results

Given a measurable set  C R? such that the injection H}(Q) < L*(Q) is compact, it is
possible to define the eigenvalues of the Dirichlet Laplace operator associated to €2. These

eigenvalues satisfy

—Au=Au in{)
u € HY(Q).
It is possible to write a variational characterization using the Rayleigh quotients in the following
way:
Ae(©) = min max 7fﬂ [Vl

SkCHY(Q) ueSy [ u?
where the minimum is taken over all k-dimensional subspaces S, C H}(Q). This variational

characterization allows an immediate proof of the following two important properties of \j:

1) If ) C Qg then Ak(Ql) > )\k(Qg)

1

It is a natural shape optimization problem to consider the minimization of A\ ({2) under certain
constraints. The first reference to such a problem can be found in the book The Theory of Sound

authored by lord Rayleigh [82]. The optimization problem

min Ay (€2) (1.1.1)

|€2]=c
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has been extensively studied in the past decades. Despite the large amount of progress made
in this field of study there are still many open questions concerning the optimization of the low
eigenvalues of the Dirichlet Laplacian.

The first notable result is due to Faber and Krahn. They proved that A;(£2) is minimized
by a ball under volume constraint. Polya and Szego proved that A\»(2) is minimised by two
balls under volume constraint. For the case k£ > 3 the shapes of the minimizers are unknown.
Numerical studies of the optimal shapes were performed, initially by E. Oudet in [79] for k =
3, ..., 10, and more recently by P. Antunes, P. Freitas [9] for £ < 15. An extension of these
computations up to k = 21 can be found in Section 1.8.1.

In recent articles [28],[44] authors considered a different problem, where the measure con-

straint was replaced by a perimeter constraint:
min{\x(Q) : @ € R% Q open , Per(Q) = c}. (1.1.2)
It is not difficult to see that problem (1.1.2) is equivalent to
min{\,(Q) + Per(Q) : Q ¢ R% Q open} (1.1.3)

in the sense that any solution of (1.1.2) is homothetic to a solution of (1.1.3) and conversely. We

give a proof in the following proposition.
Proposition 1.1.1. The problems (1.1.2) and (1.1.3) have homothetic solutions.

Proof: We know that the above problems have solutions in R¢ and moreover, for (1.1.2) if
we change the value of the parameter c the optimal forms change only homothetically.
Consider €2} a solution for (1.1.2). Then we can find ¢, for which

F(t) = M (t82) + Per(tQ))) = M) + 471 Per(27)

t2

is minimal. Denote Q = t,2:. We claim that 2y does not depend on c. Indeed, if f'(¢) = 0

then we have 5

G

() + (d — D42 Per(2) =0

20 (2 )
SO0ty = ‘”\l/(d — II;EDer)(Qz)' This means that

Per(Q) =t Per(Q) = “/20,(Q) Per(Q)2

and we note that the last term is scale invariant. Therefore () is the same no matter what ¢ we
choose.

Pick now € R? arbitrary and consider Q; = af); a solution of

min A (9).

Per(S)=Per ()
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Then we have
Ak(Q) + Per(Q2) > Ap(€1) + Per(21) > A\i(20) + Per(€)

where in the last inequality we have used the fact that () is optimal for A;() + Per() among all
its homothetic transforms. Thus we have proved that a solution of (1.1.2) produces a homothetic
solution of (1.1.3).

Conversely, if we have a solution {2y of (2) then it is obvious that €2 is a solution for

min  A,().

Per(Q2)=Per(Qo)

U

In the case k = 1, the solution to problem (1.1.2) is obviously a ball as a consequence of
the isoperimetric inequality and the Faber-Krahn inequality (using the formulation (1.1.3)). The
case k = 2,d = 2 was considered by D. Bucur, G. Buttazzo and A. Henrot in [28]. The authors
provided that the optimal shape exists and it has C'*° regularity. Further qualitative results are

given:
e The optimal shape does not contain segments or arcs of circles in its boundary.

e There are exactly two points on the boundary of the optimal shape where the curvature

vanishes.

A numerical computation of the optimizer, provided by E. Oudet, is also presented. Recently
G. De Philippis and B. Velichkov [44] proved that the shape optimization problem (1.1.2) has a
solution for any k£ € N and for any dimension d. They also proved that the solution is bounded,
connected, open with boundary which is C1 outside a closed set of Hausdorff dimension d — 8.

The numerical studies performed by E. Oudet [79] and P. Antunes, P. Freitas [9] for problem
(1.1.1) show that the expected minimizers do not have an obvious geometric structure for k£ > 5.
In [28] it is proved that the optimal shape €2* for k£ = 2, d = 2 does not contain any segment or
any arc of circle in its boundary. This suggests that we cannot hope to find a simple geometric
description of the solution of (1.1.2) even in the case of k = 2.

In this context it is relevant to introduce new numerical approaches which provide a precise
description of optimal candidates in two and three dimensions.

One numerical approach which has been successfully used in the last few years is the follow-
ing Fourier parametric method. Considering the formulation (1.1.3) we note that the monotonic-
ity of )\, and the fact that in R? convexification decreases perimeter imply that every solution
of the problem (1.1.2) in the plane is convex. Thus we can represent any optimal candidate in
the plane using its radial function 7(¢). Furthermore, we can approximate the radial function
r by its truncated Fourier series 7,, (n sine and cosine coefficients). Doing this truncation, we
don’t perturb the eigenvalues too much. B. Osting gives an estimate of this error in [78]. In this

way we can represent a good approximation of the boundary of a star convex shape by a finite
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number of parameters. It is possible to find the partial derivatives of A (£2,, ) with respect to the
Fourier coefficients. Then a gradient descent algorithm can be used in order to find the optimal
shape candidate in terms of first 2n + 1 Fourier coefficients. This method is very precise and
gives reliable estimates of computed eigenvalues. The same method is used in [9]. The method
also works in three dimensions and P. Antunes and P. Freitas announced a result in this direction
[10]. A possible drawback of using this method in three or more dimensions is the fact that we
do not know a priori that the solutions of (1.1.2) are star-convex in dimension greater than two.
Moreover, the implementation of this method in dimensions d > 3 is not straightforward.

A different approach consists of representing the shape €2 as a density function ¢ : D —
[0,1] (where D is a bounded, open set of R?). In recent works of E. Oudet [80] and B. Bour-
din, D. Bucur, E. Oudet [18], some I-convergence results are used in order to approximate the
perimeter of €2 and the eigenvalue A\, (€2) by relaxed functionals calculated on a density approx-
imation of ). As stated above, choosing a large enough bounding box D, does not modify the
optimizer. In the case of the ['-convergence approximation presented in Section 1.3, considering
a bounding box D simplifies the proofs.

The first main contribution of this chapter is to prove that we can combine the two results
above in order to produce a relaxation by I'-convergence of A (£2) +Per(2). We implement this
method for d = 2 and d = 3 and we obtain comparable results with the Fourier parametrization
approach, in the two dimensional case. The advantage of our method is the fact that we do not
make any topological assumptions on the optimal shape. Moreover, the numerical implementa-
tion in dimension three or greater is very similar to the one in dimension two.

The second contribution is to provide new optimality conditions (Corollary 1.5.4) for this
spectral shape optimization problem which are also relevant in a non differentiable context. As
a matter of fact, the difficulty that arises very often in problem (1.1.2) is the fact that the cost
function is not differentiable anymore when the optimizer does not have a simple k" eigenvalue.
This fact was observed in our computations presented in Section 1.4. Notice that the question
of finding the multiplicity at the optimum is still open even for problem (1.1.1). Thanks to these
new optimality conditions, we are able to generalize the qualitative results obtained in [28] in
our general setting: for every k and any d, the optimal shape does not contain flat parts in its
boundary. The optimality condition is obtained under the hypothesis that (2 is of class C, which
is stronger than the result proved in [44]. The optimality relation allows us to use a bootstrap
argument, similar to the one used in [28], in order to prove that if € is of class C?, then Q is
of class C'*°. Thus, in order to completely solve the regularity issue for problem 1.1.2, it only

remains to fill the gap between C'** and C3.

1.2 Preliminaries

In the proof of our results we will need different theoretical tools, which are recalled below.
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1.2.1 Spectrum of a measurable set

For well posedness reasons, it is convenient to extend the notion of Sobolev space to any mea-
surable set 2 C RY by defining

HNQ) = {ue H'(RY : u = 0 ae. on Q°}.

In general we have Hj(Q)) C ﬁé(Q) and we have equality if, for instance, {2 has Lipschitz
boundary. Furthermore, it is proved in [66, Chapter 4] that there exists a quasi-open set w C
such that () = HE(w). More technical details about the choice of this space, and why is it
suitable in the study of problem (1.1.2), can be found in [28] and [44].

For any  C R¢ of finite measure and any f € L*(R%) we define Rq(f) € HL(2) as the

weak solution in H () of the equation
—Au=f, ue H(Q)

or equivalently as the unique minimizer in H 4(Q) of

u»—)l/ Vu|2—/fu.
2 Jao Q

Then R, : L*(2) — H}(Q) is a positive, self-adjoint and compact operator. As a consequence,
its spectrum is discrete and its eigenvalues form a sequence converging to zero. Thus we can

set
1

 My(Ro)
where 0 < ... < Ak(Rq) < ... < A(Rq) are the eigenvalues of Rq,.
If i is a capacitary measure (i.e. j(A) = 0 if cap(A) = 0) then A\ (p) is defined as the k™

Ak (©2)

eigenvalue of the operator —A + ;1. The corresponding Rayleigh formulas are

Vul?dz + [, u*d
Ak(p) = min  max JplVu I ,u’
EESk ue E\{0} [ u?dx
where the minimum is taken over n dimensional subspaces of HJ(D) N L*(D; u). Using this
formula we immediately deduce the following monotonicity property: if © < v then \;(p) <
Ar(v). We note that the eigenvalues of a shape (2 correspond to the eigenvalues of the measure

+OOQC .
The notion which is well suited to the study of the convergence of Dirichlet eigenvalues is

the y-convergence. If (u,,), 1 are capacitary measures we say that p,, y-converges to p if
|R“n — Ru|L(L2(D)) — 0.

We have denoted R, the resolvent of the operator —A + /. In particular, if ji,, y-converges to

14, then
Ae(pn) = Ae(p).
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A useful characterization of the y-convergence of a sequence of sets (2,,) to another set €2 is
the Mosco convergence of the spaces H_(€2,) to H}(£2). We suppose that €2,,, §) are contained
in a bounded open set D. We say that H}(€,,) converges to Hj (€2) in the sense of Mosco if the
two following conditions are satisfied:

(M1) For all u € H} () there exists a sequence u,, € H}(£2,,) such that u, converges strongly
in H}(D) to w.

(M2) For every sequence u,,, € Hj(,,) weakly convergent in H}(D) to a function u we have
u € H(Q).
For more details we refer to [27, Chapter 6] and [66].
For every measurable set € of finite measure we denote wg, the weak solution of the equation
—Awg =1, wq € ﬁ]&(Q)
We have wy < wq whenever U C 2 and
Hy({wg > 0}) = Hy({wa > 0}) = Hy(9).

We refer to [28], [44] for further details.

1.2.2 T'-convergence and Modica Mortola Theorem

In shape optimization, many numerical methods replace the shape variable by some unknown
function. One main difficulty in our context is to associate to this kind of functional framework
a way to compute the perimeter of the set. To achieve this goal, the characteristic function xq
will be approximated by a regular function u € H'(£2) and the perimeter of 2 will be replaced
by some smooth functional. This smooth functional is chosen from a sequence of functionals
which I'-converges to the perimeter.

The notion of I'-convergence, introduced by de Giorgi, is a suitable tool for the study of the
convergence of variational problems. For the sake of completeness, we present its definition

and some of its main properties.

Definition 1.2.1. Let X be a metric space and F., F : X — [0, +00| a sequence of functionals
on X (defined for € > 0). We say that F_ I'-converges to F' and we denote F r if the
following two properties hold:

(LI) Foreveryx € X and every (xz.) C X with x. — x we have

F(z) < liminf F_(z.) (1.2.1)

e—0

(LS) Forevery x € X there exists (v.) C X such that (x.) — x and

F(z) > limsup F.(z.). (1.2.2)

e—0
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Given zo € X we will call recovery sequence a sequence (x.), which satisfies property

(1.2.2). This sequence satisfies, in particular, the relation

lim F,(z.) = F(x).

e—0

Here are three main properties of the ['-convergence.

Proposition 1.2.2. If F. Ly Fin X then the following properties hold:
(i) F is lower semicontinuous;
(ii) If G : X — [0, 00) is a continuous functional then

L+G- 5 Fia.
(iii) Suppose x. minimizes F; over X. Then every limit point of (x.) is a minimizer for F.

The last property suggests that we could approximate a minimizer of /' by a minimizer of
F for € small enough. This method was successfully used in [18, 80].

Sometimes it is difficult to prove the (LS) property (1.2.2) for every x € X. Having an
element = with some good regularity properties may aid in constructing the recovery sequence.
The following procedure, of reducing the class of elements x for which we prove (1.2.2) to a

dense subset of { F' < 400}, is classical (see for example [19],[20]).

Proposition 1.2.3. Let D C {F < 400} be a dense subset of X, such that for every x € {F <
+o00} and (u,) C D, with (u,) — x we have

lim sup F'(u,) < F(x).

n—oo

Suppose that for every x € D, the property (1.2.2) is verified. Then (1.2.2) is verified in general.

The result stated below is due to Modica and Mortola [72], and it provides an approximation

of the perimeter using ['-convergence.

Theorem 1.2.4. Let D be a bounded open set and let W : R — [0,00) be a continuous
function such that W (z) = 0 if and only if z € {0,1}. Denote ¢ = 2 fol VW (s)ds. We define
F.,F : LY(D) — [0, +-00] by

e[ IVulP +1 [, W(u) we H'(D)

+00 otherwise

F.(u) =

and
cPer(u'(1)) we BV(D;{0,1})

+00 otherwise
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then
F.— F

in the L*(D) topology.
For a proof we refer to [1] or [32]. In the numerical simulations we fix the potential
W(s) =s*(1—s)?
which imposes the corresponding constant ¢ = 1/3.

Remark 1.2.5. In general if F. L Fand G, L. & we cannot conclude that F.+ G, LN
F + G. Thus, the result proved in Section 1.3 is not trivial. One sufficient condition for the
above implication to hold would be that for each u we could find the same recovery sequence

for F' and GG. For more details and examples see [19].

1.2.3 Perturbation theory for eigenvalues

Let (f.) be a family of diffeomorphisms of R¢ which depend analytically of ¢, such that f,
is the identity. Each such family of diffeomorphisms determines a sequence of perturbations
(€2) = (f-(€2)) of Q. The vector field V' = <L f.|._ is called the direction of the perturbation.

One natural question is to see whether the map
e A\ (92) (1.2.3)

is differentiable at ¢ = 0. It is known that the above map is differentiable if and only if A\;(€2)
is simple. Nevertheless, it is possible to prove that if \;(€2) has multiplicity p > 1 and if we
consider an analytic perturbation €. = f.(2), then the p corresponding eigenvalues move on p
smooth curves as ¢ varies. The differentiability is lost because the p eigenvalues change their
places on the p smooth curves as € passes through zero, due to their ordering. We could recover
some informations on differentiability if we relabel them. This method has been used in [47].
We present below some of the results needed to derive our optimality conditions.

Consider € a bounded, open set of class C? in R?: therefore the mean curvature H is well
defined and continuous. We denote by n the outer normal to 2. Any perimeter preserving
perturbation Q. = f.(2) induces a function v = (£ f.|._o, n) on O satisfying [,, H v do = 0.
We denote by P, (99) the set of C" functions on 92 such that [, % v do = 0. We denote by
divr the tangential divergence with respect to I'. We refer to [66, Section 5.4.3], for a precise

description of divr.

Lemma 1.2.6. Let v € Py(02). Then there exists an analytic perimeter preserving deformation
Q. = fo(Q) such that v = (L f.|.—o,n).

Proof: Let U be an open neighborhood of Q and #, 7 be C! extensions of v, n to U. For

e sufficiently small, the map p.(z) = = + c0(x)n(z) is a diffeomorphism from €2 to ¢.(2)
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(local inversion theorem). This deformation is analytic in ¢, but is not necessarily perimeter-
preserving.

Let X be an analytic vector field on U such that |, 50 divaa X # 0 and let u; be the one
parameter group of diffeomorphisms associated to X. Define (¢,¢) — G(t,e) = Per(u; o
©-(9)). Using the fact that % |,_y = X and Proposition 5.4.18 from [66] we obtain

oG d .
E(O’ 0) = pm Per(u:(2)) = /ag divaq Xdo # 0.
Therefore we can apply the implicit function theorem around (0, 0) to see that there exists an

analytic function ¢ — t(¢) defined on a neighborhood (—, ) of 0 such that

G(t(e),e) = G(0,0) = Per(Q).
Thus the deformation g. = wuy(.) © ¢. is perimeter preserving. Moreover, using Propositions
5.4.9 and 5.4.18 from [66], we have

#(0) = _d% Per(:(£2))|-=0 _ _faQ divgq vndo _ Joq H v do _
% Per(u:(2))]i=o faQ divgo Xdo fBQ divgq Xdo

Therefore, if we set H (t,e) = u; o ¢, then

d _d , d _ dp. R
729 (@)e=o = - H(£(0),0)°(0) + ——H(¢(0),0) = —~|e—0 = 8(2)7(2) = v(z)n(z)
for x € 0. In conclusion, g. is the desired perturbation. O

Below we present two results from [47], which will be used freely in the rest of the article.

We omit the proofs, as they can be found in the cited article.

Lemma 1.2.7. Let \ be an eigenvalue of multiplicity p of the Dirichlet Laplacian on (). For any
analytic deformation Q. of ) there exist p families of real numbers (A, .);<, and p families of
functions (u;.)i<, C C*(£).), depending analytically on ¢, satisfying for all ¢ € (—¢y, £¢) and
foralli e {1, ... p}:
(a) Az’,O =\
(b) The family {u; ., ..., u, .} is orthonormal in L*().).
—Aum = Ai75ui7€ in Qg

u; . = 0 on 05)..

(c) We have

Lemma 1.2.8. Let )\ be an eigenvalue of multiplicity p of the Dirichlet Laplace operator and
denote E the corresponding eigenspace. Let Q). = f.(2) be an analytic deformation of §). Let
(Aic)i<p and (u; ¢ )i<p be like in Lemma 1.2.7. Then \] = iAi7€|€:0 are the eigenvalues of the

de
quadratic form q, defined on E\ C L*(Q) by

qu(u) = —/m (g—Z)zv do,

where v = <%f5, n). Moreover; the L*-orthonormal basis U1,0, .-, Up o diagonalizes q, on E.
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In the rest of the chapter we use \; . to denote A\ (§2.). We define the following notion of
critical domain for the eigenvalues of the Dirichlet Laplacian, which generalizes the notion of

local minimum or local maximum.

Definition 1.2.9. The domain ) is said to be critical for the k™ eigenvalue of the Dirichlet
problem if, for any analytic perimeter-preserving deformation ). of (), the right-sided and left-

sided derivatives of \j, . (see Lemma 1.2.7) at € = 0 have opposite signs, that is

1.3 The I'-convergence resulit

In this section we construct a ['-convergence approximation for A\ (2) 4+ Per(2). This result
allows us to construct a numerical method for the study of problem (1.1.2), which will be
presented in the next section. Consider F' : R¥ — R, a continuous function which is increasing
in each variable. Let D C R? be a bounded, open set. For every ¢ : D — R, measurable we
define A\ () = Ax(¢ dx), where o duz is seen as a capacitary measure. In the following, ¢ will

be a fixed positive real parameter.

Theorem 1.3.1. Define J. : L'(D;[0,1]) = R U {+oc} by

l—¢p l—yp / 2 1/ 2 2
o) =F (A dz) .., A d = 1-
Je(¥) <1< = af) k< = af))+€ DIVsO| + 2 Ds@( )

if o € H'(D) and +oc otherwise. Then J. L Jin the LY(D) topology, where

00 otherwise

Proof: For simplicity, in the rest of the proof we denote the quantity F'(A1(£2), .., \x(€2))
by F(£2). With this notation, F’ becomes decreasing for the inclusion, as a function of 2. We
make the same convention when instead of {2 we have a measure y. Let us begin by proving the
I' — lim sup part of our result.

1. Reduction to regular domains. This part of the proof is a standard step in the proof
of the I' — lim sup property (see Proposition 1.2.3). We refer to [19],[20] for more details and
examples. If €2 is regular, the construction of a recovery sequence is straightforward (see Part 2
of the proof). We are left to prove that regular sets are a dense subset D of { ' < 400} and that
they satisfy the following property: for each 2 € {F' < +oo} we can find (€2,,) C D such that
Xa, — Xa in L*(D) topology and lim sup J(xq,) < J(xa).

n—oo
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In [7], Thm 3.4.2 it is proved that the sets with boundary of class C'*° are dense in the class
of finite perimeter sets, when considering the L' topology. Thus we can choose our dense set
D to be the family of subsets of D with finite perimeter and smooth boundary. If ¢ is the
characteristic function xq of €2 and it belongs to BV (D) then €2 is a set of finite perimeter.
The theorem we cited above says that each finite perimeter €2 set can be approximated in the
LY(D) topology with a sequence (£2,,) of finite perimeter sets having smooth boundaries such
that Per(),) — Per(2). At this point it is not clear if we have limsup F'(2,) < F(9Q).

n—oo
The objective of the following paragraphs is to construct (£2,,) in such a way that the previous

inequality holds.

If we denote (py) a sequence of mollifiers, we have

Per(@) = [ IDval = Jim [ [Vxa ol =
1

1
= lim Per({xq * pr > t})dt > / lim inf Per({xq * pr > t})dt (1.3.1)
k—oo Jo o Fk—oo

where we have applied the co-area formula and Fatou’s lemma. Here and in the sequel we
denote by Dyg the gradient of xq in the sense of distributions. By applying Chebyshev’s
inequality we obtain that

1
fxas o> 0\ = o s m—xa 2 1 < 7 [ Ixox =l
R

and

1
— * P — .
1_t/Rd|XQ PE — Xol

Therefore X {yqxp, >} converges to xq in the L' (D) topology for almost every ¢ € (0,1). By the

IO\ {xa*xpr >t} = {xa —xaxpr =21 -1} <

lower semicontinuity of the perimeter we deduce that

li;r_l)g}f Per({xq * pr > t}) > Per(Q),
Combining this with (1.3.1) we obtain

li]&g}f Per({xq * pr > t}) = Per(Q).

for almost every ¢ € (0, 1). Sard’s theorem tells us that the level sets of xg * p; are smooth for
almost every t. Moreover, Lemma 2.95 from [7] tells us that almost all level sets of yq * px
are transversal, i.e. H" ' (0{xq * pr} N OD) = 0. In this way, we can choose the smooth,
transversal approximating sets at almost every level ¢ € (0, 1).

Denote w = Rq(1) = R, (1) where w C £ is a quasi open set with the property that
Hi(w) = HL(Q). We can assume that ||w|| < 1 (or otherwise rescale it) so that we get

w < xq which implies that wxpr < xqo*py and as a consequence {wx*pp > t} C {xa*xpr > t}.
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We want to prove that lim sup F'({w * p;, > t}) < F({w > t}). Denote Ay = {w * px >
k—o0

t} N {w > t}. It is enough to prove that (Ay) vy-converges to {w > t¢}. Indeed, if this holds,
then

limsup F({w * pr > t}) < ]}Lrilo F(Ag) = F({w > t})

k—00

To prove this y-convergence result it suffices to prove the first Mosco condition, since the second
one comes from Ay C {w > t}. For more details we refer to [27, Section 4.5]. To prove the
first Mosco condition it is enough to prove it on a dense subset of H}({w > ¢}). One such
dense subset is given in [41] Prop 5.5 and is {C%°(RY) - (w — t)}. Let ¢ € C°(R?). Then if
or = @ -min{(w*p — )", (w—1t)T} we have o, — ¢ (w—1t)"in H}(D) and ¢, € H (Ay).
This concludes the proof of the fact that A, y-converges to {w > t}.

Therefore we have found a sequence
By = {wxpy >t} C Cp = {xur * pr. > t}
with C{ — xq in L' (D), 1i]£n inf Per(C}) = Per(Q) for almost every ¢, F(C}) < F(B}) and
—00

limsup F(By) < F({w > t}).
k—o0
Thus, we can choose a diagonal sequence £}, = C’li’“ with ¢, — 0 such that x5, — xq in Lt (D),
Per(E}) — Per(Q) in order to obtain

liinsup F(Ey) < F({w > 0}) = F(w) = F(Q).
—00

2. Proof of the I' — lim sup part. Using the previous density result, it suffices to prove
the I' — lim sup only for characteristic functions of smooth sets with finite perimeter. Let ¢ €
LY(D;[0,1]) with J(p) < +oo. Then ¢ is the characteristic function of a set 2 with finite
perimeter. We assume, as mentioned above, that 2 has smooth boundary and that H"~1(9Q N
oD) = 0.

We take (p.) C H'(D) to be a recovery sequence associated to the Modica-Mortola
approximation (see Theorem 1.2.4). We recall that this sequence can be chosen to satisty
xa(z) = @.(z) for do(x) ¢ [0,¢] (see [32]; here dg represents the signed distance from a
point to 9). We have ¢, — ¢ in L'(D) and

1 1
lim [e/ |V |*dz + —/ 02 (1 — @3)(14 = — Per(Q).
e—0 D eJp 3

— Pe

Since for every x € €2 we have ¢.(z) = 1, we observe that +oop\o > . By the

monotonicity of \; we have

1- 5
)\J(Q) = )\](+OOD\Q) Z )‘j < gq(p d.]j‘) .

28



Using the monotonicity of F' we obtain

1—
lim sup F ( L dx) < F(Q).

e—0 gl

3. Proof of the I' — lim inf part. Let p € L'(D;[0,1]) and (¢.) € L'(D;[0,1]) such that
¢ — ¢ in L*(D). We assume that lim iglf J-(p-) < 400 since otherwise the result is obvious.
e—
The I' — lim inf part of the Modica-Mortola theorem tells us that

1 1
+oo>tminte [ (Voo 2 [ -z [ Dl
e=0 D €Jp 3Jp

Thus ¢ has is a characteristic function with bounded variation. This implies that = ¢ ~1(1) is

a set of finite perimeter relative to D, and

1 1
liminfE/ V. |* + —/ ©2(1 — ¢.)* > = Per(9).
e—0 D eJp 3

It remains to prove that

lim inf F (1 - ‘p‘fdx) > F(Q).

e—0 c4

Since F'is increasing in each variable, it is enough to prove that

1 —
lim inf \; ( gq%dx) > Ai(9).

e—0

Let w, be the solution of

—Aw.+ 22w, =1 inD

e4q

w. € HY(D).

Without loss of generality we can replace lim inf with lim by taking a sequence ¢, which realizes

the lim inf. Denoting ¢, = ¢.,, we have to prove that

1 —
lim A < ‘”m) > \i(9).

n—o00 5%

By compactness there is a subsequence of (w,, ) converging weakly in H}(D) to w. We can
choose a subsequence of this sequence which converges almost everywhere to w. For simplicity
we relabel this subsequence (wy,). It is enough to prove the inequality for (¢y) (the correspond-
ing functions for this new sequence (wy)).

Taking wy, as test functions in the weak form of the partial differential equation we get

1_
/7q¢kwi:/wk—/ \Vwk|2§/wk§/wp,
D & D D D D

where wp is the solution of
—AU}D =1 in D
Wwp € Hol(D)
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We know that .
lim inf *k(x)
k—oo Ek

:+oo

for x € Q¢since 1 — ¢i(z) — 1 ae. on Q¢ and g, — 0T. Therefore since wy — w almost

everywhere, if w(x) > 0, x ¢ 2 and wi(z) — w(z) then

1—
lim inf #@)wz(:c) = +00.
k—oo ek

Fatou’s Lemma tells us that

1-— 1-— 1-—
+oo > liminf / quk wy > / lim inf q(pk wi > / lim inf q(pk w;

This inequality and the previous remarks impliy that the set Q2° N {w > 0} is of measure zero,

and therefore w € f[& (€2). Since the y-convergence is compact, up to a subsequence we have

1 —
Ue = quOk 1)M2+OOQc
k

As a consequence, we have

1 —
lim i (ﬂd;p) = (i) > N(9Q),

k—o00 6%

which finishes the proof of the I' — lim inf part. U

1.4 Numerical study of problem (1.1.2)

The method we developed for studying problem (1.1.2) combines the ['-convergence methods
used in approximating the perimeter (used in [80]) and the eigenvalues of the Laplace operator
(used in [18]). The combination of the two cited methods is made possible by the I'-convergence
result proved in the previous section. As it has been underlined, our I'-convergence method is
very flexible with respect to both the dimension and the topology of the shapes. In order to
evaluate the quality of our solution we recall in subsection 1.4.2 the method used successfully
by B. Osting [78] and P. Antunes, P. Freitas [9]. In Table 1.1 we illustrate that both methods give
the same results in the easy context of the two dimensional case. Finally, we extend previous
results in the three dimensional case, where we notice that some of the optimal shapes found

seem to be non-convex. This behaviour has been conjectured in [28].

1.4.1 Method based on the I'-convergence result

We relax our shape optimization problem with respect to ) by an optimization problem of an
unknown function ¢ : D — [0,1]. In our computations we choose D = [0, a]> and impose
periodic boundary conditions (so that the perimeter of €2 is not influenced by the boundary of

D). We consider a N x N uniform grid and we represent the function ¢ by its values (¢; ;) fyj:l
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on this grid. Note that the main I'-convergence result stated in Theorem 1.3.1 holds for any
exponent ¢ positive. In our computations we choose ¢ = 2, because we observed a good
numerical behaviour with this parameter. This good behavior could be explained by a well

balanced effect of the cost values for ¢ = 2 in the scale of our discretization.

1
sOHE/IVsOIQ+—/902(1—s0)2
D €Jbp

by using centred finite differences on the considered grid. This approximation is equivalent to

We approximate

considering a piecewise linear function associated to the grid values.

For the eigenvalue approximation we consider the discrete form of

—Auy + ;puk = A\pUp.

In order to obtain a matrix formulation, we fix an ordering on the N x N grid. We denote by
1) the vector which contains the values on the grid of the function v» with respect to this fixed
ordering. We define A to be the N? x N? matrix associated to the discrete Laplacian on the
considered grid, with respect to the fixed ordering. The discretized eigenvalue problem becomes
l—¢

e2

[A + I] Uk = N\l

We used the Matlab solver eigs to solve this matrix eigenvalue problem. The expression of

the discrete gradient of our functional with respect to each component of ¢ is

1
)
——u.
k
2

We refer to [18] for more details.
We can compute the gradient of ¢ +— st Vo|? + %fD ©*(1 — )? with respect to a
perturbation 0 of o € H'(D) as follows:

d 1
— [e/ IV(p+t0)]> + = / (p+10)*(1— (<p+t0))2] =
dt D €Jp t=0
1
= 26/ (Vp, Vo) + - / (20 — 6% + 4¢*)0
D €Jp
1
= / l—?a?A(p + = (2¢ — 6% + 4@3)} 0
D €
Thus the discrete gradient of  — ¢ fD V| + % fD ©*(1 — )? with respect to ¢ is given by
_ _ _ _ _ L. _ _
26(4Q; j — Givij — Pi—1j — Pij+1 — Pij—1) + g(%m‘ — 607 ; + 43; ;). (1.4.1)

To obtain a solution g of the problem

1 1 -
min |:€0/ \Vg0|2+—/ g02(1—g0)2+)\k< ;pdxﬂ
D €0 Jp €0
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we start from a random configuration with a concentration around the center of the grid. Numer-
ical experiments have shown that starting from a totally random configuration tends to lead to a
shape consisting of % disks. This configuration is a local minimum, but not the global one, since
we know that the optimal shape is connected [44]. We think this behaviour is due to the fact
that when we approximate €) by density functions, the optimization of )\ tends to separate {2
into nodal domains. Then the perimeter, which is optimized locally, transforms those domains
into disks. This observation motivates our previous initialization. For the optimization part, we
used the quasi-Newton algorithm LBFGS implemented in [84],[86].

The choice of the initial parameter €, is important for the algorithm to converge. Numerical
experiments have shown that ¢y € [%, %] are suitable for obtaining the expected results. This
observation is well known in the phase-field community. The parameter w was chosen equal to
0.5 which means that after each optimization we divide ¢ by 2. In the case ¢ is smaller than the

discretization step we refine the grid and interpolate the density functions to this new grid.

Algorithm 1 General form of optimization algorithm for min,, J.(¢)
Require: & € N gg > 0,pnax € NN € NJw € (0,1),tol € (0,1)

l: € = ¢€p;

2: Choose a random initial shape (¢ concentrated around the center of D;

3: repeat

4: p=1;

5 repeat

6: Compute the eigenpair (A, Uy) of A + %I and the gradient V(@) = —%y;
7 Compute the gradient of ¢ — ¢ [, [Ve|> + 2 [ ©*(1 — ¢)? with respect to the

components of ¢ on the grid using formula (1.4.1);

8: Do a step of the LBFGS algorithm: update descent direction and do a linesearch;
9: © = @ —dp;
10: p<+p+1;

11: until p = p,,, or |d,| < tol;
12: e=(1—-w)e
13: untile < 1/N.

1.4.2 Parametrization using Fourier coefficients

In order to verify our results, we compare them with the ones obtained using the Fourier bound-
ary parametrization method mentioned in the introduction. This method is well known, and was
applied in [9],[78] and [?]. We present it below for the sake of completeness.

We know that the solutions to problem (1.1.2) in R? are convex shapes, so every such shape
is uniquely defined by its radial function (), 6 € [0, 27). B. Osting proved in [78, Prop. 3.1]
that the error |[\g(€2.) — Ax(€2,.,)| can be made arbitrarily small if we choose n big enough,

where 7, is the truncation of the Fourier series representation of r to 2n + 1 coefficients:

rn(0) = ag + i ay cos(kd) + i by sin(k6).

k=1 k=1
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This allows us to write \;(2) as a function of 2n + 1 variables A (aq, ai, ..., ay, by, ..., by).

Furthermore, using the fact that the derivative of A (£2) with respect to a perturbation V' of the

=], () wo

(proofs and other references can be found in [65, 66]) we can find that

g_iz __ /0 7 1(0) cos(kt) (%(r(ﬁ)ﬁ)yd@

n

boundary is

2_2: __ /Ozﬂr(e) sin(k6) (%@(9),9))2(1@

We can find similar formulas for the derivatives of the perimeter in terms of Fourier coefficients.
For computing the eigenvalues and normal derivatives of the eigenfunctions it is possible to use

the publicly available software MpsPack [14].

1.4.3 Our numerical results

In order to solve numerically problem (1.1.2), in its equivalent form (1.1.3), we search the

solutions of the relaxed problem

1 1—
min {so/ \Vg0|2+—/ g02(1—g0)2+)\k( ;pdx)}
D €0 Jp €0

We use the method presented in subsection 1.4.1 on the square D = [0, a]? (where a is chosen
such that the solution of (1.1.3) fits inside D).

Since the method presented in subsection 1.4.2 was used successfully in the study of the
problem (1.1.1), we employ it to find the numerical solutions of (1.1.2). These solutions are a
benchmark to which we compare the results we found using our I'-convergence methods.

The optimal shapes obtained with the I'-convergence method coincide with the ones found
using the Fourier boundary parametrization method. The numerical results can be seen in Figure
1.1. To compare the accuracy of the results, we took the optimal shapes obtained with the I'-
convergence method and we isolated the 0.5 level set. We choose a point in its convex hull, the
centroid G of a discretization {z, ..., z;} of the boundary, and computed the distances from that
point to the contour, denoted by {p1, ..., p;} as well as the angles made by Gz; with the positive
x-axis, denoted by {61, ..., 0;}. This procedure gives us a radial parametrization of our domain.
Using a least squares fit

! n n 2
‘min Z (ao + Zaj cos(76;) + Zsin(j@i) — pl-)
(@5)7-0:(b3)7-0 =5 = =
we are able to find the first 2n + 1 Fourier coefficients of this radial function. We use these

coefficients to construct the radial function of our shape 2*. We use MpsPack to compute
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Ak(2%) + Per(2*) and we compare the results, which can be seen in Table 1.1. We can see
that the results agree, and in general the ones obtained with the I'-convergence method are a
bit weaker, in the sense that the minimal value is higher. Still, the fact that we obtain the same
shapes, with small errors, shows that the I'-convergence method is a suitable tool for the study
of problem (1.1.2). Furthermore, it gets close enough to the optimizer without imposing any
topological constraints.

One interesting question that has been addressed in several papers ([9],[79]) is the multi-
plicity of )\, at the optimum. We noticed in our computations that the optimal shape for (1.1.3)
does not always have multiple k™ eigenvalue. This was already proved for k¥ = 2 in [28] and
our computations have shown that for £ = 6,9, 13, 15 the optimal eigenvalues should be simple.
This behaviour is different from the one observed for problem (1.1.1). It is known that if a
local minimizer of problem (1.1.1) would have simple eigenvalue then its eigenfunction would

satisfy the overdetermined problem

—Au=MAu inf)
u=20 on 0f) (1.4.2)
% =c on 0f),

where ¢ > 0 is a constant. There is a conjecture due to Schiffer concerning the above overdeter-

mined problem. For more details we refer to [15] and [94].

Conjecture 1.4.1. If problem (1.4.2) has a solution, then (2 is a disk.

This is true in the case of Ay, but the arguments used in the proof rely essentially on the
fact that the first eigenfunction can be chosen positive. In the case &k > 2, the eigenfunctions
corresponding to A\, are not positive, so the argument used for k£ = 1 does not work here. Still,
to our knowledge, no counter-example of this conjecture is known.

A recent result by A. Berger [16] says that in two dimensions, the only positive integers k
for which the ball is a local minimizer for \; under volume constraint are £ = 1, 3. Thus, we

have the following interesting fact:

e Suppose that for some k ¢ {1, 3} the shape for which (2 is solution to (1.1.1) has simple
k™ eigenvalue. Then the k™ corresponding eigenfunction u;, satisfies an overdetermined
problem of the type (1.4.2). The result of A. Berger says that ) cannot be a disk. Thus

Conjecture 1.4.1 is contradicted.

Thus, Conjecture 1.4.1 together with the result of [16], imply that in the case of problem (1.1.1),

if £ > 2 the multiplicity is greater than one at the optimum.
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In the case of the perimeter constraint, the situation is different. We can find shapes (2,

which are not disks, such that the overdetermined problem

—Au=X M in{
u=0 on 0f)

%:H on 0f)

has a non-trivial solution. Such examples are the shape described in [28] as well as the shapes
we found numerically for £ = 6,9, 13, 15.

We notice that the numerical optimal shape obtained for £ = 3 is the disk. This is to be
expected, since it is a direct consequence of the conjecture that the disk minimizes A3(€2) under
volume constraint. This is still an open problem.

We observe that all the optimal shapes computed have one or more axes of symmetry, while
this is not the case for the volume constraint where the optimal shape for £ = 13 is suspected
to be non-symmetric [9].

The fact that we can immediately generalize the method in three dimensions is a big advan-
tage. One drawback is the fact that we were not able to obtain very high resolution due to the
fact that the matrices involved have extremely large dimensions. The shapes presented in Figure
1.2 were obtained using a 40 x 40 x 40 grid on D = [0, a]®. As previously, the initial shape was
concentrated around the center of the cube D. In the paper [28] a few conjectures were stated
regarding the minimizers in higher dimensions. The first conjecture was that the optimal shape
for A\o(€2) + Per(2) has cylindrical symmetry and is not convex in the three dimensional case.
This can be observed in our results. To conclude that a shape is convex or not we simply apply
the following procedure: we first compute a discretization of the isosurface {¢ = 1/2} and esti-
mate the exact measure of its volume (up to roundoft error). Then, in a second step we compute
the convexhull of this discretized isosurface and again estimate its volume. When the volume
of the convex hull is 5% greater than the volume of the original isosurface we conclude that the
computed optimal profile is not convex. We have obtained non-convex shapes for £ = 2,5,6, 7.
Cylindrical symmetry can be observed for £k = 2,3,4,5. For k = 8 we observe a symmetry
by a rotation of angle 7/2 and for £ = 10 we observe a tetrahedral symmetry. We notice that
the numerical optimal shape for k£ = 4 is approximately a ball. This is a direct consequence of
the conjecture that the ball minimizes A\4(£2) under volume constraint in three dimensions. The
optimal computed value of )4, in this case, is 255.56, while the actual eigenvalue of a ball of
same surface area is approximately 253.72. We provide for each shape the value of the scale
invariant expression A\ (€2) Per(£2), calculated using a finite element method.

We discussed our results with P. Antunes and P. Freitas, who made computations for problem
(1.1.2) for &£ < 50 in two dimensions and k£ < 20 in three dimensions. In two dimensions we
obtained similar results with the exception of a few shapes which are significantly better in
terms of cost function. Our results, for £ < 20 can be seen in Figure 1.1 and the results for

k € [21,50] can be seen in Figure 1.4. We emphasize the fact that the computations done for
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k | mult. | I'-conv | Fourier k | mult. | T'-conv | Fourier
1 1 11.5523 | 11.5507 11 2 24.6262 | 24.5966
2 1 15.2819 | 15.2806 12 3 24.7578 | 24.7430
3 2 15.7597 | 15.7573 13 1 25.9891 | 25.9823
4 2 18.3511 | 18.3485 14 2 26.4375 | 26.4325
5 2 19.1168 | 19.1087 15 1 26.9151 | 26.9123
6 1 20.0919 | 20.0908 16 3 27.2753 | 27.2525
7 2 21.5097 | 21.5009 17 3 27.3730 | 27.3600
8 2 22.0686 | 22.0262 18 2 28.6634 | 28.6279
9 1 23.2096 | 23.2073 19 2 29.0940 | 29.0796
10 2 23.5833 | 23.5500 20 3 29.5341 | 29.5136

Table 1.1: Comparative results - 2D

k > 21 use exclusively the software MpsPack. A detailed comparison of the cost function with
the results of Antunes and Freitas is presented in Table 1.3. In the three dimensional case, for
k < 6 our results coincide with theirs, but for £ > 7 their optimal shapes have better cost values
than ours. We believe this is due to the limitation on the discretization parameter for our method
in three dimensions. A detailed comparation between the optimal costs is presented in Table
1.4.

We observe that in the three dimensional case, the optimal shapes we obtained numerically
do not have holes. We may ask ourselves if this behaviour can be justified. In order to do this,
we can analyse the, so called, topological derivative, which for a point x € () and a general

functional F is defined as

where () is positive and £(r) — 0 as » — 0. For more details see [76]. A negative topological
derivative would mean that making a small hole decreases the value of F'. In our particular
case F'(2) = A\(Q2) + Per(£2), and for = € €2 and r small enough, we have F'(Q2 \ B(z,r)) >
F (), since the eigenvalue is decreasing with respect to set inclusion, and for small r, we have
Per(Q2\ B(x,r)) = Per(2) + Per(B(z,r)). Thus, in our case, the topological derivative is
always positive, and there is no interest in creating holes in order to decrease the value of the

functional.

1.5 Optimality conditions and qualitative results

Once we know that a shape optimization problem has a solution, we would like to write some
optimality conditions which could allow us to find further qualitative properties. An eigenvalue
of the Dirichlet Laplacian associated to a shape €2 is differentiable with respect to perturbations
only if it is simple. Unfortunately, solutions of (1.1.1) and (1.1.2) are conjectured to have

multiple k™ eigenvalue at the optimum (with a few exceptions in the case of the perimeter
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(D

A1 = 11.55, simple

O

As = 19.11, double

C

Ao = 15.28, simple A3 = 15.76, double

®

A4 = 18.35, double

(O

A7 = 21.50, double

(D

)\10 = 23.55, double

(I

A14 = 26.43, double

X¢ = 20.09, simple

®

As = 22.03, double Ao = 23.21, simple

O

A1 = 24.60, double A1g = 24.74, triple

L

A13 = 25.98, simple A15 = 26.91, simple
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A1 = 27.25, triple A17 = 27.36, triple A1g = 28.63, double

A19 = 29.08, double Ao = 29.51, triple

Figure 1.1: Numerical optimizers for problem 1.1.3 in 2D

constraint). Thus, classical optimality conditions, like the one exploited in [28], cannot be
written for every k. In our case, we observed that for d = 2, k = 2,6,9, 13, 15 optimal shapes
probably have simple eigenvalues. Thus we can apply the method described in [28] to deduce
the fact that the boundary of these shapes does not contain any flat parts or any arcs of circles.
We may wonder if this is true in the general case. To study this question in the case of multiple
eigenvalues it is possible to use methods inspired by [47], [46] and [75]. In the previously cited
article [47], the authors provided an optimality condition for problem (1.1.1), which treats the
case when the eigenvalue is multiple at the optimum. The results of this section are dedicated
to find a similar optimality condition for problem (1.1.2).

The following theorem is a result similar to Theorem 2.5.10 in [65] where it is said that if an
optimizer Q* for problem (1.1.1) is such that the k™ eigenvalue is multiple, then the multiplicity
cluster ends at \g, i.e. A\p(Q*) < Apy1(€2%). Throughout this section we assume that €2 has
boundary of class C®. In particular, this implies that its curvature, H is of class C'. This
assumption is stronger than the results obtained in [44], where it is proved that the optimizer
has regularity C1®. To our knowledge, this regularity assumption cannot be easily deduced

from [44], and it is an open question, though it is natural to expect it.

Theorem 1.5.1. Let k > 2 such that \;, > \y_ and assume that §) is a minimizer for the k™

eigenvalue of the Dirichlet Laplacian with a perimeter constraint (i.e. a solution of the problem
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A2(Q) Per(Q) = 223.63 A3(92) Per(Q2) = 251.91 A4(92) Per(Q2) = 260.98

A5(Q) Per(Q) = 343.75 A6(Q) Per(Q) = 394.77 A7(Q) Per(Q) = 421.20

As(€2) Per(Q2) = 439.80 A9(92) Per(2) = 446.58 A10(£2) Per(€2) = 510.00

Figure 1.2: Numerical optimizers for problem 1.1.3 in 3D

(1.1.2)). Then A, is simple and there exists a unique (up to sign) eigenfunction u satisfying

—Au = (Qu  inQ
u=20 on 0f)
(g—g)z =H on 0f)

Proof: Let Q. = f.(Q2) be a perimeter preserving analytic deformation of (2 and denote
(Ai:)i<p and (u; ¢ )i<, the families of eigenfunctions and eigenvectors associated to A, according
to Lemma 1.2.7. We use the notation A, (€2) = A, (£2:). Since A, = A; o > A;_1, by continuity,
for sufficiently small £ we have

Az’,e > >\k—1,a-

We know that €2 is a local minimizer for the Dirichlet Laplacian under the considered perturba-
tion, which means that

Az’,e Z Ak,a-
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The differentiable function ¢ — A;. achieves a local minimum at ¢ = 0 and this implies
d _
=N =0.

As a consequence, the quadratic form ¢, defined in Lemma 1.2.8 is identically zero on £},
where v = (d% fe,m). The perimeter preserving deformation is arbitrary, so by Lemma 1.2.6 we

have that ¢, vanishes on F}, for every v € Py(dS2). This means that

2
/ <g_u) vdo =0
0 n

for every v € Py(02) and for every u € Fj.

Hence, for every function u € E, there exists a constant ¢ > 0 such that (3—2)2 = ¢H on
092. Since (2 is bounded, it is a classical result that the curvature of {2 is non-negative at at
least one point. Thus, since ¢H is non-negative, it follows that ¢ > 0. We cannot have ¢ = 0,
because otherwise % = 0 on 0f), and we could extend w with v = 0 outside 2. Thus this
extension would be an eigenfunction on any set {2’ containing €2, contradicting the uniqueness
of the analytic extension.

Thus, we have }%] = v/¢H on 9. Since H is continuous, there exists an open set U such
that H > 0 on U N 0f). Thus, on 02 N U, a_z keeps constant sign, so in this set we can only
have % =v/cH or g—z = —/cH. If we have two eigenfunctions wuq, uy then there exists a linear
combination u = auy + Suy such that g—z vanishes on 0€2 N U. We apply Holmgren uniqueness
theorem to conclude that v = 0 and )\, is simple. U

The following result connects the criticality of a domain () with the definiteness of the

quadratic form ¢,,. This will allow us later to state our optimality result.

Theorem 1.5.2. Let k > 1 be a positive integer.

(1) If Q is a critical domain for the k™ eigenvalue of the Dirichlet Laplacian, then, for all

v € Po(0R), the quadratic form q,(u) = _/ (au
0N

2
—) v do is not definite on E}.
on

(2) Assume that N\, > \_1 or A\, < Ay1, and that for all v € Py(0N2), the quadratic form
g(u) = — [ 59 (%)2 v do is not definite on Ey. Then ) is a critical domain for the k™

eigenvalue of the Dirichlet Laplacian.

Proof: (1) Consider a function v € Py(0€2) and let Q). = f.(£2) be an analytic perimeter
preserving deformation of €2 such that v = (d% fele=0,m) (such a deformation exists by Lemma
1.2.6). Let (A; . )i<p and (u; . )i<, be families of eigenvalues and eigenfunctions associated to A
like in Lemma 1.2.7. There exist two integers 7, 7 < p such that d%)‘k7€|€=0* = d%AZ-7€|5:0 and
d%)\k,g\ezm = d%Aj,g\gzo. The criticality of {2 implies that d%Ai,g\szo X d%Aj,e|e:0 < 0 and from
Lemma 1.2.8, it follows that ¢, has both positive and negative eigenvalues, which means that ¢,

is not definite on F,.
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(2) Assume A, > A, and let Q. = f.(€2) be a perimeter-preserving deformation of 2. Let
(Aic)i<p and (u; - )i<, be families of eigenvalues and eigenfunctions associated to A according

to Lemma 1.2.7. For ¢ sufficiently small we have \; . = min,;<, A, .. Hence

d . d
d_€>\k,5’5:0+ - Ile<lI£l d_gAi75’5:0

and J y
d_g)‘kvf‘szo— - Tg,x %Aivf‘szo

The non definiteness of ¢, on £}, means that its smallest eigenvalue is non positive and its

largest one is non negative. This implies that

i)\k@’E:m = min iA

<0
de

i<p de ieleeg <

and

d d
d_g)\kﬁ‘ezo_ - r?éapx d_EAive‘z-::O >0

which in turn implies the criticality of the domain (2.
The case A\, < Ai41 can be treated in a similar manner. O
The next result provides a nice characterisation of the non-definitness of ¢,. Note that unlike
in [47], we have to add a hypothesis on H. This hypothesis is natural when dealing with
solutions of problem (1.1.2).(see [44], Section 4.)

Theorem 1.5.3. Let k be a natural integer. If ) is bounded and its curvature satisfies H > 0

then the following two conditions are equivalent:
(i) Forallv € Py(0N), the quadratic form q, is not definite on Ej.
(ii) There exists a finite family of eigenfunctions (u;);<,, C FEy satisfying

m 8UZ 2
Z((‘?n) = H on 0.

i=1

Proof: To see that (ii) implies (i) it suffices to notice that, for any v € Py(052)

3ui 2
qu(ui):—Z/aQ(an) vdo = — 897—[0da=0,

i<m i<m

which means that ¢, is not definite on FJ.

To prove the other implication we look at K = conv{ (%)2 , u € Ei}, and we want to
prove that the function H belongs to K. Suppose that H ¢ K. Then, from the Hahn-Banach
theorem (applied to the finite dimensional normed vector subspace of C''(92) spanned by K
and ), there exists a function v € C''(092) such that [, H v do > 0 and for all u € Ej,

2
/ (g—u) vdo <0.
80 n
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Since v is not necessarily in Py(0€2), we modify it by a constant term and define vy = v — ¢

where c is chosen such that vy € Py(0€2). The condition that ¢ must satisfy is

0= H vy do = Huvdo—c H do.
0 0 0
faQ'Hvda

f H do
By)
consequence of the fact that H > 0 and (2 is bounded. With the above considerations, we see

that ¢ > 0.
For u € E), we have

This last relation defines ¢ = , since [,, H do > 0. The fact that [,, Hdo > Oisa

and |, 50 (% ) *do > 0 for any non trivial Dirichlet eigenfunction « (due to Holmgren uniqueness
theorem). In conclusion, we have found a function vy € Py(0f2) such that the quadratic form

G, 18 positive definite on £, which contradicts condition (i). [

Corollary 1.5.4. If Q) is a local minimizer for the problem (1.1.2)

min A, (2)

Per(Q)=1

with boundary of class C®, then there exists a finite family of eigenfunctions (u;);<m C Ek, such

that ,
- 6ui
; ( an> —H.

Proof: It is a direct result of the above theorems, noting that any solution §2 of the problem
must verify H > 0 [44]. O

Remark 1.5.5. We note that Corollary 1.5.4 the number m of eigenfunctions that satisfy the
optimality condition is not known. Numerical computations done in Section 1.6 suggest that m

is equal to the multiplicity of ;.

Once this regularity result is established, we can apply the bootstrap procedure presented in
[28], and conclude that €2 is smooth.

Corollary 1.5.6. If Q) is a minimizer for the problem (1.1.2), with boundary of class C3, then )
has boundary of class C*°.
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Proof: 1If 1 is of class C3, then Corollary 1.5.4 holds and we have the optimality relation

2 (5) -

Since € is of class C?, it follows, using standard Shauder regularity estimates, that d,u? is

C1<, The optimality relation, then implies that H is C*, and thus ) is of class C*. Iterating
this procedure we find that 2 is of class C°. U

In the article [28] the authors prove that the solution of (1.1.2) in the case £k = 2,d = 2
has no segments and no arcs of circles in its boundary. The method used in the mentioned
article works only in the case we know the corresponding eigenvalue is simple. Using the above
corollary, we can partially extend this result to the general case. In the following, we call a flat
part of RY, the nonempty intersection of a d — 1 dimensional hyperplane with a d-dimensional

open ball.

Theorem 1.5.7. If Q) is a local minimizer for the problem 1.1.2

min A ()

Per(Q)=1
then 0S) does not contain a flat part.

Proof: Suppose that {2 contains a flat part .S in its boundary. Using the previous convention,

S = H N B where H is a d — 1 dimensional hyperplane and B is a d-dimensional ball. Then

‘H = 0 on that region S, and by Corollary 1.5.4, at least one eigenfunction u satisfies g_:; =0
on that S.

We then choose an extension 2 = Q U B’ of the domain €2 such that B’ is a ball, B’ C B,
B' ¢ Q and B’ is small enough such that BN 9J2 C S. Define v’ = v on 2 and 0 on 2"\ 2. In
this way, we create an eigenfunction «’ on €)' which is zero on an open set. This together with
the analiticity of v’ and the fact that v’ is not identically zero brings us to a contradiction.

In conclusion, {2 cannot contain a flat part in its boundary. U

1.6 Numerical observation of the optimality
conditions

By the above results, we know that if ) is a minimizer for (1.1.2) then it exists a family of

eigenfunctions (u;)™, C Fj such that

Z(am) —H. (1.6.1)

In order to evaluate the numerical quality of our solutions we would like to investigate how far

our solutions satisfy this optimality condition. The question is whether we are able to find a
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combination of eigenfunctions which realize this equality. Suppose that dim £, = p and the p
orthonormal eigenfunctions which span £, are denoted uy, ..., u,. We may use indexes from 1

to p or from k — p + 1 to k. It is easy to see that (1.6.1) implies that

‘H € span o\’ =1 U Oui Ou; 1<i<y<
P on) TP onon’ =TI =PL)
This observation is a direct consequence of the fact that each eigenfunction u; can be written as
p .
u; = Z a;uj.
j=1
Thus, in a first step, we can find the coefficients of H in the decomposition

P ou; \ 2 ou; ou;
HIZ%(an) t D Bugya,
i=1

1<i<j<p

by solving an optimization problem. The normal derivatives % and the curvature are known on

a discretization {x1, ..., 7; } of the boundary 0. To find the coefficients, we solve the quadratic,

convex minimization problem

i Z(zai (2ewn) + 3 Do R - %(xw)

(ai)i717 .
= h=1 =1 1<i<y<
(Bij)1<i<j<n I=p

Then, we transform this quadratic representation into a canonical representation by using the
classical Gauss-Jacobi method. Of course, this representation is not unique. The claim of
Corollary 1.5.4 is that this canonical representation will consist in a sum of squares: to test this,
we checked if the matrix (q; ;) defined by a;; = o, a;; = a;,; = B; /2 is positive definite. The
answer is affirmative for every optimizer, and a representation of the type (1.6.1) is presented
for each £k = 1,...,15 in Table 1.2. In all computations we check the pointwise optimality
conditions presented in Table 1.2 up to an upper bound of order 104,

We present below a few other numerical observations in connection with the optimality
conditions.

o If z € 002 and H(x) = 0, then all nodal lines corresponding to the eigenfunctions present

in the optimality relation touch 02 at x. This is observed numerically in Figure 1.3 for
k= 18.

e Numerical observations suggest that the number of eigenfunctions m present in the op-
timality condition is equal to the multiplicity of the eigenvalue at the optimum. Further-

more, the relation seems to be a convex combination of the type
a'k(anuk)Q + ak—l(anuk—l)Q + ...+ afk—m—i—l(anuk—m-‘rl)Q - Ha
where ay + ax_1 + ... + ap_m1 = 1.
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Figure 1.3: Optimal set (2,5 obtained for k£ = 18, together with the nodal lines of the eigenfunc-
tions uy7, uyg corresponding to A;7(€215) = A1s(€215). (left) Plot of the curvature of (2;5; note
that the nodal lines touch the boundary at the two points having zero curvature. (right)

e Motivated by [?], we studied numerically some convex combinations of eigenvalues under
perimeter constraint. Suppose that {2* is solution of problem (1.1.2) and A\, (€2*) is double,

with observed numerical optimality relation
a(&nuk)Q + (1 — CL) (&Luk,l)Q =H.
Then, we observed numerically that * is also a solution of the problem

i Ak (§2 1 —a) e—1(82
pin (@de(82) + (1 — @) At (9)),
for every « € [a, 1]. This can be generalized to the cases where the eigenvalue has higher

multiplicity.

Finally, we have observed that the optimality condition is a strong indicator of a local mini-
mum. At first, when we verified if the optimality condition is satisfied on the results we obtained,
we got large errors. We then decided to remake the initial computations and it turned out that
in every situation where the optimality error was large, we were able to go further with the

optimization and decrease even more the optimal value.

1.7 Further details and comparison with other known
computations

We provide below some further details concerning the optimization of the first 50 eigenvalues
of the Dirichlet Laplacian under perimeter constraint. We compare our results (column labelled
“our \;”’) with the ones obtained by P. Antunes and P. Freitas in [10] (column labelled A, AF”).
In their computations the perimeter is fixed and it equals 2+/7, so in order to compare the results

we rescaled our shapes so that they have the same perimeter. We present the optimality errors
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k| mult. | Numerical optimality relation | L? error | L* error
1 1 (8nu1)2 =H 0 0
2 1 (Opuz)? =H 3-10% | 4-10°8
3] 2 (%anuzf +(750m3)°=H [ 5-107" | 7-10"
41 2 (0.160,u3)% + (0.980,u4)>=H [ 3-107* | 6-10*
51 2 (0.540,u4)® + (0.840,u5)> =H [ 2-107* | 3-107*
6 1 (Onug)? =H 3-107* | 5-1071
71 2 (0.870,u6)% + (0.480,u7)> =H | 4-107* | 5-1074
8| 2 (0.390,u7)? + (0.920,u)> =H | 3-107* | 31074
9 1 (Opug)? =H 7-107°| 10°*
0] 2 (750n19)" + (F50um0)* =H [ 2-107* | 2-10~"
11| 2 | (0.510,u10)* + (0.860,111)* =H | 6-10* | 7-107*
0.318nu10 2 + 0.518nu11 2+ _ _
12| 3 ( (0.80)8nu1(2)2 ey ) 3-107° | 2-107°
13 1 (Oni3)? =H 4-107* | 5-1071
14 2 (0.828nu13)2 + (0578nu14)2 =H|2-107° 2.107°
15 1 (Ons)? =H 10~ 107°

Table 1.2: Optimality conditions in two dimensions

as well as the multiplicities. The optimal eigenvalues are roughly the same, except some situa-
tions highlighted in the table where the optimal values found by our algorithm are significantly
smaller (difference greater than 0.25). We note that in these highlighted cases even the optimal
shapes are slightly different. We notice that optimal shapes corresponding to £ = 29,43 do
not seem to have symmetry, while the optimal shapes proposed by Antunes and Freitas are all
symmetric. On the other hand shapes corresponding to £ = 41, 49 have a central symmetry and

do not have a symmetry axis. Given these considerations it is not likely that a result concerning

the symmetry of optimal shapes can be proved.

k our A\ Ax + Per | Opt. error | A\ AF | Difference | AF mult. | our mult.
1 18.168275 11.5507 0 18.17 | -0.00173 1 1
2 | 42.064122 | 15.28065 | 4.9e-05 42.07 | -0.00588 1 1
3 | 46.124753 | 15.757328 | 0.000796 | 46.13 | -0.00525 2 2
4 | 72.826728 | 18.348539 | 0.000694 | 72.83 | -0.00327 2 2
5 | 82.259531 | 19.108794 | 0.000252 | 82.27 | -0.01047 2 2
6 | 95.605716 | 20.090889 | 0.000749 | 95.61 | -0.00428 1 1
7 | 117.180624 | 21.500892 | 0.000377 | 117.19 | -0.00938 2 2
8 | 125.981848 | 22.026249 | 0.000282 | 125.99 | -0.00815 2 2
9 | 147.353967 | 23.207329 | 0.000859 | 147.36 | -0.00603 1 1
10 | 153.977603 | 23.549972 | 9.4e-05 | 153.98 | -0.00240 2 2
11 | 175.435026 | 24.596689 | 0.000727 | 177.01 | -1.57497 2 2
12 | 178.583626 | 24.742966 | 2.6e-05 178.6 | -0.01637 3 3
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13 | 206.785187 | 25.982306 | 0.000565 | 206.79 | -0.00481 1 1
14 | 217.721706 | 26.432513 | 2.3e-05 | 217.73 | -0.00829 2 2
15 | 229.795526 | 26.912357 le-05 229.8 | -0.00447 1 1
16 | 238.618352 | 27.252467 | 0.000741 | 238.63 | -0.01165 3 3
17 | 241.453665 | 27.359983 | 0.009599 | 241.45 | 0.003665 3 3
18 | 276.599134 | 28.627952 | 0.007984 | 276.62 | -0.02087 3 2
19 | 289.904933 | 29.079688 | 0.008092 | 289.93 | -0.02507 2 2
20 | 303.078565 | 29.513652 | 0.003324 | 303.57 | -0.49143 3 3
21 | 306.435447 | 29.622216 | 3.2e-05 | 306.52 | -0.08455 3 3
22 | 316.631478 | 29.947178 | 0.008933 | 316.67 | -0.03852 1 2
23 | 324.632195 | 30.197414 | 0.008528 | 324.82 | -0.18780 2 4
24 | 361.505011 | 31.299879 | 0.001318 | 361.52 | -0.01499 2 2
25 | 368.455927 | 31.499487 | 0.014613 | 368.51 | -0.05407 3 3
26 | 382.016789 | 31.881007 | 0.00478 | 382.02 | -0.00321 3 3
27 | 383.067574 | 31.910211 | 0.007396 | 383.09 | -0.02243 4 4
28 | 404.018996 | 32.481681 | 0.023895 | 404.04 | -0.02100 1 3
29 | 418.269751 | 32.859181 | 0.008134 | 418.38 | -0.11025 2 3
30 | 433.816974 | 33.261364 | 0.007602 | 433.86 | -0.04303 2 3
31 | 456.106225 | 33.821527 | 0.004245 | 456.73 | -0.62378 2 2
32 | 459.104802 | 33.895483 | 0.006554 | 459.12 | -0.01520 3 3
33 | 467.407148 | 34.098583 | 0.003432 | 467.42 | -0.01285 4 4
34 | 473.06016 | 34.2355 5.8e-05 | 473.08 | -0.01984 3 3
35 | 502.991936 | 34.94285 | 0.009027 | 502.99 | 0.001936 3 3
36 | 517.814325 | 35.282763 | 0.010175 | 518.28 | -0.46567 4 4
37 | 536.975953 | 35.712743 | 0.011331 | 539.99 | -3.01405 3 3
38 | 548.576823 | 35.968061 | 0.003967 | 549.46 | -0.88318 2 2
39 | 552.970701 | 36.063842 | 0.01613 | 553.04 | -0.06930 2 3
40 | 557.337141 | 36.158524 | 0.00657 | 557.63 | -0.29286 4 4
41 | 57475261 | 36.531281 | 0.00672 | 574.88 | -0.12739 3 3
42 | 578.401108 | 36.608414 | 0.000914 | 578.47 | -0.06889 3 3
43 | 615.248826 | 37.369901 | 0.012761 | 615.7 | -0.45117 4 3
44 | 625.603235 | 37.578336 | 0.011643 | 625.71 | -0.10676 4 4
45 | 643.066958 | 37.924798 | 0.013028 | 643.2 | -0.13304 3 3
46 | 650.617878 | 38.072659 | 0.000676 | 651.34 | -0.72212 2 3
47 | 662.681925 | 38.30654 | 0.02032 | 662.86 | -0.17808 3 3
48 | 672.35022 | 38.491935 | 0.006425 | 672.36 | -0.00978 4 4
49 | 683.362305 | 38.700944 | 0.014663 | 683.77 | -0.40769 3 3

47



50 | 688.796414 | 38.803256 | 8.7e-05 | 688.89 | -0.09359 3 3

Table 1.3: Detailed comparison of our results with the ones

of P. Antunes and P. Freitas in the two dimensional case

k our )\k )\k AF Rel diff.
2 | 223.63 | 219.214786 0.02
3 | 252.48 | 244.120062 0.03
4 | 255.56 | 253.743653 | 0.007
5 | 343.75 | 330.200432 0.04
6 | 394.77 | 374.739770 0.05
7 | 412.2 | 400.128643 0.03
8 | 439.8 | 415.120168 0.06
9 | 446.58 | 417.441436 0.07
10| 510 | 475.666586 | 0.07

Table 1.4: Detailed comparison of our results with the ones of P. Antunes and P. Freitas in the
three dimensional case
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Figure 1.4: Shapes which minimize the k-th eigenvalue of the Dirichlet Laplacian under perime-
ter constraint with & € [21, 50]
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1.8 Related topics

1.8.1 Numerical computations - area constraint

The problem (1.1.1) has been studied numerically in two dimensions by [79] (1 < k£ < 10)
and [9] (1 < k < 15). Using the software MpsPack and the framework presented in the study
of the case of the perimeter constraint, we performed computations for 1 < k£ < 21. The
computational results are presented in Figure 1.5. In [9] it is conjectured that the multiplicity of
the eigenvalue at the optimum increases with k, for £ < 15. In our numerical computations we
observe that the multiplicity varies, and it is not increasing, as conjectured. Of course, as we
can see from the situation of the optimality errors shown below, it might be possible to further
improve some of these shapes. It is interesting to note that for £ = 21, the next triangular
number after £ = 15 we observed again an optimal shape which has a triangular symmetry.

As in the study of the perimeter case, we can wonder if there is an appropriate optimality
condition, which is valid in the non-differentiable case where the multiplicity is higher than
one. Note that in the case of the area constraint, the multiplicities are always higher than one.
Such an optimality condition was proved by Ilias and El Soufi in [47], article which inspired us
to prove the analogue relation in the perimeter constraint case. The corresponding optimality

relation in the area constraint case is the following.

Theorem 1.8.1. Suppose Q2* is a local minimizer for the problem

Then there exists a family of eigenfunctions (u;)™, in the eigenspace corresponding to \y, such
that

> (Owu)? = 1.

i=1

In order to test the quality of our numerical results, we evaluated how well our shapes verify
this optimality condition, using the same method used in the case of the perimeter constraint.
The numerical results presented here are slightly better (in the sense of the optimal value of
the functional) than the ones presented in [9]. Still, the optimality error is not small enough to
be satisfied with our results. As in the perimeter case, we believe that a large optimality error
means that we are not really at the optimum, and thus, even if these results are the best known,
we believe that they can be slightly improved. An evaluation of the error and candidates for the
optimality relations are presented in Table 1.5. We omit the expression of the optimality error
for k = 13 and k € [16, 21] as the optimality error is quite large in some cases, and we believe

that some of the results may be improved.
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A5 = 78.15, mult = 2 A6 = 88.47, mult = 3 A7 =106.13, mult=3  \g = 118.86, mult =3
Xo = 132.35, mult=3 Ao = 142.67, mult=4  A\;; = 159.39, mult=4 Ao = 172.84, mult =4
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A3 = 186.77, mult =4 A1q = 198.96, mult =4 A5 = 209.60, mult =5
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A6 = 230.91, mult = 4 A7 = 241.02, mult = A = 255.97, mult =
A1g = 267.87, mult = Ao = 279.68, mult = Ao1 = 289.45, mult =

Figure 1.5: Numerical optimizers for problem 1.1.1 in 2D



k | mult. Numerical optimality relation L? error | L™ error
51 2 (2.80,14)%* + (1.70,u5)* = 1 7-1073 | 3.1072
6 | 3 |(0.560,u4)*+ (0.380,u5)* + (0.380,u6)>=1| 107° | 4.107°
(0.160,u5 — 0.119,u¢)? + (0.190,u6)*+
7 3 (0.20117)2 = 1 0.05 0.15
8 3 (0.310,u6)* + (0.510u7)? + (0.30,u8)* =1 0.03 0.07
9 3 (0.180,u7) + (0.119,ug)* + (0.189,u9)* = 1 0.04 0.11
(0.260,u7)% + (0.350,u8)? + (0.350,u9 )%+ _3 5
10 4 (0.210,110)% = 1 8-10 2-10
(0.148nu8)2 + (0148nu9)2 + (0.128nu10)2+
11 4 (0.130,u11)% = 1 0.04 0.09
(0.128nu9)2 + (0.248nu10)2 -+ (0.318nu11)2+
12 4 (0.350,111)% = 1 0.01 0.02
13 4 - 0.07 0.4
(0.18nu11)2 + (0.096nu12)2 + (0.118nu13)2+
14 4 (0.140,115)% = 1 0.06 0.15
(0.268nu11)2 + (0.266nu12)2 + (0.228nu13)2+
15 > (0.090,u14)* + (0.159,u35)* = 1 0.01 0.05
16 4 - 0.06 0.15
17 4 - 0.007 0.02
18 4 - 0.02 0.06
19 5 - 0.02 0.23
20 5 - 0.07 0.23
21 4 - 0.04 0.11

Table 1.5: Optimality conditions in two dimensions - area constraint

1.8.2 Numerical study of Polya’s conjecture

We may ask what happens if we try to optimize the Dirichlet-Laplace eigenvalues of polygonal
shapes under different constraints. In the following, n denotes the number of sides of a polygon.
It turns out that the problem is more difficult than it seems, even in the case of the first eigenvalue.

Using Steiner symmetrization techniques one may prove the following facts:
e the equilateral triangle minimizes the first eigenvalue among triangles;
e the square minimizes the first eigenvalue among quadrilaterals.

The case n > 5 is an open problem, and there is a famous conjecture, due to Polya, which is a

natural extrapolation of the cases n = 3, 4.

Conjecture 1.8.2. (Polya’s conjecture) The regular polygon minimizes A; among all polygons

with n sides.

We do not have an answer to this conjecture, but we studied the problem numerically for

n € [5,15]. Two ingredients are needed in order to perform this numerical study:

e A numerical method which allows us to compute the eigenvalues of a polygon.
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e A formula of the derivative of the eigenvalue in terms of the vertices of the polygon.

We start by presenting the numerical method we used in the computation, which is based on
fundamental solutions. Given a general shape P, whose boundary is well behaved, we wish to

solve numerically the equation

—Au=Mu 1inQ
u=0 on 0f)

The idea behind the method of fundamental solutions is to consider only functions which already

satisfy the equation —Awu = Au in €2, and one way to do this is to consider
U= o} + ...+ anon,

where ¢?, i = 1...M are fundamental radial solutions of —A¢ = \¢, with singularities outside
Q). We denote by (y;) the singularities of the functions ¢} which are points outside 2. The
coefficients a, ..., ay are found by imposing the boundary conditions on a discretization of 02

denoted (z;). This leads to a system of equations
a1y (z;) + ... + angy(z;) =0, i = 1..N. (1.8.1)

Of course, we are interested in the case where this system has a non-trivial solution, which
means that the matrix Ay = (¢;(x;)*)}\;_, needs to be singular. Thus, in order to find the
eigenvalues of a domain €2 which are situated in some interval /, it suffices to locate the points
A € I where det Ay, = 0. Once such an eigenvalue is located, we can find a corresponding
eigenfunction by solving the system (1.8.1). Note that in this form, when A is an eigenvalue, the
system does not have a unique solution. In order to address this issue, we add another equation
corresponding to an interior point, where we impose that the combination > «;¢? does not
vanish. Methods of this type have been considered in the literature by Alvez and Antunes [4].
In order to tackle the problem corresponding to polygons, we need to provide a family of
radial functions which satisfies the eigenvalue equation and decide where to choose the points
(z;) and (y;). We can find a family of fundamental solutions by looking at the equation corre-
sponding to the laplacian written in polar coordinates. If ¢ = y(r) then —A¢ = \¢ corresponds

to |
() — ~y/(r) =,

which translates to
P2y (r) +ry' (r) + Xy (r) = 0.

We make the change of variable s = v/Ar. Then if y(r) = z(s) we have y/(r) = 2/(s)v/A and
y"(r) = 2" (s) A, which means that z satisfies the differential equation

22" + 52 + 822 =0.
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Note that this corresponds to the Bessel function of the first kind, which satisfies the equation
s + 82 + (s> —a®)z =0 (1.8.2)

for o = 0. Thus, we can choose our fundamental solutions to be of the form ¢* () = z(v/\|z|)
where z is a solution of (1.8.2) for & = 0. In our numerical computations we choose as solutions
the Hankel functions, which are a combination of an analytic and a singular solution of (1.8.2).
In Matlab this corresponds to the function besselh.

We come now to the choice of points (z;), (y;) which is important in the computations. As
noted in [4], an arbitrary choice of these points may lead to inconclusive results. A somewhat
uniform distribution and a good relation between the evaluation and source points is needed in
order for the method to be successful. In the following, we only treat the case of polygons.

Given a polygon P, we want to distribute /N points on its boundary in a uniform way. In
order to do this, we compute the lengths of the sides of P, and we associate to each side of P a
number of points proportional to its length. Then we distribute evenly the corresponding points
on this side. The exterior source points (y;) are chosen on the normals of the polygon, at a fixed
distance. In my computations I used a distance of 0.3 for polygons of fixed area equal to 1. At
the corners we choose the exterior source points on the bisector of the angle of the polygon, to
better address the corner singularity present there. An example of points distribution is shown

in Figure 1.6. Another example of point distribution is the Chebyshev distribution on every

— 1
side!. The points are distributed on the segments according to the parameter (cos ( 12 3 7T) +

1)/2, ¢ = 1...k. I noted that this new distribution gains more precision for the same number of
source points. This behaviour of the error with respect to the distribution of points can be seen

in Table 1.8 for the particular case of a rectangle of side lengths 1.2 x 1. Note that for a rectangle
n

of sides L x ¢ the expression of the Dirichlet eigenvalues is given by A\ € {7? (72—22 + 6_22) :
m,n > 1}.

In the numerical computations we note that the determinant of A, is always close to zero.
In order to better detect its zeros, we compute log(A,) for a discretization of the search interval,
and we look for the singularities of this function using a golden search method. A plot of
det(A,) on the interval [1, 100] in the case of the equilateral triangle of side length 2 is presented
in Figure 1.7. For this equilateral triangle, we can express the eigenvalues in analytic form:
A€ {% (m?+mn+n?), m,n > 1}. In Table 1.6 we present the first eigenvalues we obtained
numerically, compared to their analytical correspondents.

Let’s now turn to the numerical study of Polya’s conjecture. We want to optimize numeri-
cally the first eigenvalue of a polygon with n sides. Note that in this particular case, the eigen-
value depends only on the 2n parameters corresponding to the coordinates of the vertices of
the polygon. If we could write the expression of the derivative with respect to every parameter

of the eigenvalue, then we could write a gradient descent algorithm in order to optimize this

'T thank Robert S. Jones for suggesting me this distribution
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Figure 1.6: Configuration of source points (red) and evaluation points (blue) for a regular
hexagon (left) and for a non-regular pentagon (right)
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Figure 1.7: Configuration of source points and evaluation points for an equilateral triangle and
the plot of A — log | det(A,)| for A € [1,100]

Table 1.6: Comparison between numerical and analytical values for the equilateral triangle of

side length 2
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Numerical values | Analytical value | Precision
13.1594725447 | 13.1594725347 | 7 digits
30.7054358009 | 30.7054359145 | 6 digits
52.6378888648 | 52.6378901391 | 4 digits
57.0243802270 | 57.0243809840 | 6 digits
83.3433209202 | 83.3433260536 | 5 digits
92.1163077702 | 92.1163077435 | 7 digits




Regular Chebyshev Analytic
16.7234963700 | 16.7234963461 | 16.7234963462
37.2851722760 | 37.2851721817 | 37.2851721818

46.3323096064

46.3323095494

46.3323095495

66.8939856146

66.8939853848

66.8939853851

71.5546321129

71.5546319077

71.5546319078

95.6803315972

95.6803315556

95.6803315550

Table 1.7: Comparison between normal distribution, Chebyshev distribution and analytical val-
ues for the rectangle of sides 1 and 1.2. The different point distribution can be seen in Figure
1.8
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Figure 1.8: Normal point distribution (left) vs Chebyshev point distribution (right)

eigenvalue. In general, if a shape () is perturbed by a vector field V, the expression of the
ou

an
the derivative with respect to the parameters defining each vertex of the polygon. In order to do

dX 2
derivative of a simple eigenvalue is given by v / ( ) V.ndo. We want to compute
o0
this, we consider particular vector fields V.

Let’s fix the vertex A; with neighbouring vertices A; 1, A;11 (notation modulo n). Denote
the two coordinates of A; by (x9;_1, x9;). If we want to find the derivative of A\; with respect
to z9;_; we make a perturbation of A; with (1,0). This perturbation of one vertex induces a
perturbation of the segments A; 1 A;, A;A; 1 of P. In this particular case V' has the following
form on OP:

Li1i(2)(1,0) 2 € [Ai1 Al
I[H_Li(l‘)(]_,O) T € [AZAZ-‘,-l]

0 otherwise ,

where I;; : A;A; — [0,1] is an affine function with I;;(A;) = 0, I;;(4;) = 1. Denoting

njj41 = (n5 ;1,15 ;) the outer normal of the segment A;A;,; of 9P, we have

d\ o\ o\’
1 = — / I[Z'*l,l' <—u) nllil Zda - / ]Ii+17l' <_u> nZ{l»l Zda
dzai— AiAia on ’ AiAig on 7

55



In the same way we get

A ou\ > ou\’
1 = — / Hi*l i —u n?fl Zda - / Hi+1 7 _u n?+1 Zda
dxo; AiAi 1 "\ on ’ AiAist “\on 7

Once we have all these ingredients we can perform the numerical optimization using a

standard gradient descent algorithm. The numerical results presented below all support Polya’s
conjecture for n € [5,15]. Results are presented in Figure 1.10. In order to evaluate how far
these polygons are from being reguular, we compute in each case the standard deviation of the
angles (denoted sa) and the standard deviation of the lengths of the sides (denoted s/).

The numerical results show that it is likely that Polya’s conjecture is true also for n > 5.
Despite the fact that we do not have a definite theoretical answer, it is possible to prove that the

regular polygons are critical points of the first eigenvalue under area constraint.

Proposition 1.8.3. For n > 3 the regular polygon with n sides is a critical point for the first
eigenvalue of the Dirichlet Laplace operator among polygons with n sides under area con-

straint.

Proof: In the following we denote with P, the class of polygons with n sides. It is not
difficult to prove that minimizing A;(P) in P, under area constraint is equivalent, up to an
homothety, to solving the problem

min A (P) + | P|. (1.8.3)

PePn

In the following we use this formulation in which we incorporate the constraint in the functional.
We note that the first eigenfunction w; in the case P is a regular polygon is a H? function [59].
This allows us to see that in this case we can write the shape derivative of G(P) = A\(P) + | P|,

ag, . Oy )’
W(P)__/ap (%) V.nda+/aPV.nda

In the following we let P be the regular polygon which minimizes A\, (P) + | P|. Since choosing

which is given by

a vector field V' with V.n = 1 preserves the regularity of P, we can conclude by the shape

derivative formula given above that

L) =
— | do= do =nl, (1.8.4)
op \ On aop

where / is the side-length of the optimal regular polygon P for (1.8.3). We can give an explicit
formula for the vector field V. Suppose that P is centered at the origin and has inradius equal
to r. Then V' = |z|/r has the desired property that V.n = 1.

As discussed earlier, all relevant perturbations in the class of polygons can be described by
the perturbations of the n vertices. Moreover, each perturbation of a vertex A; can be expressed

R
as a linear combination of perturbations of the type A; 41 A;_1A;, as seen in Figure 1.9. Writing
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Figure 1.9: Particular vertex perturbation

the expression of the derivative of G with respect to this perturbation gives us

ag ... [ L —t “l—t
WUD) = —/0 (Opur(p(t/0)) TV.ndt—l—/O TV.ndt,

where the parametrization of the side A;A; 1 was chosen p(s) = (1 — s)A; + sA;41 and n is
the normal vector to A; A;, 1. Since V.n is constant we conclude that

%(P) = V-”(—/O (8nm(p(t/€))2$dt +0/2)

Since the first eigenfunction has the same symmetries as the regular polygon we conclude that

after a change of variables ¢ — ¢ — t we have

/0 (anul(p<t/£))2$ _ /O (8nu1(p(t/£))2%dt _ fO (&ﬂﬁl(p(t/e)) dt _ {

2 2’

where we used (1.8.4). As a consequence we deduce that %(P) = 0 for every such particular
perturbation V. Since every perturbation of the vertices of the polygon can be written as a
linear combination of these simple vertex perturbation, we conclude, by the linearity of the
shape derivative, that %(P) = 0 for every admissible vertex perturbation V'. Thus the regular
polygon P is a critical point for G.

g
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n=5, sl=7e-5, sa=1e-5 n=6, sl=1e-6, sa=1e-6 n=7, sl=3e-6, sa=3e-6 n=38, sl=2e-6, sa=2e-6
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Figure 1.10: Numerical optimizers of A; among polygons for n € [5, 15]



CHAPTER 2

Optimal partitions - anisotropic
perimeters

Résume

Dans ce chapitre on étudie le probléme de partitionnement optimal d’un ensemble qui minimise
la somme de certains périmetres anisotropes. Un périmetre anisotrope prend en compte les
longueurs de facon différente selon la direction considérée. En conséquence, certaines direc-
tions sont favorisées. Le probleme isopérimétrique est un résultat classique qui dit que si on
veut minimiser le périmetre a volume constant, alors I’ensemble optimal est la boule. Si au lieu
de minimiser le périmetre classique on minimise un périmetre anisotrope, I’optimiseur peut étre
différent de la boule. Considérons 1’exemple suivant : pour un ensemble bidimensionnel €2 on
considere le périmetre anisotrope Per,,(Q) = (i)do avec p(x) = |x1|+|x2], 7 1a normale
sortante a J€). Pour ce périmétre anisotrope deal?x directions sont favorisées : la direction hori-
zontale et la direction verticale. Si on veut minimiser Per,(2) a aire constante, 1’optimiseur est
un carré, qui est la forme de Wulff associée a la norme .

Comme on peut voir sur ce cas simple, changer le périmetre pour un périmetre anisotrope
change completement la solution du probleme. Le cas des partitions en cellules de méme
aire qui minimisent la somme des périmetres anisotropes est encore plus difficile a traiter
théoriquement. Ceci motive la conception d’un algorithme qui permet de calculer les partitions
optimales pour des différents périmetres anisotropes.

Gérer les partitions d’un ensemble peut a priori étre difficile si on consideére des paramétri-
sations individuelles de chaque cellule. On contourne ces difficultés en utilisant une approche
par relaxation. Chaque cellule w; est remplacée par une approximation ¢; de sa fonction car-
actéristique. Ici ¢ est une fonction définie sur le domaine a partitionner D et prend ses valeurs
dans [0, 1]. La condition ”(p;)_, représente une partition” se traduit simplement en imposant
que la somme de toutes fonctions ¢;, ¢ = 1, ..., n soit égale a 1.

Pour pouvoir calculer une approximation d’un périmetre anisotrope d’un ensemble w; appro-
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ximé par une densité ; on a besoin de relaxer le périmetre anisotrope dans ce cadre. Il existe des
variantes du théoreme de Modica et Mortola pour le cas anisotrope. On donne la preuve d’un
résultat de I'-convergence pour la somme des périmetres anisotropes associés a une partition.
On souligne le fait que la ['-convergence n’est pas stable pour la somme. Le résultat n’est
pas une simple conséquence du cas d’une seule phase. Une particularité de ce résultat de I'-
convergence est le fait que I’anisotropie peut dépendre non seulement de la direction, mais
aussi de la position de la frontiere.

Ce résultat de '-convergence nous permet d’implémenter un algorithme de calcul des par-
titions optimales anisotropes en dimension deux et trois. En utilisant cet algorithme on peut
calculer numériquement les partitions optimales pour plusieurs périmetres anisotropes. On ob-
serve que dans les résultats, les frontieres des ensembles qui forment la partition sont alignées
avec les directions favorisées.

En fin de ce chapitre on présente quelques variations du méme probleme :
e ¢tude numérique des configurations des bulles de savon ;

e partitions minimales pour le périmetre pour des domaines généraux avec une méthode

basée sur des éléments finis;

2.1 Introduction

The notion of I'-convergence was introduced in Definition 1.2.1 and its main properties were
stated in Proposition 1.2.2. One classical ['-convergence result is the Modica Mortola theorem.
For the sake of completeness, we rewrite its statement below. For simplicity, we denote
X:{ueLl(D):/u:c},
D

where ¢ € (0, |D]) is a fixed constant.

Theorem 2.1.1. (Modica-Mortola) Let D be a bounded open set and let W : R — [0, 00) be a
continuous function such that W (z) = 0 if and only if z € {0,1}. Denote ¢ = 2 fol VW (s)ds.
We define F., F : L'(D) — [0, +00] by

e[ |Vul+1 [, W) we H(D)NX

Fo(u) =
+00 otherwise

and

cPer(u™'(1)) we BV(D;{0,1})Nn X

F(u) =

+00 otherwise

then
r-5r

in the L*(D) topology.
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Figure 2.1: Minimizers of F. for ¢ = 1/7 and ¢ = 1/100,1/150,1/200,1/250,1/300. The
corresponding cost values are: 1.3089, 1.3216, 1.3276, 1.3311, 1.3398

The numerical importance of this theorem was just recently observed. Indeed, when one
wants to compute numerically the perimeter of a set {2, the boundary 02 must be well known.
Using a parametric formulation might work if one only has to deal with one set. As soon as we
consider multiple shapes which might touch, keeping track of each parametrized boundary is
not a simple task. If we want to study a partitioning problem, using a parametric formulation
rises difficulties in imposing the non-overlapping condition. This is a point where having a good
relaxation for the perimeter, like the theorem mentioned above, becomes really useful.

In the following paragraphs, we take as a toy problem the isoperimetric problem. The third
property stated in Proposition 1.2.2 justifies the following numerical approach. In order to
approach the set which minimizes the perimeter at fixed volume, we find minimizers m. of F.
for £ smaller and smaller. We expect that the minimizers m,. approach the minimizer of F'. We
consider a straightforward finite differences discretization to compute F. on a fixed grid N x N

in the unit square [0, 1]2. The procedure is as follows:

e Fix aninitial 5 and a random initial condition, and then compute the numerical minimizer
of F;

e Decrease ¢ and find the numerical minimizer of F_ starting from the previous minimizer.
e Repeat until € is small enough.

This simplistic approach has one drawback: the choice of £y cannot be made independent of the
grid step. The ¢ parameter governs the width of the interface between 0 and 1 for the minimizer
of F.. If ¢ is less than 1/N then the gradient term in F. contains meaningless information,
since the width of the interface is smaller than the width of the grid. To fix this issue, we start
with eg € [1/N,4/N] and whenever we decrease € we refine the grid and interpolate the initial
condition on this new grid. We present the numerical results obtained using this procedure in
the case ¢ = 1/7. In this case, we know that in two dimensions, the solution of the isoperimetric
problem is a disk, and the corresponding perimeter to a disk of area 1/7 is QW = 1.3398.
Results can be seen in Figure 2.1. It is interesting to note that as € becomes smaller and smaller,

the minimal values of the functionals . converge towards the minimal value of F', as expected.
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We can consider the same problem in an anisotropic setting. If we consider a set Q C R?

with C! boundary, then its perimeter is equal to

Per() = / A" = / 17 ()| dH™
oN oN

where 7i(z) denotes the unit outer normal vector corresponding to € 0€2. Thus, the perimeter
treats all directions in the same way and no direction has an advantage over the others. Things
change if we pick another norm ¢ on R?, different from the euclidean one. We can define the

anisotropic perimeter associated to a norm ¢ by

Per,() = [ (i)

It is possible to prove a variant of the Modica-Mortola theorem in the anisotropic case.
Proofs of this result can be found in [19],[20]. A local variant of this result, where the norm ¢

can also depend on the position of the point can be found in [6].

Theorem 2.1.2. Let D be a bounded open set and let W : R — [0,00) be a continuous
function such that W (z) = 0 if and only if = € {0,1}. Consider ¢ a norm on RY. Denote
c=2 fol VW (s)ds. We define G.,G : L'(D) — [0, +o0] by

efpe(Vuy>+1 [, W(u) we H(D)NX

Ge(u) =
+o00 otherwise

and

cPer,(u(1)) we BV(D;{0,1})NX

G(u) =

+00 otherwise

then
G. — G
in the L'(D) topology.
We repeat the same experiment as in the isotropic case. Pick ¢(x) = |zi| + |z2], a norm

which favorizes the vertical and horizontal directions. Then the shape which minimizes Per,,(€2)
with area constraint, the so-called Wulff shape associated to ¢, is a square. When ¢ = 1/7 the
optimal value is 4/1/7 = 1.5118. In Figure 2.2 we present the optimizers of G, for decreasing
values of € and we observe the same convergence behavior. We observe that the convergence
speed is not as fast as in the case of the circle, but this may be due to the fact that in our case ¢
is not differentiable on the coordinate axes.

The next step is to consider partitioning problems. A famous result due to Hales [60] is
the fact that, asymptotically, every partition of the plane into sets of unit areas has perimeter
greater than the hexagonal honeycomb tiling. In R3 the problem of finding the optimal tilling

with respect to the perimeter using shapes of equal volume is still open. Kelvin conjectured that
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Figure 2.2: Minimizers of G for ¢ = 1/7 and ¢ = 1/100, 1/150,1/200, 1/250,1/300. The
corresponding cost values are: 1.4851,1.4914,1.4979, 1.5031, 1.5049

truncated octahedra may be optimal, but Weaire and Phelan [92] found a better tiling than the
one of Kelvin. The study of the partitions which minimize the sum of anisotropic perimeters is
even more challenging, since the optimal partition depends on the norm ¢. This motivates the
interest in providing efficient numerical algorithms which compute the optimal partitions.

One such method was developed by E. Oudet in [80] in the case of partitions minimizing the
sum of perimeters of the cells in two and three dimensions. The author uses a generalization of
the Modica-Mortola theorem to the case of partitions. The partition condition, in this functional
case, is realized by imposing that the density functions wuy, us, ..., u,, corresponding to the cells
of the partition, satisfy the relation u; + us + ... + u,, = 1. Note that this last condition is not
too difficult to implement from a numerical point of view. With this framework, the author was
able to recover the result of Hales in the periodic case in 2D. In three dimensions, the numerical
optimizer was close to the Weaire-Phelan structure.

In this chapter we provide an extension of this numerical framework in the anisotropic case.
First we provide a I'-convergence result which generalizes Theorem 2.1.2 to the partition case.
As always, we underline the fact that the I'-convergence is not stable for the sum, so the result
is not trivial. In fact, the (LI) property in the definition of the ['-convergence comes at once
from the one phase case, while the (LS) property requires a bit of work. In order to construct a
recovery sequence, we use an approximation result proven by Baldo [11], which states that we
can approximate well enough every admissible partition by a polygonal partition.

In the end, we present some numerical computations, for different anisotropy choices, and
we observe the desired behavior: partition cells tend to have their boundaries aligned with the
favorized directions. Although the theoretical framework is restricted to the case where ¢ is a
norm, and thus, is convex, we observe numerically that non-convex anisotropies also produce
the expected results and the rate of convergence is much higher in some cases. We may extend
the finite difference method to non-rectangular domains by using only the nodes of the finite
difference grid which lie inside the considered shape. We are able to improve some of the
results of E. Oudet [80], notably when the number of the cells of the partition is high. Working
with this finite differences approach allows us to study anisotropic partitions on non-rectangular
domains. We also provide a different framework, based on finite elements, in order to study

partitions of non-rectangular domains into equal area cells. Our results are comparable with
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those obtained by Cox and Flikkema in [39]. This finite element approach has the advantage
that it may be applied whenever we have a qualitative triangulation of the domain. This fact

motivates the extension of this study to three dimensional surfaces in Chapter 5.

2.2 Main Results

We consider the following definition of the generalized perimeter, valid for every measurable
set D C R4

Per(§. D) = supd | divgds s g € CF (DR, gl < 1}
Q

This definition agrees with the classical one in the case () has a certain regularity (polyhedra,
piecewise C, etc). Given a norm ¢ on R? we can extend the above variational characterization

to the anisotropic perimeter associated to by

Per,(Q, D) = sup{/ div gdz : g € C°(D;RY), ¢(g) < 1}.
Q

We make the assumption that ¢ is comparable with the Euclidean norm, i.e. there exist constants
¢, C > 0 such that c[z| < p(x) < C|z|. Then if a set E has Per,(E,) < oo then xp €
BV (), the space of functions of bounded variation on 2.

Furthermore, we can choose norms which depend on the position of the considered point:
¢ : D x RN which are lower semicontinuous, positively 1-homogeneous and convex in the
second variable. In addition, we assume the existence of 0 < m < M such that m|{| <
o(z,€&) < M|¢| for every (z,€) € D x RY. Then a local anisotropic perimeter can be defined

as follows
Per,(Q, D) = sup{/ div gdz : g € C°(D;RY), o(x, g(x)) < 1}.
Q

The purpose of the following paragraphs is to approximate by I'-convergence the sum of the
anisotropic perimeters of a partition of a bounded, open set D into n parts of equal volumes.
We want to be able to have a result which is also valid for local anisotropies, where the norm
©, which determines the anisotropy may also depend on the point x. The I'-convergence result
is divided in two parts, corresponding to the two properties in its definition. The (LI) property
can be deduced by studying the one phase case. The (LS) property needs some work in order to
construct a suitable recovery sequence.

The double-well potential 11 is stated in a general form in the theorem, but we will assume
that it has additional properties. In practice we use W (s) = s%(1—s)?, but we are only interested
of the form of I in a neighborhood of [0, 1]. Therefore, we assume that W is bounded (by
truncating it at a large level, if necessary). In order to simplify the construction of the recovery
sequence, we assume that the graph of W is symmetric with respect to the line x = 1/2. The
theorem stated below is a particular case of the one studied in [6]. We give a slightly different

proof, and adapt it to the case of partitions.

64



Theorem 2.2.1. Let D be an open, bounded domain in RY, and f : D x RY — [0, 0] be a
lower semicontinuous function, positively 1-homogeneous and convex in the second variable,
which satisfies m|¢| < p(x,€) < M|E| for every (z,6) € D x RN, with 0 < m < M. We
consider W : R — [0, 00) such that W(0) = W (1) = 0 and W(x) > 0 for x ¢ {0,1}. Define
F.,F: LY(D) — [0, 00] as follows:
E/ o(x, Vu(:c))zd:c—i-l/ W (u(x))dz ifue HY(D), / u=-c

D €Jp D

+0o0 otherwise

C/s(u) o(x,v,) ifue BV(D,{0,1}), /Du:c

+00 otherwise

F(u) =

where ¢ = 2 fol W (s)Y2ds and S(u) is the jump set of u.
Then for every u € L'(D) and every (u.) € L'(D) such that (u.) — w in L*(D) we have

liminf F.(u.) > F(u).

Proof: This result follows naturally from the following remarks and from a variant of Reshet-
nyak’s semicontinuity theorem.

Consider the function ¢(t) = 2 [; W (s)'/?ds, which is Lipschitz continuous, in view of
the fact that we assume that 11 is bounded above. In the following we show that F'(u) =

[, e(x, D(¢ o u)), where we use the notation

[ et = [ ozl dl

for every Radon measure 1 € M (D, RY). First note that if u € BV (D, {0, 1}) then using the
definition of the variation of a BV function we can see that D(¢ o u) = ¢(1) Du. Moreover, if
we have a function u € BV (D) whose image contains only two real values, then the absolutely

continuous part and the Cantor part of D are zero, while the jump part is
Diu(B) = / (ut — u )y, dH !
BNS(u)

where v, is the normal to the jump set S(u) defined by Du = v,|Dul. In this case, where
u € {0,1} a.e. we also have Du = dH™ =1L S(u). For details see [19]. Having these in mind
and using the fact that ¢ is homogeneous of degree one in the second variable, we obtain

_ dDu 3
c/s(u) o(x,v,)dHN ! = c/ng (:1:, m) dHN LS (u)
B dDu B dD(¢ o u) .
=o0) [ oo (n g ) 0t = o (= ey ) A0(o o)

=/ p(z,D(¢ 0 u)).
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The following variant of Reshetnyak lower semicontinuity theorem can be found in [7, The-
orem 2.38].

Theorem 2.2.2. Let D be an open subset of RN and i, ji,, be R"-valued finite Radon measures
in D. If b, — pweakly* in D then

[ f) <timint [ o),
D n—o0 D

for every lower semicontinuous function [ : Q x R" — [0, oc|, positively 1-homogeneous and

convex in the second variable.

First, let’s note that the integral condition is preserved under L'(D) convergence, since

[ue= [

Since ¢ is Lipschitz continuous, u. — u in L'(D) implies that ¢ o u. — ¢ o w in L*(D). If

< Jlue = ullLi o).

we suppose that lim ionf F.(us) < 400 (else there is nothing to prove) then, using the standard
E—r

inequality @ + b > Vab, we get that F.(u.) > 2 [, o(z, D(¢ o u.) > 2m [, D(¢ o u.).
Therefore, we can assume that sup |D(¢ o u.)|(D) < +oo. According to [19, Definition 1.41,
Remark 1.42] we can conclude that D(¢ou.) — D(¢pou) weakly* in M (D, RY) and Theorem
2.2.2 is applicable:

e—0

liminf F_(u.) > lim inf2/ oz, Vu )W (u.)?
e—0 D

:liminf/Dgo(x,D(gboua))Z/cp(x,D(gbou)):F(u).

e—0 D

The construction of the recovery sequence is treated in the next theorem. It is inspired from
[19]. n
We are now able to state the ['-convergence result concerning the partition case. We use the

X = {(uz) c L'(D)": /sz %, ZMZ 1.}

We assume that the potential 1 satisfies the following properties:

notation

e IV satisfies the hypotheses of Theorem 2.2.1.
o W(0.5—1t)=W(0.5+t)foreveryt € R.
e IV is bounded above.

We also assume that ¢ : D x RY — [0, co) satisfies the hypotheses of Theorem 2.2.1 and that
it is Lipschitz continuous in the first variable. We use the following bold notation to denote

vectors of functions: u = (u;) € LY(D)™.
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In the following, we consider X C L!(D)" to be the space containing the n-uples of func-

tion satisfying the partition condition and the area constraints:

D
X:{ueLl(D)”:/ui:u, uy + ... +u, = lin D}.
D n

We note the fact that the proofs which follow do not change much if instead of the equal areas

conditions we put only a fixed area condition on every one of the phases.

Theorem 2.2.3. We consider the functionals F., F : (L'(D))" — [0, oo], defined by

n

v [ frmar L [w) swcormpns

i=1

+00 otherwise

Fla) - Z / o(z,v,,) ifue (BV(D,{0,1})"NX

otherwise
Then F. - F in the (L'(D))™ topology.

Proof: The (LI) part of this result follows at once from Theorem 2.2.1.

For the (LS) part we need to be able to construct a recovery sequence for every u € L!(D)
such that F'(u) < +o0. In order to do this, we reduce the problem to subset D C {F' < +o0}
which is dense and has some good regularity properties. This is a classical procedure described
in Proposition 1.2.3 and [19]. One such suitable dense class is provided by Baldo in [11] and
consists of functions u € BV (D, {0, 1})™ N X which represent partitions of D into polygonal
domains.

The result of Baldo says that for every u € (BV(D,{0,1})" N X there exists a sequence

€ (BV(D,{0,1})™ N X such that u,, — uin (L*(D))", each component of u,, represents
a set of finite perimeter, Du’, — Du’ weakly* in M (D, RY) and |Du’|(D) — [Du’|(D) (the
corresponding perimeters converge). The Reshetnyak continuity theorem found in [7, Theorem
2.39] assures us that F'(u,) — F'(u). Thus, we can restrict our attention to functions u which
represent partitions of D into polygonal domains of equal areas.

We consider the optimal profile problem
¢ = min {/ (W (v) + [v/[})dt : v(—00) = 0,v(+00) = 1}
R
and the related problem
z¢ = min {/ (W (v) + 22|0']?)dt : v(—00) = 0,v(+00) = 1} (2.2.1)
R

Note that the solution of (2.2.1) satisfies the differential equation v = /W (v)/z and for

symmetry reasons, we impose the initial condition v(0) = 1/2. Note that v is strictly increasing,
1

and v(t) > 1/2 fort > 0. It is not difficult to see that ¢ = 2/ VW (s)ds.
0
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Figure 2.3: Example of a part of V.

Take v a solution to problem 2.2.1. We modify v such that it goes from 0 to 1 on a finite

length interval in the following way (inspired from [20]):
v" = min{max{0, (1 + 2n)v — n}, 1}.

We have
o = /(W(w) F1(")]2) = casn — 0.
R

We denote (£2;)!_, the polygonal partition determined by u. We denote by N. the set of

points which are close to triple (or multiple) points of the partition (£2;), such that
{r e D:d(z,00) <e}\ N,

is a union of rectangles. An example is given in Figure 2.3.
In the following, we denote by vz the optimal profile with z = ¢(77). We use the signed
distance dg(x) = d(z, D \ E) — d(z, E) and define u’ on D \ N. by

do, (v) .
U%dgi (z) ( Qe ) if ‘sz (.CU) | S Te
ul(z) =140 otherwise in D \ ©;
1 otherwise in §2;

where T is great enough such that the support of (v")" is contained in [—T, T']. Until here, u. is
a Lipschitz continous function with values in [0, 1] and a Lipschitz constant of order 1/s. We
extend each u’ to the whole D with the same Lipschitz constant (this is possible by Kirszbraun’s
theorem, see [51]).

In order that u, € X we must treat the measure and the sum constraints. We deal with the

sum constraint first. We have three types of points:

e |dg,(x)| > Te for all i. Here the sum constraint is clear, since one component takes value
1 and the rest 0.
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e There exist precisely 2 indexes 7, j such that |dg,(z)|, |do,(z)| < Te. Here the symmetry
of the optimal profile assures us that the u’(z) + u(x) = 1, while the other components
take the value 0.

e The points in V..

We see that the only problems that can occur take place in N,. Here, we replace u’ by u’ / (Z ul).
j=1
This operation is well defined, since each u’ is greater than 1/2 on €;; thus their sum is always

greater than 1/2. Furthermore, doing this change still leaves the gradient of u’ of the form
O(1/e).

In the following we omit the substript from vy, (), and we may do so without loss of
generality, since the inequalities described below do not use this dependence until the last few
inequalities. Because of the fact that u’ varies only in the direction of the normal to 2; on
D\ N, we find that Vu' (z)/|Vu'(z)] is a unit normal to €2;.

The integral constraints can be imposed in one of the following ways:

e by slightly moving the initial boundaries of (£2;) and then performing the algorithm de-
scribed above.

e by performing the procedure described in [71]. We modify each phase in a ball of fixed,
small enough size, which depends on ¢ in order to fix the volume constraints. In the end

we note that these perturbations vanish in the limit.
We split the (LS) estimate in two parts, one on N, and one on D \ N..

/g (5@(3:, Vul)® + %W(Ui))

< | Ne| maxo g W n | N |e supg |(v")'|? SUP||7)|=1 p(x, 1)

= 0(e),

€ €
since |N.| = O(g?). This proves that the part corresponding to N, is negligible int the (LS)
estimate.

We continue our estimate on D \ N,:

[, (vt vt + 2w

/ / . M( 2 o) V)P ><t/a>| EW(Un(dQ ()W) 0 )

g2
/S‘(uZ N\ Ne

B /s< W / (W (" (1)) + @*(, 130, (2)) | (0" (D7) dtdH> () + O(e)

-T

(B + 2 ) @) e ) + 00
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<" / o(z, vy, )dAHN T+ O(e).
S(ut)

We have used the co-area formula. The fact that ¢ is Lipschitz continuous in the first variable
allows us to write estimates of the form ¢(y, £) < ¢(x, &) + L|z — y|, and this is why we have
an O(¢g) term after we change the order of integration. The (LS) property comes from summing

the estimates obtained for every (u’).

2.3 Numerical Results

One of the main properties of the I'-convergence is the fact that if Ly Fthen any limit point
of a sequence (x.) of minimizers of F. is a minimizer for /. Based on this property, we assume
that minimizing F. for € small enough will get us close to a minimizer of F'.

We want to approximate numerically partitions which minimize the sum of their anisotropic
perimeters, with respect to some anisotropy . In order to do this, we search numerically for

minimizers of
n

F.(u) =) (e/D z, Vu;)? / W (u; ) (2.3.1)

i=1
Using the fact that p(z, £) > ¢|] for a constant ¢ > 0, we deduce that if u,, is a minimizing
sequence for F, then (Vu!)) is bounded in L?(D). Truncating (u,,) between 0 and 1 decreases
F.(u,), so (u,) is also bounded in L?*(D)". Thus (u,) is bounded in H'(D)", which means
that it has a subsequence which converges weakly H* to u. The convexity of ¢ and the Fatou
Lemma imply that
liminf F.(u,) > F(u),

n—oo
which means that (2.3.1) has a minimizer in H'(D)™. The lack of convexity of the potential
W does not allow us to conclude that the minimizer is unique. In fact, domain symmetry and
permutations of phases always lead to multiple optimizers.

We can devise an algorithm to approximate numerically such a minimizer. We discretize
the unit square D = [0, 1] using a finite differences grid, and use quadrature formulas to
compute the integrals in the expression of F.. The choice of ¢ is important in order to have
meaningful results. Morally, € dictates the width of the interface between the sets {u; = 0} and
{u; = 1}, and it cannot be lower than the width of the discretization grid. Satisfactory results

have been obtained for ¢ € [+, 4]. Note that if ¢ is large then the diffusion interface is bigger,

NN
and therefore the shapes can move more freely in order to find their optimal position. Forcing
¢ small in the beginning may lead to a local minimum. In order to diminish the size of the
interface, we can iterate the optimization algorithm by decreasing ¢.

We observe that the behavior of the algorithm depends heavily on the choice of ¢. We have

many options to choose the anisotropy ¢:
e o(x) = |zr1| + |z2| - horizontal and vertical directions;
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1 A=

Figure 2.4: Examples of optimal partitions with one favorized direction

o o(z) = (Jz1]P + |zaf?)"
o o(x) = |axy + bxy| + |cxy + dxy| - variable directions corresponding to a, b.

e o(z) = (ax? + ba2)Y/? with a > b: favorize one of the directions corresponding to

coordinate axes.

We present below some numerical results we obtained using various norms and parameters.
The first example we study is the case where we have one favorized direction. Favorizing

one direction parallel to the coordinate axis is not hard. It is enough to use a weighted norm like
@(r) = \/x? + 10022 to favorize the vertical direction. Indeed, looking at the term / o(Vu)

we see that if the gradient Vu has a second component which is large, then the quantit];/) o(Vu)
is large. Thus, in order to minimize our functional, the gradient of v should be close to zero in
the second component. Thus u is close to a constant on each vertical line, and all boundaries
will be vertical at the optimum. In order to favorize a general direction, one could use a rotation
of the coordinate axis included in the norm. A few examples of optimal partitions with one
favorized direction can be seen in Figure 2.4.

The next interesting situation is the case of two favorized directions. Since we work on
rectangular domains, it is natural to consider vertical and horizontal favorized directions. This
can be achieved using the ¢! norm ¢(z) = |71| + |z2|. Another way of favorizing these two
direction is presented below.

One natural way to favorize a direction corresponding to a coordinate axis is to use a norm

o(x) = \/ax? + ba3,

with a > b. In order to favorize two directions we can think of using something of the form

of the form

o(x) = /(10023 + 3)(a + 10023).

The problem with the above choice of ¢ is the lack of convexity, which goes out of the I'-
convergence framework of the theoretical result. Nevertheless, we observe that despite this
non-convexity issue we obtain the same results as in the case of the /! norm. Moreover, the con-

vergence is accelerated in the case of the non-convex ¢. We present in Figure 2.5 the partitions
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Figure 2.5: Optimal partitions obtained for N € [2,10]. The isotropic case (up) and the
anisotropic case corresponding to () = || + |x2] (down)

of the unit square corresponding to the classic perimeter and the ones obtained favorizing hor-
izontal and vertical directions. Since the results we obtained are all partitions of the square in
rectangles of equal areas, we may ask if these rectangle configurations are optimal. The answer
is yes, and the problem of partitioning a square into rectangles of equal areas which minimize
their total perimeter has been completely answered in [68].

As in the case of one favorized direction, we can favorize any desired direction by intro-
ducing a suitable rotation in the formulation of the norm. For example, one can favorize the

directions corresponding to the two axis bisectors by considering
p(x) = [o1 4 22| + |21 — 24|

We can continue our study by considering three favorized directions. The choice of the norms is
similar, but involving three directions instead of two. As before, we notice a faster convergence
when considering non-convex variants of . This behavior could be attributed to the fact that in
the non-convex case, the boundaries align immediately to the favorized directions, since along
these directions the functional has much lower values. In Figure 2.7 you can see some plots
of some of functions ¢ we considered, on the unit square. In these picture you can clearly see

the favorized directions as the directions along which the lowest values can be found. In the
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Figure 2.6: Examples of optimal partitions with two favorized directions on general non-
rectangular domains

Figure 2.7: Plots of some of the norms we considered, on the unit square. In order left to right:
1. ¢* norm, directions 0, 7 /2.
2. (? norm, p = 1.1, directions 7 /6, /2.
3. Square root of product of two norms, directions 0, /2.
4. Square root of product of two norms, directions —7 /4, 7/4.

non-convex cases, these directions are more emphasized. Some further computations involving
cases where we have three favorized directions can be found in Figure 2.8.

We can use the finite difference framework in the case of non rectangular domain in the
following way. We consider the general domain D as a subset of a rectangular region R. On
this rectangular region a finite differences grid is considered. We apply the same algorithm with
the difference that we ignore the grid points which are outside the domain D, by assigning them
a fixed value zero for the density function and for the gradient of this function. The computation
results are not always well behaved near the boundary of D, as expected. We present some of
the results obtained on general domains in Figure 2.6. In order to fix the problems regarding
the behaviour near 0D we propose in the next section a different framework based on finite

elements.

2.4 Related topics

2.4.1 General two dimensional domains

We want to generalize the numerical framework to non-rectangular domains. In order to do
this we use a finite element framework. We consider a triangulation of the domain D and
then we construct the mass matrix M and the rigidity matrix /K. Since the computation of the

quantities in the anisotropic setting is not straightforward to do on non-rectangular grids, we
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Figure 2.8: Optimal partitions for other anisotropies with two or three favorized directions,
under periodicity conditions

AA‘ \A
A &b Afk
AR A

Figure 2.9: Various optimal perimeter partitions with equal area cells for an equilateral triangle

consider mainly the isotropic problem here, with the classic Modica-Mortola functionals. This
is a particular case of our main theorem for ¢(x, ) = |£| for every z € D, & € R™.

The quantity [, |Vu|? can be computed using the form u” K and the quantity [, u*(1—u)?
can be computed using the form v7 Mv where v = u ® (1 — u) (pointwise multiplication). The
meshes are constructed by hand, when possible, or using the software DistMesh [77]. We are
able, in this way, to improve previous results due to Oudet [80], and we obtain a good corre-
spondence with the ones provided by Cox and Flikkema in [39]. We present some numerical
candidates in the case of the equilateral triangle (Figure 2.9), the circle (Figure 2.10), the regular
pentagon and the regular hexagon (Figure 2.11).

2.4.2 Bubble clusters

It is possible to use the I'-convergence results presented in this chapter in order to study optimal

configurations of bubble clusters. The bubble cluster problem can be stated as follows: find the
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Figure 2.10: Optimal partitions on the circle for N € {3, ...,10, 16,24}

Figure 2.11: Various optimal perimeter partitions with equal area cells for the regular pentagon
and the regular hexagon

optimal configuration of sets €y, ..., 2, C D C R, with prescribed volumes, such that the total
d — 1 dimensional of the boundaries H*~ (9 U ... U 9Q,,) is minimized. It is not hard to see

that this is equivalent to minimize the following quantity:
min Per(€2) + ... + Per(£2,) + Per(Ext),

where Ext denotes the empty space left by (£;) in D. Qualitative properties of an optimal
bubble configuration in the plane and on surfaces were given by F. Morgan in [74]. Numerical
studies were performed by Cox and Flikkema in [39] using the numerical software Evolver [21].
By using the same I'-convergence approach, but imposing different areas for the sets involved
in the partition, we can obtain numerical results which agree with the known results concerning
bubble clusters in dimension two. Some results in the case of two and three bubbles can be seen
in Figures 2.12 and 2.13. We notice that all the interfaces between two phases or between a

phase and the exterior are curves of constant curvature, fact which is proved in [74].
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Figure 2.12: Double bubbles in 2D. Left: equal areas. Right: different areas

Figure 2.13: Triple bubbles in 2D. Left: equal areas. Right: different areas



CHAPTER 3

Multiphase spectral problems

Résume

Dans ce chapitre on s’intéresse a I’étude qualitative et numérique du probleme multiphase

h
min » (A () + al]),
i=1

ou les ensembles €2; sont disjoints et contenus dans un domaine ouvert borné D. Il s’agit de
continuer les travaux effectués dans [31] et de proposer une méthode numérique permettant de
trouver les configurations optimales et d’observer numériquement les propriétés théoriques. Le
contenu de ce chapitre est un article écrit en collaboration avec Bozhidar Velichkov, a paraitre
dans SIAM Journal on Numerical Analysis.

I1 a été observé dans [31] que si > 0 alors la configuration optimale n’est pas une partition.
De maniere plus précise, il n’est pas possible d’avoir des points triples x € 0€2; N 9 N
0. On sait que pour &« — 0 on approche le probleme de partitionnement spectral étudié
théoriquement par Caffarelli et Lin dans [35] et numériquement par Bourdin, Bucur et Oudet
dans [18]. Comme il a été observé dans [18], pour h grand, on approche (numériquement) une
partition hexagonale du domaine D. Pour « trés grand, on peut montrer que la configuration
optimale consiste en h disques disjoints contenus dans D. Il existe un parametre optimal & pour
lequel ces disques disjoints ont un rayon maximal. Une telle configuration est appellée circle
packing.

La premiere partie contient 1’étude d’une nouvelle formule de monotonie pour deux phases
qui nous permet de déduire des propriétés qualitatives pres du bord du domaine D. En effet,
les calculs numériques nous montrent que, en plus de 1’absence des points triple dans 1), on ne
peut pas avoir des points triples de la forme z € 9D N 0, N IY;. Cette observation numérique
peut étre justifiée par le fait que dans les cas simples qu’on a considérés pour D (des rectangles,
polygones) on peut ajouter a I’extérieur un disque tangent B. Ce disque est alors une sous-

solution de forme (ou géométrique) du probléme min A;(2) + |€2|, et donc on peut utiliser les
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résultats de [31] pour conclure que 0B NI, NOSY; = (). La formule de monotonie nous permet
de prouver ce résultat dans le cas général ou D est Lipschitz.

La deuxieme partie du chapitre traite des aspects numériques du probleme de minimisation.
Dans un premier temps, on fait une étude théorique et numérique de I’erreur de la méthode de
pénalisation utilisée pour calculer les valeurs propres en [18]. Si €2 est un sous-ensemble de D

alors on peut définir pour C' > 0 la valeur propre approchée A (€2, C') qui est solution de
—Au+ C(1 = xa)u = M\(Q, Cu.

Il est prouvé dans la référence précédemment citée que quand C' — oo la quantité A\, (€2, C)
approche la vraie valeur propre A (€2) si {2 est régulier. Dans un premier temps on fait une
approximation de I’erreur numérique commise en comparant le résultat obtenu en utilisant la
méthode présentée ci-dessus avec les résultats obtenus avec le logiciel MpsPack [14] qui a une
précision importante. La comparaison est faite en fonction de C' et du pas de discrétisation du
domaine D.

Dans la suite, on présente une estimation théorique de I’erreur, en fonction du parametre
C, et on déduit une borne explicite dans le cas ou le domaine € est assez régulier. Ce résultat
d’erreur utilise [25] et [29] qui donnent une borne supérieure de la différence des valeurs propres
correspondant a deux mesures différentes, en utilisant des fonctions de torsion.

On présente une amélioration de 1’algorithme de descente de gradient proposé dans [18], en
ajoutant une procédure de recherche du pas optimal. On observe une stabilité améliorée de 1’al-
gorithme et une réduction du nombre d’itérations nécessaires pour la convergence. On propose
de plus une approche éléments finis pour résoudre ce probleme. Cette approche nous permet
d’étudier les partitions spectrales et des problemes multiphase sur des ensemble généraux, pas
seulement rectangulaires.

Les calculs numériques effectués nous montrent quelques propriétés théoriques attendues
comme I’absence de points triples a I'intérieur et sur le bord du domaine D, les ensembles
d’une configuration optimale ne contient pas des coins, etc. Une autre propriété intéressante a

été observée en étudiant le cas périodique.

e Pour & = 0 on obtient la partition en hexagones réguliers comme observé avant dans
[18].

e Pour o = & on observe une configuration du type circle packing.

e Pour o € [0, @] on observe que les ensembles d’une configuration optimale sont congru-

ents et qu’ils sont monotones pour 1’inclusion par rapport au parametre o.

Ce dernier aspect de monotonie nous permet de faire un rapprochement entre le probleme de
partitionnement spectral, qui est un probléme ouvert et difficile, et le probleme de circle packing,
qui est résolu [87]. Ce fait justifie I'intérét de considérer des problémes multiphase, pour mieux

comprendre le probleme spectral.
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Le cadre de ce probleme peut étre étendu aux problémes multiphase concernant les valeurs
propres de I’opérateur Laplace-Beltrami, avec conditions au bord de Dirichlet, des ensembles
contenus dans des variétés. On présente aussi quelques calculs numériques concernant des
problemes multiphase sur des surfaces. On observe le méme comportement monotone, qui relie
le probléme de partition au probléme circle packing. Dans le cas de la sphere, tous les problemes
concernant les partitions spectrales optimales pour la somme sont ouverts pour 2~ > 3. Une
preuve théorique de la propriété de monotonie des formes pour le probleme multiphase pourrait
résoudre quelques questions ouvertes importantes (conjecture de Bishop, partitions régulieres
de la sphere, etc). Pour plus des détails concernant les partitions sur des variétés, le lecteur est

invité a consulter le chapitre 5.

3.1 Introduction

In the following we consider a variational problem in which the variables are subsets of a given
ambient space or design region D and the cost functional depends on the solution of a certain
PDE on each of the domains. This type of problems are known as shape optimization problems
and received a lot of attention from both the theoretical and the numerical community in the
last years (we refer to the books [27], [66] and [65] for an introduction to the topic). A special
type of shape optimization problems are the multiphase shape optimization problems in which
the aim is to find the optimal configuration of & different disjoint sets €, . . ., {2, with respect

to a certain cost functional F

This type of problems may arise in some models studying the population dynamics of several
highly competing species or in biology to simulate the behaviour of a cluster of cells. In some
special cases it is not restrictive from mathematical point of view to assume that the sets §2;
fill the entire region D. This is for example the case when the functional F is decreasing
with respect to the set inclusion, i.e. if an empty space is left it will be immediately filled by
some of the phases (2; decreasing the total optimization cost. Of course, it is always possible
to write a multiphase problem as an optimal partition problem by adding the auxiliary phase
Qpiq =D\ ( U, QZ> . On the other hand, we notice that in this way we violate the symmetry
of the problem since this new phase does not appear in the functional. In some cases this does
not change the nature of the problem. Consider for example an optimization cost given by the
total length of the boundary 8( Uk, QZ) , L.e.

h
F(Q, o Q) =) (0] =) |02 1 09,1,

i=1 i£]
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In fact in this case we may introduce the new functional

h+1

FQu, ... Q) = Z 092,

which is of the same type. In other cases the introduction of €2, ; may change the nature of the
problem. Consider for example a functional depending on the principal eigenvalues on each set

(); and the Lebesgue measure |€);|

Eh: ) + [ul).

i=1

F(Qu,. .

[\DlH

Then, the corresponding optimal partition functional is given by

j':(Ql, ey Qi) = Z)\l — | Q1]

and acts differently on the original sets {2; and the auxiliary set €2, .

We consider the multiphase shape optimization problem
h
min{Z)\l(Qi) +/ Wi(x)dx : € open, Q; C D, Q,NQ, = @}, (3.1.2)
i=1 €

where

e the ambient space D is a bounded open set with Lipschitz boundary or more generally a

compact manifold with or without boundary;
e )\ () is the first Dirichlet eigenvalue of €;;
e W;: D — [0, +0c] are given measurable functions.

Our aim is to provide a theoretical and numerical analysis of the problem and to study the
qualitative behaviour of the solutions from both points of view. We notice that the optimal
configurations consists of sets with rounded corners if the weight functions are sufficiently
small. This phenomenon can be modelled in a direct way by adding a small curvature term, as
€ f 50 m?, where k; is the curvature of 0€2;, but from the numerical point of view the volume term
is much simpler to handle and gives the same qualitative behaviour.

In the next two examples we see the optimization problem from two different points of view.

Remark 3.1.1 (Two limit cases). In the case IW; = a on D, we obtain the following problem:
mln{Z)\ D+ alQ - Qopen, Q€ D, 2N :(z)}. (3.1.3)

The variational problem (3.1.3) is widely studied in the literature in the case o = 0 that corre-

sponds to the classical optimal partition problem. We refer to the papers [38], [35], [62] and
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[18] for a theoretical and numerical analysis in this case. The other limit case appears when the

constant « > 0 is large enough. Indeed, we recall that the solution of the problem

min{)\l(Q)+a|Q| . Q open, O CRQ}, (3.1.4)
. . . [ M(B) N\t . . .
is a disk of radius r, = . It is straightforward to check that if & > 0 is such that
o

there are h disjoint disks of radius r, that fit in the box D, then the solution of (3.1.2) is given by
the h-uple of these disks. Finding the smallest real number @ > 0, for which the above happens,
reduces to solving the optimal packing problem

max {7’ . there exist h disjoint balls B,.(x1), ..., B.(xp) in D}. (3.1.5)

In view of the previous remark the multiphase problem (3.1.3), in variation of the parameter
«, can be seen as an interpolation between the optimal partition problem (corresponding to the
case & = () and the optimal packing problem (3.1.5). It is interesting to notice that in the
asymptotic case when D = R?, the solution of the optimal packing problem consists of disks
with centres situated in the vertices of a infinite hexagonal honeycomb partition of the plane. On
the other hand, in the case o = 0 Caffarelli and Lin conjectured that the optimal configuration

is precisely the honeycomb partition.

Remark 3.1.2 (Competing species with diffusion). Suppose that (2; represents the habitat of a

certain species and that the first eigenfunction u; on €2;, solution of
—Au; = A\ (2)u; in Qy, u; =0 on 0%, / uidr =1,
Q;

is the population distribution. The condition €2; N €2; = () corresponds to the limit assumption
that the two species cannot coexists on the same territory. We suppose that S; C D is a closed set
representing a distribution of resources and that ¢; : [0, +00] — [0, +0oc] is a given increasing
function that corresponds to the cost of transportation of resources at a given distance. The
population u; will tend to choose an habitat close to S;. This corresponds to the following

multiphase problem
h
min{ZAl(Qi) +/ i (dist(x, S;)) dz : ©; open, ©; C D, Q;NQ; = @}. (3.1.6)
i=1 &

The first part of this chapter is dedicated to the analysis of the solutions of (3.1.2). We

summarize the results in the following

Theorem 3.1.3. Suppose that D C R? is a bounded open set with Lipschitz boundary. Let 0 <
a < A be two positive real numbers and W; - D — [a, A], i = 1,. .., h be given C? functions.
Then there are disjoint open sets §2q, . .., C D solving the multiphase optimization problem

(3.1.2). Moreover, any solution to (3.1.2) has the following properties:
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(i) There are no triple points inside D, i.e. for every three distinct indices i, j, k € {1,... h}
we have 0€; N 08 N OKY, = 0.

(ii) There are no double points on the boundary of D, i.e. for every pair of distinct indices
i,j € {1,..., h} we have 92; N 0Q; N OD = (.

(iii) If the set D is of class C?, then the first eigenfunctions u; € H}(Q;) are Lipschitz continu-

ous on ;.

h
(iv) The set () = U Q; has finite perimeter and the free reduced boundary 9*S) is smooth in

i=1
D. Equivalently the reduced boundary 0*$Q), 1 of the auxiliary phase Q1 = D \ Q is

smooth in D.

Remark 3.1.4. We notice that the above result is still valid in dimension d > 2. We restrict our
attention to dimension 2 since we can avoid some technicalities in the proofs of the Lipschitz
continuity of the eigenfunctions and the decay monotonicity formula Lemma 3.3.10. In fact,
a key step in the proof of the Lipschitz continuity of the eigenfunctions is to show their non-
degeneracy on the boundary in terms of the gradients. This question can be handled easily in
two dimensions, while for the case d > 2 we refer to [31, Theorem 5.9], where the case of the

Dirichlet energy was considered.

For the computation of the optimal partition we use an approach that has as a starting point
the algorithm used in [18]. We notice that the first eigenvalue of an open set {2 C D can be
formally characterized as A (2, +00), where

2+ C1 2d
AM(Q,C)=  min Jp|Vul’ + Clpou”de
ue HE (Q)\{0} [ u?dx

Replacing the characteristic function of €2 by a function ¢ : D — [0, 1] we can define

Vul? +C(1 — 2d
Mip.C)= i Ap[THEROLZodr
ueHL(Q)\{0} [, u?dx

and then replace the optimal partition problem by

h h
min { ZM(%‘,C) +/Dcpi(x)I/Vi(x) dx : Q;open, ; : D — [0, 1], Z%‘ < 1}. (3.1.7)
i=1 i=1

In [18] it was proved that as C' — 400 and ¢ is the characteristic function of a regular set €2,
then the relaxed eigenvalue A (p, C') converges to the actual eigenvalue A\, (€2). To the authors
knowledge, there was no prior study of the rate of convergence in terms of C'.

In Section 3.5 we observe the numerical error of a few simple shapes in terms of C' and the
discretization parameter, by comparing the values of the eigenvalues computed in the penalized
setting, with the ones computed using MpsPack [14]. We observe that as C' and the discretiza-

tion parameter NV increase, the errors decrease. In Section 3.6 we use the results of [29] in order
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to obtain a theoretical upper bound for the relative error [z (€2) — A\ (2, C)|/A(2). Precisely
we will prove the following.

Theorem 3.1.5. Suppose D C RY is a bounded open set and ) C D a set with boundary of
class C?. Then there exists a constant K > 0 depending on §), D, N, for which we have

A (Q) — Me(pc)]

< KO~V (N+4),
e (€2) N

This bound on the error makes the convergence result proved in [18] more precise. In addi-
tion to this, we observe a good concordance between the theoretical bounds and the numerical
errors observed in Section 3.5.

In Section 3.7 we present the main lines of the optimization procedure. One challenging
h

issue was to manage the non overlapping condition Z p; < 1. We introduce an extra phase

i=1
wn+1 Which represents the void space. Thus we are left to manage an equality condition instead

of an inequality. This allows us to adapt the framework presented in [18] to our problem. We
use a standard gradient descent algorithm with a line search procedure in order to accelerate the
convergence. We observe good stability properties of our proposed algorithm by performing
a few optimizations starting from random densities and by observing that the resulting shape
configuration and cost values are close. In addition to the finite difference framework on a
rectangular grid we also propose an approach based on finite elements which can be generalized
to general plane domains and even to surfaces in three dimensions.

In Section 3.8 we present some of the results obtained using the presented numerical frame-
works, as well as some numerical observations which motivate the interest in the study of prob-
lem (3.1.3). First we mention that the numerical results satisfy the theoretical properties proved
in [31] and in Theorem 3.1.3: the lack of triple points, the lack of triple points on the boundary
and the lack of angles. Secondly we observe an interesting connection between the two inter-
esting cases & = 0 and the value of o which gives the circle packing in the periodic setting.
It is well known that the hexagonal circle packing in the plane has the maximal density (result
attributed to A. Thue with a first rigorous proof given by F. Toth). As mentioned above, in the
case a = 0 (the spectral partition) it is conjectured that the optimal asymptotic partition is the
honeycomb partition. This conjecture was supported numerically by the results of [18]. As we
already mentioned the problem 3.1.3 provides a connection between the established result of
the circle packing configuration and the Caffarelli-Lin conjecture that the regular honeycomb
tiling is the solution of the spectral optimal partition problem. In our computations we observe
that starting from the parameter & which realizes the circle packing in the periodic setting and
decreasing «, the shapes forming the optimal partition grow in a monotone fashion. If this
observed monotonicity property could be proved theoretically then a proof that the honeycomb

partition is optimal for « = 0 will follow. Note that this also applies in the case of the sphere,
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where it is expected that for h € {3,4,6,12} the optimal spectral partitions are realized by
regular tilling of the sphere.

The chapter is organized as follows. In Section 3.2 we recall the known results and we
introduce the basic notions that we use in the proof of the above results. Section 3.3 is dedicated
to the proof of Theorem 3.1.3. In Section 3.5 we present the eigenvalue computation method
and we make a few numerical tests by comparing our results to other methods or to analytical
results. Section 3.6 is dedicated to the proof of Theorem 3.1.5. In Section 3.7 we present the
optimization algorithm used for calculating the numerical minimizers of (3.1.2). The numerical

results and other observations are discussed in Section 3.8.

3.2 Preliminaries and main tools

3.2.1 Eigenvalues and eigenfunctions

Let 2 C R? be an open set. We denote with H} () the Sobolev space obtained as the closure
in H'(R?) of C°(Q), i.e. the smooth functions with compact support in 2, with respect to the

Sobolev norm

1/2
lalls = (Il + %) > = ( [ v+ dx) .
RQ

We note that H}(£2) can be characterized as
HY(Q) = {u € H'(R?) : cap ({u #0}\ Q) = 0}, 3.2.1)
where the capacity cap(F) of a measurable set £ C R? is defined as
cap(E) = min {||u||fql : u > 1 in a neighbourhood of E}l.

We notice that the sets of zero capacity have also zero Lebesgue measure, while the converse
might be false. We may use the notion of capacity to choose more regular representatives of the
functions of the Sobolev space H*(R?). In fact, every function v € H'(IR?) has a representative
which is quasi-continuous, i.e. continuous outside a set of zero capacity. Moreover, two quasi-
continuous representatives of the same Sobolev function coincide outside a set of zero capacity.
Thus we may consider H'(IR?) as a space consisting of quasi-continuous functions equipped
with the usual H' norm.

The k-th eigenvalue of the Dirichlet Laplacian can be defined through the min-max varia-

tional formulation
Vul?d
Ae(©):= min  max M, (3.2.2)
SkCHY Q) uesi\{0} [, u? da

'for more details see, for example, [51] or [66]
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where the minimum is over all & dimensional subspaces Sy of Hj(2). There are functions

Un, n > 11in H}(Q), orthonormal in L*(£2), that solve the equation
—Auy = )\k(Q)uk, up € H&(Q),

in a weak sense in H&(Q). In particular, if & = 1, then the first eigenfunction u; of €2 is the

solution of the minimization problem

A(©2) ;== min M

3.2.3
weHYQ\(0} [ u?da ( )

In the sequel we will often see A; as a functional on the family of open sets. We notice that
this functional can be extended to the larger class of quasi-open sets, i.e. the sets 2 C R? such
that for every ¢ > 0 there exists an open set w,. of capacity cap(w.) < ¢ such that Q N w; is
an open set. We define H} () as the set of Sobolev functions u € H'(R?) such that u = 0
quasi-everywhere (i.e. outside a set of zero capacity) on §2°. The first eigenvalue and the first
eigenfunctions are still characterized as the minimum and the minimizer of (3.2.3).

We notice that since |u;| is also a solution of (3.2.3), from now on we will always assume
that u; is non-negative and normalized in L?. Moreover, we have the following properties of 1,

on a generic open? set (2 of finite measure:
e w4 is bounded and we have the estimate?

1
][ ee < ;)\1(9)|Q|1/2. (3.2.4)

o u; € H'(R?), extended as zero outside €2, satisfies the following inequality in sense of

distributions:

Aup+M(Qu >0 in - [C2(RY)]. (3.2.5)
e Every point 2, € R? is a Lebesgue point for u;. Pointwise defined as

i) =tim f )
(X0

wy is upper semi-continuous on R?.

e 1, is almost subharmonic in the sense that for every x, € R?, we have

u1(z0) < |Jur||Leo A1 (Q)r? + ][ uy () de, Vr > 0. (3.2.6)

Br(x())

2The same properties hold for the first eigenfunction on quasi-open set of finite measure.
3We note that the infinity norm of u; can also be estimated in terms of A1 (£2) only as ||u1 || < CA1(€2)
This estimate is more general and can be found in [43, Example 8.1.3].

/4
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3.2.2 Sets of finite perimeter and reduced boundary

In the proof of Theorem 3.1.3 (iv) we will need the notion of a reduced boundary. Let 2 C R?
be a set of finite Lebesgue measure. If the distributional gradient of its characteristic function
V1g is a Radon measure such that its total variation |V 1q|(IR?) is finite, then we say that € is
of finite perimeter. The perimeter P(2) is the total variation of the gradient and for regular sets
coincides with the usual notion of perimeter as surface integral. The reduced boundary 0*()

of a set () of finite perimeter is defined as the set of points where one can define the normal

1q(B,
vector to €2 in the following sense: zo € J*(), if the limit lim Via(B:(20))
r=0 [Vg|(B,(20))

Euclidean norm equal to one. We notice that if a point xy belongs to the reduced boundary, then

QN B, 1 .
the density of 2 in x, is precisely 1/2, i.e. lim M = —. For more details on the sets
r>0 | B, (xo)] 2

of finite perimeter we refer to the books [58] and [70].

exists and has

3.2.3 The existence theory of Buttazzo and Dal Maso

The multiphase shape optimization problems of the form (3.1.1) admit solutions for a very
general cost functionals F(£2,...,€;). The main existence result in this direction is well
known and is due to the classical Buttazzo-Dal Maso result from [53]. The price to pay for such
a general result is that one has to relax the problem to a wider class of domains, which contains
the open ones. Indeed, one notes that the capacitary definition of a Sobolev space (3.2.1) can be
easily extended to generic measurable sets. In particular, it is well known (we refer, for example,
to the books [66] and [27]) that it is sufficient to restrict the analysis to the class of quasi-open
sets, i.e. the level sets of Sobolev functions. Since the definition of the first eigenvalue (3.2.3) is
of purely variational character, one may also extend it to the quasi-open sets and then apply the
theorem of Buttazzo and Dal Maso [53] to obtain existence for (3.1.1) in the family of quasi-
open sets under the minimal assumptions of monotonicity and semi-continuity of the function
F'. Thus, the study of the problem of existence of a solution of (3.1.1) reduces to the analysis of
the regularity of the optimal quasi-open sets. The precise statement of the Buttazzo-Dal Maso

Theorem that we are going to adopt is the following.

Theorem 3.2.1. Suppose that D is a bounded open sets, k1, ...,k are natural numbers, F :
R" — R is a continuous function increasing in each variable and let W; : D — [0, +oc] be

given measurable functions. Then there is a solution to the problem
h
min {F(Akl(fh), o Ak, (S0)) + Z/ Wi(z)dz : Q; C D quasi-open,§; N, = @}_
i=1 /S

3.2.4 Regularity of the optimal sets for the first eigenvalue

The regularity of the optimal sets for the Dirichlet eigenvalues is a difficult question and even

in the case of a single phase it is open for higher eigenvalues. For the principal eigenvalue of
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the Dirichlet Laplacian we have the following result by Lamboley and Briancon which relies on
an adaptation of the classical Alt-Caffarelli regularity theory to the case of eigenfunctions. We

state the result here with a smooth weight function as in the original paper [2].

Theorem 3.2.2. Suppose that D C R? is a bounded open set, W : D — [a, A] is a smooth

Sfunction and () is a solution of the shape optimization problem
min {)\1(9) +/ W(z)dx : QC D quasi—open}. (3.2.7)
Q

Then () is open set of finite perimeter and the boundary D N OS2 is locally a graph of a smooth

Jfunction.

3.2.5 Shape subsolutions and their properties

We say that the quasi-open set 2 C R? is a shape subsolution for the functional \; + a - | if for

every quasi-open set w C ) we have
A1 () + o] Q] < A\ (w) + afw.

The notion of a shape subsolution was introduced by Bucur in [26] in order to study the exis-
tence of an optimal set for the kth eigenvalue and then was more extensively studied in [31].

We recall the main results from [26] and [31] in the following
Theorem 3.2.3. Suppose that ) is a shape subsolution for the functional \; + «| - |. Then

(a) Q2 is bounded and its diameter diam(S)) is estimated by a constant depending on o, \1(2)
and |Q

’

(b) ) is of finite perimeter and we have the estimate

P(Q) < o720 (Q)]Q'?; (3.2.8)

(c) there is a lower bound on the eigenvalue \1(2) given by

M(Q) > (dra)'’?; (3.2.9)

(d) If QY is also a shape subsolution for the same functional such that QX N Q' = (), then there
are disjoint open sets D and D' such that  C D and Q' C D'.

3.2.6 Monotonicity formulas for eigenfunctions

The monotonicity formula of Alt-Caffarelli-Friedman is an essential tool in the study of the be-
haviour of the eigenfunctions in the points of the common boundary of the optimal sets. Since

the eigenfunctions are not subharmonic, but satisfy (3.2.5), we will need another version of the
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monotonicity formula from [3]. We state here the following monotonicity theorem for eigen-
functions from [38], which is a version of the Alt-Caffarelli-Friedman monotonicity formula.
We use this result to prove that the eigenfunctions of the optimal sets are Lipschitz continuous

everywhere in D.

Theorem 3.2.4 (Two-phase monotonicity formula). Consider the unit ball B, C R2% Let
ut,um € HYBy) N L*®(By) be two non-negative functions with disjoint supports and let
A, A= > 0 be two real numbers such that

Aut + A ut >0 and Au~ + X _u” > 0.

Then there are constants 1/2 > ry > 0 and C' > 0, depending on d, Ay and \_, such that for

every r € (0,79) we have

1 1 ) ) 2
(72 \vu+|2dx) (5/3 Vu \Qdaz) §0(1+|yu++u Hiw(%)) . (3.2.10)

B

We note that the estimate (3.2.10) follows by the more general result by Caffarelli, Jerison
and Kénig (see [34] and also the note [90], where the continuity assumption was dropped). In
order to obtain (3.3.21) we use the idea of Conti, Terracini and Verzini (see [38]) that follows
the spirit of the original Alt-Caffarelli-Friedman monotonicity formula. It works exclusively for
eigenfunctions (linear or nonlinear), but can be easily refined to obtain finer qualitative results
as (3.3.21).

The three-phase version of Theorem 3.2.4 is the main tool that allows to exclude the pres-
ence of triple boundary points in the optimal configuration. The following three-phase mono-
tonicity formula was proved for eigenfunctions in [38], while the general three-phase version
of the Caffarelli-Jerison-Kénig result can be found in [31] (see also [90] for the detailed proof).
This formula is used in the proof of the fact that in the optimal configuration there are not triple

points. In the following, B, denotes the unit ball in R

Theorem 3.2.5 (Three-phase monotonicity formula). Let uy, us,u3 € H'(By) N L®(By) be
three non-negative functions with disjoint supports and let A1, Ao, A3 > 0 be real numbers such
that

Au; + Nu; >0, Vi=1,2,3.
Then there are constants 0 < 1o < 1/2, C' > 0 and ¢ > 0, depending on d, \i, Ay and X3, such
that for every r € (0,19) we have

3

1 3
II (ﬁ/ |Vuz‘|2dx) < Orf (1 + Jlur + ug +u3||ioo(32ro)> : (3.2.11)
B

=1

The three phase monotonicity formula is not just a consequence of the two phase formula.
In fact if we apply the Alt-Caffarelli-Friedman formula to each pair of the tree sets €2;, {2, and
(2, then in (3.2.11) there will be no decay term r°. Roughly speaking the presence of the third
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phase forces the other two to occupy less space which in turn gives some decay with ¢ > 0.
The same phenomenon appears when there are only two phases that cannot occupy a certain
sufficiently big region. This is the idea that we develop in Lemma 3.3.10 which we will use to
deduce the lack of double points on the boundary of the design region D and also the regularity
of the reduced boundary of the auxiliary phase €2, 1.

3.3 Proof of Theorem 3.1.3

3.3.1 Existence of optimal open sets

An existence of an optimal configuration in the class of quasi-open sets follows by the Buttazzo-
Dal Maso Theorem. Let €2y, . .., ()}, be the optimal quasi-open sets. Then for every quasi-open

set w; C €2; we have that the configuration is not optimal which gives that
A(w;) — A () > / W;dzx — / Wi dz > al€;| — a|w;].
Q; wi

Thus €2, is a shape subsolution for the functional \; + | - | and so we can apply the result from

[31] Theorem 3.2.3 (d). Thus each of the sets (2; is contained in an open set D; and solves
min {Al(Q) + / Wi(x)dz : Q C D; quasi—open}.
Q

By Theorem 3.2.2 the sets {2; are open.

3.3.2 Lipschitz continuity of the eigenfunctions

In this section we prove that the first eigenfunctions on the optimal sets for (3.1.2) are Lipschitz
continuous. To fix the notation, in the rest of this section we will denote with (€2q,...,$)
a generic solution of (3.1.2) and with u; € HJ(;) the first eigenfunction on €;, i.e. wu; are

non-negative function such that [y, u? do = 1 satisfying (3.2.4), (3.2.5) and the equation
—Aui = Al(Qi)ui, U; € H&(Q),

weakly in H}(€2;).

Non-degeneracy of the eigenfunctions. We first note that for every w; C 2;, the optimality
of (Q,...,Q;,...,8y) tested against the h-uple of open sets (Qq,...,w;, ..., ) gives the
inequality

A (8%) + ol < Ai(wi) + afwil,

i.e. ; is a subsolution for the functional A\; + «| - |. Thus using the argument from the Alt-
Caffarelli non-degeneracy lemma (see [2, Lemma 3.4] and also [31, Section 3]), we have the

following result.
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Lemma 3.3.1. Suppose that (), ...,,) is optimal for (3.1.2). Then there are constants Cyq
and o > 0 such that for all the first eigenfunctions u;, every 0 < r < rq and every xy, € R? we

have the following implication

(BT/Q(:CO) N # @) = ( ! ]{wo) widz > Cig ) (3.3.1)

r

Remark 3.3.2. Together with the estimate (3.2.6), Lemma 3.3.1 gives that there is ry > 0 such
that

||ui||L°°(Br/2(xo)) S 5 ][ U; d![’, Vr S To such that BT/Q(ZL‘Q) N Qz 7& @ (332)

By (zo)

On the common boundary of two optimal sets the non-degeneracy (3.3.1) of JCBT(:::O) u; dx gives
a bound from below for the gradient f; . |Vu;|*dz. This fact follows by the elementary

lemma proved below.

Lemma 3.3.3. Let R > 0, Br(z9) C R? and U € H*(Bg(x)) be a Sobolev function such that
for almost every r € (0, R) the set {U = 0} N OB, (xy) is non-empty. Then we have

1 1/2
— UdH' <2 (][ \VU|2da:) : (3.3.3)
R BR(Z‘O) BR($())

Proof. Without loss of generality we suppose that 2y = 0. We first note that for almost every
r € (0, R) the restriction U|yp, is Sobolev. If, moreover, {U = 0} N 0B, # (), then we have

/ U? dH! §4r2/ VU2 dH .
0B,

0By

Applying the Cauchy-Schwartz inequality and integrating for r € (0, R), we get

1 > 1
(—][ de) < —2][ U2d:zc§4][ VU2 da.
R Jg, R Jg, Br

O

Corollary 3.3.4. Suppose that ()y,...,8) is optimal for (3.1.2). Then there is a constant
ro > 0 such that for every xy € 0€); N 0Y;, for some i # j we have

][ |V, |* do > 4C2,,Vr € (0,7), (3.3.4)
By (z0)

where C,q > 0 is the non-degeneracy constant from Lemma 3.3.1.

Proof. Since zy € 0€;N08Y;, we have that for every r > 0 Q;NB,.(xg) # 0 and Q;NB,(xg) # 0.
In view of Lemma 3.3.1, it is sufficient to check that ©; N 9B, (x¢) # 0 and Q; N OB, (xo) # 0,
for almost every r € (0, (). Indeed, suppose that this is not the case and that Q; N9 B,.(zo) = 0.
Since (2; is connected, we have that Q; C B, (o), which gives A\;(€;) > A\(B,,), which is

impossible if we choose 7y small enough. U

90



Growth estimate of the eigenfunctions on the boundary. We now prove the two key
estimates of the growth of u; close to the boundary 0€2;. We consider two kinds of estimates,
one holds around the points, where two phases €2; and (}; are close to each other, and is reported
in Lemma 3.3.5. The other estimate concerns the one-phase points, i.e. the points on one

boundary, say 0S2;, which are far away from all other sets €2;.

Lemma 3.3.5. Suppose that (S)1,...,,) is optimal for (3.1.2). Then there are constants Cy
and ro > 0 such that if vy € 0SY; is such that ;N B,(xo) # 0, for some j # i and r < o, then

|3 oo (B, (o)) < Cor (3.3.5)

Proof. Without loss of generality we suppose that 0 = zy € 0¢2;. Let now 0 < r < rg be such
that Q; N B, # (). Choosing 7 small enough we may apply Lemma 3.3.1 obtaining that

][ ujdr > 3Cpqr.
B3’I‘

Again by choosing ¢ small enough we may suppose that for every r € (0,7) we have 0B3, N
Q; # 0. Indeed, if this is not the case for some 7, then the set €; is entirely contained in Bs,
and so A\ (€;) > A\ (Bs,) > A\i(Bsy,), contradicting the optimality of €2;. Thus, we may apply

the estimate (3.3.3) for u; obtaining

1 2
Cc2, < (§ ]{3 u; d:c) < 4]{3 |Vu;|* dz.
3r 3r

By the two-phase monotonicity formula applied for u; and u;, we get that there is a constant

C' > 0 such that
4C

— > Vu;|? dz.
ng ‘fBST‘ | |

Since B, N §); # (), by choosing o small enough an reasoning as above we may suppose that

for every 7 € (r,3r) 0B; N Q; # 0. Thus, reasoning as in Lemma 3.3.3, we get that

1 2
4(3r)? |Vu;|* do > uf dv > widz ) .
i 2
BST‘\BQT‘ BST‘\BQT 57TT BST‘\BQT‘

By the mean value formula, there is R € (2r, 3r) such that

1 3r 1/2
/ widr < —/ (/ i d%l) ds < 277“(/ |Vui|2dx> (3.3.6)
OBr T Ja2 OBs B

T 3r
We now note that by (3.2.5) the function v(x) = w;(x) — A (Q)||wi]| L (R* — |z|?) is subhar-
monic. Then, for every x € B,., we use the Poisson formula

R2—|xl2/ u;(y) 1
< dH (y 39][ w; dHL.
2rR Jop, ly — x]? () 9Bn

(3.3.7)

Using the non-degeneracy of u; (Lemma 3.3.1) and combining the estimates from (3.3.6) and
(3.3.7) we get

wi(x) — A () [|uil L= (3r)°

12 2,/C36
||Uz‘||L°°(Br)§36T(/ |Vuilzdx> < o (3.3.8)

Bs,-

O
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The following Lemma is similar to [2, Lemma 3.2] and [23, Lemma 3.1]. We sketch the

proof below for the sake of completeness.

Lemma 3.3.6. Suppose that (), . ..,)y,) is optimal for (3.1.2). Then there are constants Cy >
0 and ry > 0 such that if vy € 02; and 0 < r < rq are such that Q2; N By, (x¢) = 0, for every
J # 1, then

|5 || oo (By (o)) < Car (3.3.9)

Proof. Without loss of generality we may suppose that 2 = 0. Since 2; N By, = (), for
every j # 4, we may use the h-uple (€q,...,€; N By, ...,Q) to test the optimality of
(..., Qi ..., Q). Thus we have

R2

>~ o~ +Oz|QZUBgr| S/ |Vﬁl|2dx+a|QZUBgr|,
Jpo U3 d R

(3.3.10)

where we used the test function u; € H](; N By,) defined as @; = v;lp,, + u;l s, and

v; € H'(Bs,) is the solution of the obstacle problem
min{/ \Vul>dz: v e H' (By,), v —u; € Hy(Ba,), v > u,} (3.3.11)
BQr
By (3.3.10) an the fact that v; is harmonic on the set {v; > w;}, we get

/ IV (u; —v;)|* doe = / (IVu* = |Vui|*) dz < a| By, \ Q. (3.3.12)
B27‘

Bar

Now, reasoning as in [2, Lemma 3.2] (see also [89, Lemma 4.3.20] and [31]), there is a constant
C' > 0 such that

1 2
[{u; = 0} N By | (5 ]{93 u; d%l) < C/B |V (u; — vy)|? da. (3.3.13)

Now we note that by the optimality of €2;, we have Q; = {u; > 0} and | By, N {u; = 0} > 0
(if | Ba, N {u; = 0}] = 0, then by the optimality v; = u; in Bs,; thus w; is superharmonic in B,
and so u; > 0 in By, which contradicts the assumption 0 € 9€2;). Now (3.3.12) and (3.3.13)
give
1 u;dH' < /C/a. (3.3.14)
2r Jan,,
Since the function {x > (ul(x) — M () |Jwi|| s (4% — |x|2))} is subharmonic, we can use

the Poisson formula for every = € B,

2r)? — ||? u;(y)
wi() — 41 () ||| foo 12 §< / : d”Hly <4 w; dH?.
() = ()il s et <4
(3.3.15)
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By the non-degeneracy of u; (Lemma 3.3.1) and (3.3.15), we have that for r, small enough

||Uz'||L°°(Br)
T

bt
g—][ u; dH' < 51/C/a,
2T 9Bay
which gives the claim. U

We combine the estimates from Lemma 3.3.6 and Lemma 3.3.5, obtaining the following

Proposition 3.3.7. Suppose that ()y,...,4) is optimal for (3.1.2). Then there are constants
ro > 0 and Ci5 > 0 such that for every i € {1, ..., h} we have

|23 || oo (B, (z0)) < Cha, Vr e (0,79). (3.3.16)

Conclusion of the proof of the Lipschitz continuity of the eigenfunctions. We now use
the estimate from Proposition 3.3.7 to deduce the Lipschitz continuity of u;. The argument
is standard and we recall it briefly for the sake of completeness. It is based on the following

classical lemma.
Lemma 3.3.8. Suppose that B, C R?, f € L>°(B,) and u € H'(B,) satisfies the equation
—Au=f weaklyin [Hy(B,)].

Then there is a dimensional constant C' > 0 such that the following estimate holds

[ull (B,
IVlima, 0 < C (flmcay + T2 (33.17)

We prove the following result which implies Theorem 3.1.3 (ii1) since if the bounded open
set D C’ R? has boundary of class C?, then the function wp, defined below is Lipschitz contin-

uous on D.

Theorem 3.3.9. Let D C R? be a bounded open set. Let (2y,...,Q) be optimal for (3.1.2).
Then the corresponding first eigenfunctions uy, . . ., uy are locally Lipschitz continuous in D. If,

moreover, D is such that the weak solution wp of the problem
—Awp =1, wp € Hi(D),

is Lipschitz continuous on R?, then the first eigenfunctions ui, . .., uy are globally Lipschitz

continuous on R?.

Proof. Let 1y > 0 be the constant from Proposition 3.3.7 and fix r; < ro/2. Let g € Q; be
such that dist(xg, 0D) > ry. If r := dist(xg, 0€2;) > r1, then by (3.3.17), we have

IVui(zo)] < C (M () + 1Y) (] o (3.3.18)
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If r := dist(xg, 0€2;) < ry, then we set yp € JS; to be such that |z — yo| = dist(zg, 0€;). Using
Proposition 3.3.7 and again (3.3.17), we have

[Vui(zo)| <C (Al(Qi)HuiHLw + W#)

< (M@ + L= < o)l +2633).
(3.3.19)
which gives the local Lipschitz continuity of u;.
If the function wp is Lipschitz continuous on R¢, we consider for every point z, € €;
two possibilities for r := dist(xo, 0€;): if 3r > dist(zo, 0D), then the maximum principle
w; < A (Q)]|ug||L~wp and the gradient estimate (3.3.17) gives

[Vui(zo)] < C (Al(Qi)HuiHLw + W#)
< O (820) il o= (1 + W(dist(xo, aD) + r)) (3.3.20)

< O () Jullzes (1 + 4 Ve = )

If 3r < dist(xg, D) and r < ry/2, then the gradient estimate (3.3.17) gives again (3.3.19). If
r > 19/2, then we have (3.3.18) with 7, = r/2 and this concludes the proof. O

3.3.3 A monotonicity formula with decay

In order to prove the lack of double points on the boundary of D and the regularity of the
auxiliary phase (2,1 we will need special type of a two phase monotonicity formula in which

the supports of the eigenfunctions cannot invade certain prescribed zone. In this case the product
1 1

of the two gradients (—2 / (Vut|? dx) <—2 / |Vu~|? dx) decays as  — 0. The result is
= JB, " JB,

in the spirit of the three phase formula but the proof follows the idea of the proof of the two

phase formula that was carried out in [38].

Lemma 3.3.10. Consider the unit ball By C R% Let u™,u~ € H'(By) N L>(B;) be two non-
negative functions with disjoint supports, i.e. such that | B, utu=dr = 0, and let Ay, A\_ > 0

be two real numbers such that
Aut 4+ X ut >0 and Au~ + A _u” > 0.

If, moreover, the set Q) := By N {u™ = 0} N {u~ = 0} has positive density in 0 in sense that

QNB,
lim inf | |

30 7|Br| =c> 07
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then there is some € > 0, depending on d, A\, \_ and c such that

<i2/ |Vu+|2dx) (%/ |Vu|2dx) = o(r%). (3.3.21)
T JB, ™ JB,

The proof of Lemma 3.3.10 is based on Lemma 3.3.12, which involves the auxiliary func-
tions U; and U, constructed below. Let A := max{A,,A\_} and let o > 0 be small enough

such that there is a positive radially symmetric function o € H'(B,,) satisfying
—Ap = \p in B,,, 0<a<p<h, (3.3.22)
for some constants 0 < a < b depending on d, A and ry. We now introduce the notation

Up="— and Up:= —. (3.3.23)
¥ 2
Remark 3.3.11. A direct computation of the gradient of U; on B, gives

VU, = ¢ 'Vut —p2utVop

We define the function ® : [0, 9] — R* as

1 1
O(r) = <T—2/B <p2|VU1|2dx) (72/3 g02|VU2|2dx). (3.3.24)

Lemma 3.3.12. Consider the unit ball By C R% Let ut,u~ € HY(B;) N L*>°(B,) be as in
Lemma 3.3.10 and let @ : [0, 7] — R be given by (3.3.24). Then

(a) O is increasing on the interval (0,1);

(b) If, moreover, the set Q := By N {u™ = 0} N {u~ = 0} has positive density in 0, then there
are constants C' > 0 and € > 0 such that

Proof. We first estimate the derivative of ®, using the notations V,u and V .u respectively for
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the normal and the tangential part of the gradient Vu on the boundary of 0B,.
(r) 4 i Z faBT ¢’ |VU|? dH!

o(r) r i=1,2 fBT ‘P2|Vﬁi|2 dx

faBT 902(|V7'U2|2 + |anZ|2) dHl

4
= (3.3.25)
" z‘zl,Q faBT 02U, |V, Us| dH!
1/2 1/2
4 2 (Jon, #IVnUFaH) ™ (o, &"IV-UP 022)
> 1/2 (3.3.26)
.

i—1,2 (faBT ‘PQUE dH1)1/2 (faBr 2|V, U;)2 d?-ﬂ)

1/2
4 V. U; |2 dH!
=—— 42 Z <f83f | | ) (3.3.27)
T k

i=1,2 faBr Ui2 i’

= —é +2  V/M(0B,n{U; > 0})
i=1,2
4 2w
- 32
T +ZZM HY(OB, N{U; > 0})’ (3.3.28)

where (3.3.25) follows by integration by parts and the inequality —div(©*VU;) < 0 obtained
using Remark 3.3.11; (3.3.26) is obtained by applying the mean quadratic-mean geometric
inequality in the nominator and the Cauchy-Schwartz inequality in the denominator; (3.3.27)
is due to the fact that ¢ is constant on 9B5,; (3.3.28) follows by a standard symmetrization

argument. Setting
HY(QNIB,)
9(T> = —1(aBr> ,

and applying the mean arithmetic-mean harmonic inequality to (3.3.28), we get

O'(r) _ 4 1 40(r)
O(r) Z;(_l—i_l—ﬁ(r)) = r

: (3.3.29)

which gives (a). In order to prove (b), we note that for 7 > 0 small enough we have the density
estimate
QN B,| > ¢|B,|, VO <r <.

Using the fact that 2|Q N B,| = H(QN IB,) = 27r6(r) we get

/ 27s(6(s) —c)ds > 0, Vr € (0,79). (3.3.30)
0
As a consequence we have that
/ ors (9(3) - g) ds >0,  Vre(0,r) (3.3.31)
rc/2

Indeed, if this is not the case, then

r cr/2 r
0< / 21s(6(s) — ) ds < / 2ns(1 —¢)ds — / 2%5% ds < —7ric(l — ¢)?,
0 0 c

r/2
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which is in contradiction with (3.3.30). By (3.3.31), we get that there is a constant ¢y > 0 such
that ,
/ 0(s)ds > cqr, Vr < 1. (3.3.32)

c/2
By (3.3.29) we have

g (<0(0)) ~ log ((re/2) “2(re/2)) = [ (-

rc/2

W | M

oo ) @

> /TT 1 (—Z - 8(5)) ds > elog(c/2) + 4cy,

c/2 S

which is positive for € > 0 small enough. Thus, we obtain that the sequence
ay =1, " D(r,), where 1, = (¢/2)"ro,
is decreasing and so, by rescaling we obtain (b). U

Proof of Lemma 3.3.10. We first note that as a consequence of Remark 3.3.11, we have the

estimates:

[Vut|? 2| VU ~1 2 u?
s <2 [, e e Vel [, Gt

2| VUia|? |Vu*|? -1 2 u’
/';T(p ‘x|d*2 dx S 2 : |Jj‘d*2 d$+2||(p VSDHLOO(Bm) Brmmdl‘.

Taking in consideration the inequality

+12
/ Wu dr < C 1+/ E 2 da | (3.3.34)
Bry Ed Barg

proved in [34], we obtain the claim by Lemma 3.3.12 and simple arithmetic. U

(3.3.33)

3.3.4 Multiphase points and regularity of the free boundary

This subsection is dedicated to the proof of (1), (ii) and (iv) of Theorem 3.1.3.

Lack of triple points. The lack of triple points was proved in [31] in the more general
case of partitions concerning general functionals depending on the spectrum of the Dirichlet
Laplacian. The original proof uses the notion of an energy subsolution. In the present case the
lack of triple points follows directly. In fact if there are three phases €;, €2;, {; such that the

intersection of their boundaries contains a point x, then by the non-degeneracy of the gradient

3
1
(Corollary 3.3.4) we have that the product H (
i=1

- (V|2 dx) remains bounded from be-
T B,

low by a strictly positive constant, which is in contradiction with the three-phase monotonicity
formula (Theorem 3.2.5).
Lack of two-phase points on the boundary of the box. Our first numerical simulations

showed the lack of double points (i.e. points on the boundary of two distinct sets) on the
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boundary of the box D. We first notice that there is a quick argument that proves the above
claim in the case when the boundary 0D is smooth. Indeed, if this is the case and if g € 9D,
then there is a ball B C D¢ such that zy € dB. Since the gradient of the first eigenfunction «
on B satisfies the non-degeneracy inequality (3.3.4), we can use the three-phase monotonicity
formula to conclude the proof.

If the boundary 0D is only Lipschitz we need to use Lemma 3.3.10. Suppose, by absurd,
that there is a point xy € 0€; N 0 N ID. If u; and w; are the first eigenfunctions on €2; and
€15, by Corollary 3.3.4 we have

][ |Vu;|*dx > C,q  and ][ |Vu,|? de > Cha, (3.3.35)
By (zo) By (z0)

for small enough » > 0 and some non-degeneracy constant C',,; > 0. Since 0D is Lipschitz,

DN B,
we have the density estimate lim inf w

> 0 and so, we can apply Lemma 3.3.10,
r—0 |Br|

obtaining a contradiction.
h
Regularity of the auxiliary set (2, ; = D\ ( U QZ> . We first notice that since each of the
i—1

sets (1, ..., is a shape subsolution for A; + a| n |, we have that each of these sets has finite
perimeter by Theorem 3.2.3. As a consequence 2,1 also has finite perimeter. Suppose that
xog € DNI*Upyq.

Suppose that x( is on the boundary of at most one phase, i.e. that there is ball B, (z() and
anindex i € {1,...,h} suchthat B,(zo) = (B,(x9) N ;) U (B,(20) NQp1). Then the set ;

is a solution of
min {)\1((2) +/ Wi(xz)dz + Q C D;N B.(xg), Q open},
Q

where the set D; is given by Theorem 3.2.3. By the regularity result of Briangcon and Lamboley
Theorem 3.2.2 we have that 0*Q, 1 = 0Qp, 41 in B.(xo) and is locally a graph of a smooth
function.

Thus in order to conclude it is sufficient to prove that xy belonging to the boundary of just
one of the phases is the only possible case. Indeed, suppose that there is j # i such that for every

ball B, (zo) the sets B, (zo) N €; and B, (zo) N 2; are both non-empty. By the non-degeneracy

of the gradients of the eigenfunctions u; and u; we have that / \Vu;|*dx > Cphgr? and
BT(Z‘())

/ |Vu;|? dx > C,qr*. On the other hand, since , is in the reduced boundary of ), ,; we
Br(x())

have that
lim | Br(0) NV Q| 1
r—=0 B, (o)l 2

Thus by the decay monotonicity formula Lemma 3.3.10 we get

1 1
=0\ JB,(20) 7% J By (x0)

which is a contradiction. Thus every point of the reduced boundary belongs to at most one

phase and 0*(2;, 4 is smooth.
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3.4 Further remarks and open questions

This section is dedicated to some further developments around Theorem 3.1.3. In particular,
using the decay monotonicity formula from Lemma 3.3.10 and the same argument as in Theo-
rem 3.1.3 (iv) we prove that the optimal set for the second eigenfunction has smooth reduced
boundary. We also discuss the extension of Theorem 3.1.3 to smooth surfaces and the analogous

result in this case.

3.4.1 On the regularity of the optimal set for the second
eigenvalue

Consider the shape optimization problem
min {AQ(Q) +alQ| : Qopen, QC D}, (3.4.1)

where D C R? is a bounded open set and o > 0. By the Buttazzo-Dal Maso Theorem this
problem admits a solution in the class of quasi-open sets. The question of regularity of the
solutions is quite involved and no progress was made for almost two decades until in [26] it
was proved that every solution has finite perimeter and in [31] it was proved that there is an
open solution characterized through a multiphase problem. In the Theorem below we answer

the question of the regularity of the reduced boundary 02 of the solutions of (3.4.1).
Theorem 3.4.1. Let Q) be a solution of (3.4.1). Then the reduced boundary D N 0*$ is smooth.

Proof. We first notice that it was proved in [31] that for every solution € of the problem (3.4.1)
there are disjoint open sets wy, wy C 2 of the same measure as 2, i.e. |\ (w3 Uwsq)| = 0 such
that the set w; U wsy is still a solution of (3.4.1) and such that the couple (wq, ws) is a solution to

the multiphase problem
min { max{A;(w1), A1 (w2) } + a|wi |+ afws| : wy,wa0pen, wis C D, wNwy = (Z)}. (3.4.2)

We notice that necessarily w; and ws are both connected and A;(w;) = Aj(ws), otherwise it
would be possible to construct a better competitor for (3.4.2). Thus, by confronting the couple
w1, wo With a couple Wy, wy where w; C w; we get that w; is a shape subsolution for the func-
tional \; + « - | and analogously wj is a shape subsolution for the same functional. In particular,
all the conclusions of Theorem 3.2.3 are valid. Let now zy € 9*(2. Using the non-degeneracy
of the gradient of the first eigenfunctions u; € H{(w;) and uy € Hj(ws) in zo and the decay
monotonicity formula Lemma 3.3.10, and reasoning as in the proof of Theorem 3.1.3 (iv) we
get that there is a ball B,.(z) that does not intersect one of the sets w; and w,. Without loss of
generality B, (zg) Nws = (. Now by the regularity result of Briangon and Lamboley [23] and
the fact that 0*w; = 0" in B,.(zo) we get that 0*() is regular in a neighbourhood of . O

Remark 3.4.2. We notice that an estimate on the Hausdorff dimension of the set 92 \ 9*() is
not available at the moment.

99



3.4.2 Multiphase shape optimization problems on smooth
manifolds

We notice that all the arguments that we use are local and Theorem 3.1.3 can easily be extended
to the case where the box (D, g) is a riemannian manifold with or without boundary. In fact the
existence of an optimal partition follows by the analogous of the Buttazzo - Dal Maso Theorem
proved in [31]. The Laplace-Beltrami operator A, in local coordinates satisfies cA < A, <
e~ A as an operator, where ¢ > 0 depends on D and g, and analogously the gradient satisfies
e|Vu| < |V,ul < et Vul, for any function u € H'(D) expressed in local coordinates. Thus,
the two and three-phase monotonicity formulas are still valid as well as the non-degeneracy of
the gradient, the lack of triple points inside D and the lack of double points on the boundary of

D. We present the results that are still valid in the following Theorem.

Theorem 3.4.3. Suppose that D is a compact riemannian surface. Let 0 < a < A be two
positive real numbers and W; : D — [a, A, i = 1,..., h be given C? functions. Then there are
disjoint open sets )y, ..., C D solving the multiphase optimization problem (3.1.2) in D.
Moreover, any solution to (3.1.2) satisfies the conditions (i), (ii) and (iii) of Theorem 3.1.3.

3.5 Numerical eigenvalue computation on a fixed grid

There are multiple ways of computing numerically the low Dirichlet-Laplace eigenvalues of a
shape €2, most of them requiring a good description of the boundary (for example finite elements,
or fundamental solutions). In our case it is necessary to compute the first eigenvalue of a number
of shapes, for which it is difficult to keep track of their boundaries. Thus, having a method which
allows us to work on a fixed domain D containing the shape, greatly simplifies the treatment
of the problem. Methods of this kind were used in [18],[36] in the study of spectral minimal
partitions. In our study we use the method presented in [18]. We did not found any other works
in the literature which study the numerical error associated to this method. In this section we
present the discretization algorithm, as well as the errors obtained for a few simple shapes.

This eigenvalue computation method is inspired from penalized problems of the form
—Au~+ pu = A (p)u, u € H'(D)N L*(D, ), (3.5.1)

where D is a bounded open set in R?, and p is a measure such that z(A) = 0 whenever A has
capacity zero. The case where \;, corresponds to a Dirichlet Laplace eigenvalue of a set {2 C D
is included in the formulation (3.5.1). Indeed, if coqe is defined as follows:

0 if cap(ANQ)=0

OOQC(A) = s

oo  otherwise
then A\;(0coqe) = Ak (§2). We have denoted cap(A) the capacity of the set A. For further details
about the penalized formulation (3.5.1), we refer to [27, Chapter 6].
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N | C=10° | C=10" | C=10° | C=10° | C=10" | C=10® | C =10°
100 [ 5.2-102]1.8-107%2|1.2-10721.1-102|1.1-107%2|1.1-1072] 1.1-102
200 [ 5.1-1072]1.1-1072]15-103|55-10*| 7-107* [ 72-107*]7.2-1071
300 [ 5.6-10721.6-1072[4.7-102[28-10%[2.6-1072 | 26-1072 | 2.6-1073
400 | 5.7-1072(1.6-107%2|39-102(16-103]1.3-107% | 1.3-102 | 1.3-1073
500 | 5.7-10721.6-107238-102[1.1-103[79-107*|76-107*|7.5-10"*
Table 3.1: Relative errors for the unit disk

N | C=10° | C=10* | C=10° | C=10° | C=10" | C=10% | C =10
100 [ 5.1-102]19-107%2|1.3-107213-102]13-107%2|1.3-1072]1.3-10°2
200 [ 44-107%2 | 5.7-1072 [ 3.7-107% | 48-103| 5-1073 5-1073 5-107°
300 [ 6.2-107%212.2-1072]1.2-1072 1072 1072 1072 1072

400 | 5.7-1072 [ 1.6-1072| 5-1072 [29-1073|2.7-107% | 2.7-1072 | 2.7-1073
500 | 5.4-10721.3-1072[83-107*]1.7-1073 | 2-107° 2.1073 21073

Table 3.2: Relative errors for the square of side length 2

This formulation suggests the following numerical method: we choose 1 = (1 — 1q)Cdx,
where 1, is the characteristic function of €2, and C'is large. In [18] it is proved that as C' — oo
we have A\, (C'(1—1g)dx) — A\(€2). In the following we propose to study the behaviour of this
eigenvalue computation method with respect to the discretization parameter N and with respect
to the choice of C. We compare these values with the ones provided by the MpsPack software
[14], which is quite precise.

We consider the domain D = [—1.5,1.5]? and on it we take a N x N uniform grid. We
discretize a function v : D — R by considering its values on this regular grid. For sets {2 C D

we consider the approximation of problem (3.5.1) defined as

—Au+ C(1 — 1g)u = M\ (Clgedx)u. (3.5.2)

This leads us to the discretized matrix problem
(A + Cdiag(1 — 1g))u = Au,

where A is the finite difference discretization of the laplacian operator.

We present below the relative error, compared to MpsPack, in function of the measure pa-
rameter C' and the discretization parameter N. In tables 3.1,3.2,3.3 and 3.4 we present the
maximal relative error [\, — \g|/ A (with 1 < k& < 10) for the unit disk, for the square of
side length 2 and for the shapes presented in Figure 3.1. Here A\, stands for the analytical value
(when available) or the value computed with MpsPack.

In our experiments we observed that for a fixed discretization parameter N, the relative error
stabilizes itself when C' is large enough. This numerical effect seems to be due to the fact that
() is approximated using a rectangular grid, so at a given NV, for large C' we only compute the

eigenvalue of this discrete approximation of €).
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C=10°

C =10

C=10°

C =10°

C =107

C=10°

C =10°

100

6-1072

1.8-1072

1-1072

9.5-1073

9.4-107°

9.4-107°

9.4-1073

200

6.5- 1072

1.8-1072

6.1-107°

4.4-1073

421073

4.2-1073

4.2-1073

300

6.7-1072

1.9-1072

4.9-1073

251073

2.2-107°

2.2-107°

2.2-107°

400

6.8 1072

1.9-1072

4.7-1073

1.8-1073

1.4-1073

1.4-1073

1.4-1073

500

6.9-1072

21072

5.3-1073

1.9-1073

1.4-1073

1.4-1073

1.4-1073

Table 3.3: Relative errors for the shape presented in Figure 3.1 (left)

C=10°

C =10

C=10°

C =107

C =10°

100

6.9-1072

2.2-1072

1.4-1072

1.3-

1.3-1072

1.3-1072

1.3-1072

200

7.2-1072

21072

6.8-1073

4.8 -

4.6-107°

4.6 -

4.6-1073

300

7.4-1072

2.1-1072

5.9-1073

3.3 -

3-1073

2.9-

2.9-107°

400

7.6-1072

2.2-1072

6.1-107°

2.8-

2.4-107°

24

2.4-107°

500

7.6-1072

2.3-1072

5.6-1073

1.8-

1.3-1073

1.3-

1.3-1073

Table 3.4: Relative errors for the shape presented in Figure 3.1 (right)

Figure 3.1: Shapes for which we test the method in Table 3.3 (left) and Table 3.4 (right)

3.6 Proof of Theorem 3.1.5

In this section, we give a theoretical estimate of the relative error obtained when working with
the penalized method. We study the difference between the eigenvalue A\ (C'lgedx), given by
(3.5.2), and \(Q). We fix Q C D to be an open set with boundary of class C?. In the following,

we denote o = Clgede.

We consider the functions w, w¢ defined as follows

Note that the standard maximum principle implies that we > w on D. Using the terminology
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defined in [29] we note that pucdr < ocoqe so cf. [29, Lemma 4.3] and [26, Lemma 4.1] the

following estimate holds

Rue — Rocge ll 222y < Cnallwe —w|| 1.

In general, we denote I, the resolvent operator associated to the problem
—~Au+up = f, u € HY(D)N L*(D, ).

Using [27, Corollary 6.1.8] we obtain the estimate
S
Ae(pe)  A(9)

< HRMC - ROOQC

cy < Onallwe — w1

Thus, we have
|Ae(€2) = A (pc)l
e (€2)

The monotonicity property stated in [27, Proposition 6.1.5] shows that Ax(uc) < A(€2). In

< )\k(MC)CN,Q/ we — w.

D
order to finish the proof, it suffices to give an upper bound for / we — w.
D

/\Vwc|2+0/ w%:/wc.
D ¢ D

When C' — oo we have w, — w in H}(D), and as a consequence lim C/ wg = 0. This

C'—o0

We clearly have

proves that for C' large enough there exists a constant M such that

2
M
(/ wo) <1 | we s

M
cwc—wg i

For the estimate of / we — w we use the fact that we — w is harmonic in €2, so
Q

Thus

/ we —w < sup wel€|.
Q o9

It remains to estimate sup,q, Wc.
Assume that B, ., C Q. Then

—AU}C <1 in D,

|z — 20|?
2N

1/2
1 |z — x| 2 1 / 9

< PR el g B :
we(wg) < wN?“éV/B (we + 5N ) < 5N + w]l\,/zréV/Q ; wg

0,70 0570

SO we + is subharmonic in D. This implies
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where we used the fact that |x — 2| < r and we applied the Cauchy Schwarz inequality. Thus,
for C' large enough we have

r2 M

welr) < L 4+ ———
C( 0) — 9N w]lV/ZT(J]V/ch/Q

Next, we choose 7 of the form C~“, which gives us

< 1 n M
= 2 1/2 ~(1-Na) /2
2NC wN/C(lN)/Q

we (o)

We choose v = 1 /(N + 4), which gives the same exponent for C' in the two terms of the above

1 M —2/(N+4)
N

sum. Thus

Clearly, as C' — oo, x can be chosen closer and closer to 9. The fact that € is of class C?
implies that 2 satisfies an exterior ball condition B,,. If d(x(,0) < p then we can apply the
previous estimate.

To go from x to the boundary 02 we note that the Minkowski sum €2 + Bo-. satisfies
an interior and exterior ball condition, if C' is large enough. For simplicity, we denote Q) =
Q1+ B« in the sequel. Thus ' is of class C1® and Vwgy is well defined on 0€'. Furthermore,
consider B,/ an exterior ball tangent to {2’ and another concentric ball B such that By contains
Y. The annulus A determined by B/, By contains €, and thus wg < wy in ' and |[Vwe/| <
Vw4 | on 0V . Tt is well known that w4 is Lipschitz, with a Lipschitz constant depending on
p" and the diameter of §2’. Thus, on 02 we have that |Vwgy| is bounded, and since |Vwgy| is
maximal on the boundary, it follows that wqy is Lipschitz.

The function we — wgy is subharmonic on J€2'. As a consequence, we have

+
1 M —2/(N+4)

which together with the Lipschitz continuity of wo g, gives us that

1 M 9
—2/(N+4 —a
wc\aQS <ﬁ+wTN/2>C / )—i—MzC )

where M, is the constant in the Lipschitz continuity result.
Thus

welon < (i + ﬁ) CHWNHY M 2OV N,
w
Consequently, there exists a constant M3, depending on €, N, D, such that
/ w, — w < MgC—H/IN+),
D
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In conclusion, for C' large enough, there exists a constant A such that

[Me(Q) — Me(pc)]

< KC-Y/0+),
A (€2) N

U

Remark 3.6.1. Using techniques similar to [66, Lemma 3.4.11] we are able to prove that there
is an upper bound of the form KC~° (with K,J > 0) for the relative error even in the more
general case when () satisfies a e-cone condition (equivalently, a uniform Lipschitz condition).

The drawback is that we do not have an explicit formula for 9, like in the case presented above.

We remark that in the case N = 2, studied numerically in the previous section, the relative
error is bounded theoretically by a term of order C~'/6. If we look at the numerical errors, we
see that from C' = 10? to C' = 10? the errors roughly decrease by one order of magnitude. This
is in good correspondence with the theoretical result which predicts a decrease of the relative er-
ror by approximately one order of magnitude when C'is multiplied by 10°. This correspondence

shows that this theoretical error bound is close to being sharp in two dimensions.

3.7 Numerical setting and optimization algorithm

In order to compute numerically the shape and the position of the optimal sets, we use the
procedure described in Section 3.5. This technique has been introduced in [18] for the study of

the case o = 0. We recall that the problem we study has the form
h
min { Z A6 () + ;] © €; C D quasi-open, €2, NQ; = (D}. (3.7.1)
i=1

where with \;(£2) we denote the k-th eigenvalue of the Dirichlet Laplacian on 2 C D.
For a given measurable function ¢ : ©Q € [0,1] and constant C' > 0, we consider the
spectrum of the operator —A + C'(1 — ¢) on D, consisting on the eigenvalues with variational

characterization

Vul?2 + C(1 — o)uldx
M(0.C) = min max J2 VU CO = putdr
SLCH}(Q) ueSy J’Q w2 dx

where the minimum is over all k-dimensional subspaces Sy, of Hj (D). The corresponding k-th

eigenfunction satisfies the equation

—Auy, + C(1 — p)ur = Me(p, C)ug, up € HY (D), / uidr = 1. (3.7.2)
D
By the general existence theorem of Buttazzo and Dal Maso [53], there is a solution (¢, . .., ¢f)
of the problem
h h
min { 3 (Ak(goi,C) + a/ o d:c) . 2 D — [0,1] measurable, Y, < 1}. (3.7.3)
i=1 D i=1
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Moreover, by the approximation result [18, Theorem 2.4], or the result given by Theorem 3.1.5,
we have that, forevery i =1...h,

- C O = A (9 im o =
Am Ml €)= () and - lim g7 =g,

where the second limit is strong in L' (D) and the h-uple (4, ..., $},) is optimal for (3.7.1).

We were not able to prove that for & > 2 the functions ¢ converge to characteristic func-
tions as C' — oo. In [18] a concavity argument was used to prove the result, and this argument
does not extend to the case £ > 2. In the description of the algorithm we keep k general, but
the numerical results presented are for £ = 1. Although we don’t have a theoretical justification
of the convergence in the case £ = 2, the algorithm behaves well and produces the expected
results. For £ > 3 we did not manage to obtain conclusive results.

Note that for o > 0 solutions of problem 3.7.1 do not consist of partitions of D. Therefore
the functions ¢; satisfy the non-overlapping constraint Z?Zl @; < 1. This inequality constraint
is not easy to treat numerically, so we choose to add an additional phase, representing the empty
space. Define pp 1 (= 1 — Z?Zl ©;, the empty phase associated to the multiphase problem.
Thus (3.7.3) is equivalent to

h ht1
min { Z M, C) — a/ oni1dx : p; : D — [0, 1] measurable, Z 0; = 1}, (3.7.4)
i=1 D i=1

which is more suitable for numerical implementation. In this way (3.7.1) is reformulated as an

optimal partitioning problem
h
min { Z Me(Q) — Qg | : Q4 € R quasi-open, €; N Q; =0, fori,j=1,...,h+ 1}.
i=1

In this setting the numerical cost computation of the above problem involves the discrete ap-

proximation of the measure of 2, given by

N2

1
(| = 55 D obFT

ij=1

In order to use an optimization algorithm we approximate the derivative of the eigenvalues
Ak (¢1, C) as a function of the values of the phases ; on the grid points. The precise expression

of this derivative was given in [18] and has the form
;i (1, C) = =C(U})?, (3.7.5)

where U is the [-th normalized eigenvector solution of the corresponding discrete equation. The

discrete derivative of the volume is given by
0i.j|Qns1| = 1/N2.
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In order to perform the optimization under the constraint E;fll ¢; = 1 we use the projection

operator on the simplex

h+1
St = {X = (X1 Xpr) € 0,113 X, = 1},
=1

defined by z
(HsMPl)Z_j = 7|f1@|]|l ik
’ =1 ‘Pw|

More details about the justification of the choice of this non orthogonal projection operator can
be found in [18]. We did not manage to improve this projection procedure. We observed that
both aspects: the condition that the sum is equal to 1 and that the functions ' take values in
[0, 1], are essential in the optimization process, and this projection operator preserves them both.

The optimization procedure proposed in [18] was based on a steepest descent algorithm
with an adaptive step length. We improve the descent algorithm by introducing a linesearch
procedure in order to determine the step length. A description of the procedure can be found in
Algorithm 2. The number of iterations is significantly reduced, but each iteration needs multiple

function evaluations.

Algorithm 2 Linesearch algorithm
Require: ~y, w > 1, x, d (descent direction)
Ity =

2: Evaluate the cost ¢ corresponding to x
3: ¢o = c (variable which keeps previous cost)
4: repeat
5: Ty =+ yd
6: x, = lgn(z¢) (projection on the constraint)
7: Evaluate the cost ¢, corresponding to x,,
8: if ¢, < ¢y then
9: Y = Wy
10: else
11: break
12: end if
13: Co = Cp
14: until
return -y

In order to test the stability of our modified algorithm, we took a rectangular box which
can be paved with regular hexagons, with one edge oriented horizontally, in a periodic setting.
One possibility is to choose the edges of the rectangle having a ratio of v/3, in the case of 6
cells, or 2/+/3 in the case of 12 cells. In each case we performed the optimization starting from
random densities with sum 1. We observe that the resulting partitions are equivalent, and the
corresponding costs are close. Results can be seen in Figure 3.3 (the case of 6 cells) and Figure

3.4 (the case of 12 cells). The cost evolution, in the case of 6 cells, is plotted in Figure 3.2.
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Algorithm 3 General form of the optimization algorithm

Require: &, o, h, €, Y, Pmaz

:p=1

2: Choose random initial densities (¢') and project them on the constraint
3: repeat

4: Compute ¢ = F(¢') (the cost functional)

5: Choose descent direction d = —V F ()

6: Find step length ~ using the linesearch algorithm

7: Update ¢! + ¢! — ~vd

8: ¢! < Tgn(¢") (project on the constraint)

9: p—p+1

10: llntﬂp = Pmax 0r7|‘VF(901)||5°° <é

550 T T T T T
Test 1
500 Test 2 4
Test 3
450 1 Test 4|
c
@]
S 400 B
[
=
g 350 .
(@]
300 .
250 b
200 . : ;
0 10 20 30 40 50 60

Number of iterations

Figure 3.2: Cost evolution in the four cases presented in Figure 3.3

A

Figure 3.3: Optimal results - 6 cells on a periodic domain, starting each time from random
densities. Optimal numerical value (left to right): 205.21, 205.23, 205.22, 205.22
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Figure 3.4: Optimal results - 12 cells on a periodic domain, starting each time from random
densities. Optimal numerical value (left to right): 1512.85,1512.83,1513.12,1513.26

In order to be able to study the minimizers of problem 3.7.1 in the case where D is not
rectangular, we use a finite elements approach. We find a triangulation of D using the software
Distmesh [77], or by specifying a regular triangulation directly (when possible). We compute
the associated rigidity and mass matrices K and M, respectively. Then, if ¢ is a vector contain-

ing the values of the discretization of (2, we are left to solve the problem

/Vqu+/C(1—g0)uv:)\/uv,
D D D

which has the discrete form
v Ku + Cv'diag(1 — @) Mu = v Mu.
Since this is true for each v, we are left with the generalized eigenvalue problem
(K + Cdiag(1 — )M )u = AMu.

In this way, we are able to find numerical minimizers for problem 3.7.1 even when D is not
rectangular (see Figures 3.7,3.10). The drawback is that finding generalized eigenvalues is
more time consuming than finding eigenvalues. When working on a rectangular domain, using
finite differences, we can easily handle discretizations of 500 x 500 (250000 points) on a single
machine*. For the finite elements case we use triangulations with roughly 10000 points. The
advantage of this finite elements approach is that once we have a good triangulation of the
domain, the problem can be easily treated, and this inspired the framework we use in Chapter
5 for the study of optimal partitions on manifolds. If we want more precision, in terms of
discretization points, we can use the finite differences formulation and use the same penalization

method to determine the domain D inside the square.

3.8 Discussion of the numerical results

In this section we present some numerical simulations that confirm the theoretical results stated

in Theorem 3.1.3 and the article [31]. Furthermore, the numerical simulations in the periodic

4Processor: i7 quad-core 2.2Gh, 6GB of RAM

109



ol b
sosnie

Figure 3.5: £ = 1, 200 x 200 non-periodic grid, 3 phases (« = 170, 100, 80) and 4 phases
(a = 250, 150, 100)

case, indicate that as o decreases, the cells of the multiphase configuration are monotonically
increasing. This was also observed in the case of non-periodic conditions, when the domain has
a certain symmetry, which allows a well behaved circle packing. Note that, when the size of
the box is well chosen, there exists an optimal parameter «, such that the optimal configuration
consists of the hexagonal circle packing configuration. If the observed shape monotonicity
property is true, then the actual spectral partitioning problem (o = 0) can be solved, and the
optimal partition is formed of regular hexagons. We note that this result concerning the case
a = 0 is still an open problem, while results of [18] confirm numerically this conjecture (see
Figures 3.6,3.7, as well as Figure 3.5).

In all the cases the lack of triple junction points, proved in [31], is clearly observed, provided
that the parameter o > 0 is large enough. The lack of double points on the boundary of the
square proved in Theorem 3.1.3 can also be noticed in Figures 3.5,3.10. Another phenomenon
that can be observed is that the sets €2; near the corners of D do not fill the corner. This is a
fact that can be easily proved by adding a ball B (i.e. subsolution for the functional \; + «| - |)
outside D, for which the corner of the square lies on the sphere 9B. Now the claim can be
deduced by the monotonicity Theorem 3.2.4 (B), as in Theorem 3.1.3.

Some fine qualitative properties of the optimal configurations (€2, ..., €, ,11), which
are still open questions, were observed during the numerical simulations.

e The set of one-phase points 9€2; N 92,41 on the boundary of the jth optimal cell €2; is
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Figure 3.6: k = 1, illustration of the monotonicity property. Values of a: 150, 200, 250, 300

(left to right)
A A A

A. A. L.
Figure 3.7: k = 1, illustration of the monotonicity property in the case of an equilateral triangle.
Values of a: 10, 25, 50 (left to right)

locally a graph of a convex function.

e For each pair of distinct indices i, € {1,...,h}, there are exactly two boundary two-
phase points on the common boundary 0€2; N 02, i.e.

HO (9 N O N OY1,) = 2.

o If 2y € 0€Q; NO,; NOLY, 11 is a boundary two-phase point, then the set €2; N €2, has a cusp
in zy. More precisely, for > 0 small enough, the free boundaries 9€2; N 92,11 N B, (o)
and 09; N 0,41 N B,.(zo) are graphs of convex functions meeting tangentially in the
origin z.

Finally, we considered the periodic version of the problem (3.1.2) on the square [0, 1] x [0, 1]
and in other rectangular domains, in attempt to simulate a “partition” of the whole space R?
(see Figure 3.8, Figure 3.6). For small enough constants o > 0 we obtain a configuration with
touching hexagons with rounded corners, in support of the numerical results in [18].

Most of the tests we made were in the case k£ = 1, but the algorithm works for £ = 2

as well. The main issue in the case of higher eigenvalues concerns the differentiability of
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Figure 3.8: k£ = 1, 200 x 200 periodic grid, 8 phases, a = 500,580 and £ = 2, 8 phases,
a =270

0ee

Figure 3.9: Optimal configurations on the sphere in the case of four phases, for decreasing
values of «

the eigenvalues with respect to perturbations, which is well known to be closely related to
their multiplicity. Secondly, we were not able to prove that for £ > 2 the relaxed formulation
converges to the actual problem when C' — +o00. Nevertheless, we were able to obtain some
interesting numerical results also in the case £ = 2 and one example can be seen in Figure 3.8.

As stated in Theorem 3.4.3 the theoretical results also extend to the case of the Laplace-
Beltrami fundamental eigenvalues on surfaces. Using the same finite elements procedure as in
the case of non-rectangular domains, we were able to compute numerically some optimal con-
figurations on the sphere, observing the same behaviour as in the plane: the lack of triple points
and monotonicity with respect to a.. (see Figure 3.9) We notice that in the cases h € {3,4,6, 12}
the optimal configurations converge to the corresponding regular tiling of the sphere (Y parti-
tion, regular tetrahedron, cube, dodecahedron) as a — 0.
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CHAPTER 4

Boundary eigenvalue problems

Résume

Ce chapitre traite de quelques aspects théoriques et numériques pour des problemes aux valeurs
propres définis sur le bord d’un domaine. La différence entre ces problemes et les problemes
aux valeurs propres étudiés en chapitres 1 et 3 est le fait que 1’équation de valeur propre est
imposée comme une condition au bord et a I’intérieur du domaine les fonctions propres sont har-
moniques. Un premiere modele concernant ces types de problemes est le probleme de Steklov:

pour un ouvert {2 a frontiere Lipschitz on a

Au=0 dans()

g—“ =cou sur Jf).
mn

Les valeurs o pour lesquelles le probleme ci-dessus admet une solution non triviale forment une
suite croissante divergente
O=09g<0; <0<+ — 00.

Comme dans les chapitres précédents, on regarde ce probleme dans le cas ou €2 est un ouvert
variable, et on se demande quels sont les ensembles qui optimisent ce type de valeurs pro-
pres sous différentes contraintes. En regardant 1’équation définissant ce probléme, on peut voir
que toute fonction constante est une fonction propre correspondant a la valeur propre 0. En
conséquence, on commence la numérotation des valeurs propres par 0 et on pose o(£2) = 0.
Des nombreux travaux traitent ces problemes d’optimisation des valeurs propres Steklov. On

présente ci-dessous les résultats les plus connus :

e le disque maximise oq({2) parmi les ensembles d’aire fixée (Brock [24]) et parmi les

ensembles simplement connexes de périmetre fixé (Weinstock [93]);

e parmi les ensembles simplement connexes en dimension deux, de périmetre fixé ou d’aire

fixée, les problemes suivants sont résolus par le disque :

max o1 ()05 (€), min (aim Fot UHEQ)) :
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Vn € N (Hersch-Payne-Schiffer [67]).

Hersch-Payne-Shiffer ont prouvé que parmi les ensembles simplement connexes, la deuxieme
valeur propre Steklov, 02(£2), est bornée supérieurement par la deuxieme valeur propre Steklov
de deux disques de méme périmetre que €2. Girouard et Polterovich [55] ont prouvé que cette
borne est optimale dans le cas des ensembles simplement connexes. Dans le cas ou on a une
contrainte de périmetre, si on enleve la condition de simple connexité, le disque n’est plus opti-
mal pour o;. Si on fait un petit trou dans le centre du disque et si on redimensionne I’ensemble
pour avoir le méme périmetre, alors la premiere valeur propre augmente. Ceci montre que le cas
non-simplement connexe nécessite une attention spéciale quand on considere une contrainte de
périmetre.

La premiere partie de ce chapitre traite la question de stabilité et semicontinuité supérieure
des valeurs propres Steklov pour certains types de convergence des ensembles. Le contenu
de cette premiere partie est un article, a paraitre dans Applied Mathematics and Optimization.
La motivation de ce résultat est de pouvoir traiter des questions d’existence pour un probleme
d’optimisation concernant les valeurs propres Steklov. Tous les résultats d’existence trouvés
dans la littérature concernant le probleme de Steklov sont prouvés en identifiant une borne
explicite et en trouvant un ensemble qui réalise cette valeur (par exemple le disque). Le résultat
central de la premiere partie du chapitre est le suivant :

Théoreme. Si (2, est un suite d’ensembles vérifiant une condition de cone uniforme et

Q,, — Q pour la topologie de Hausdorff et dans la topologie L', alors

lim sup 0% (€2,,) < 0% ().

n—oo

Si de plus Per(S,,) — Per(Q2), alors

Ce théoreme permet d’énoncer et de prouver des résultats d’existence des solutions concer-
nant les problemes Steklov sous contrainte de convexité ou sous contrainte de e-cone.

La deuxieme partie de ce chapitre traite de la conception et de la mise en ceuvre d’une
méthode de calcul des valeurs propres Steklov pour des ensembles qui peuvent étre paramétrés
par une fonction radiale. Notre approche fait partie de la classe des méthodes basées sur des
solutions fondamentales. L’idée est de considérer des combinaisons linéaires des fonctions qui
vérifient de maniere analytique 1’équation a I’intérieur du domaine (dans ce cas, des fonctions
harmoniques) et d’imposer les conditions au bord sur un nombre fini de points. Des méthodes
similaires ont été proposées par P. Antunes et P. Alvez en [4],[5] dans le cas des valeurs propres
du Laplacien avec conditions Dirichlet, Neumann ou Robin.

La méthode permet de traiter une classe large de domaines et sa précision est assez im-

portante. On compare la méthode des solutions fondamentales avec des méthodes de maillage
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grace au logiciel FreeFem++ [61]. On observe qu’en raffinant les maillages, les valeurs pro-
pres obtenues avec les maillages convergent vers les valeurs propres obtenues avec solutions
fondamentales. Un avantage important de la méthode développée est sa rapidité par rapport aux
méthodes basées sur des maillages. Le temps d’exécution est cent fois plus rapide pour notre
méthode, et la précision est meilleure. Pour évaluer cette précision, on a prouvé un résultat
similaire a celui présenté dans [73], dans le cadre du probleme de Steklov :

Théoreme. Soit ) borné, régulier, et u. qui satisfait

—Au, =0 in €}
ou,
on

=o.u:. + f-  on S

avec |[uc|| 200y = 1 et || fo]|L2(00) = 6 < 1. Alors il existe k € N* tel que

loe =il _ &
Ok

Ce théoreme montre que dans le cas du cercle, la précision de notre méthode est 10~'2 et en
général la précision est de 1076,

Avec cette méthode numérique et la formule de dérivée de forme pour les valeurs propres
Steklov trouvée dans [42] on peut étudier numériquement une classe assez large des problemes
d’optimisation. En pratique, on observe que si le minimiseur est en dehors de la classe des en-
sembles représentables en paramétrisation radiale, 1’algorithme ne converge pas, et il s’arréte en
essayant de déconnecter la forme pour atteindre une autre classe des domaines. On conjecture
le fait que si on considere des contraintes d’aire, I’ensemble qui maximise o ({2) existe et il est
connexe. Les formes obtenues numériquement sont présentées a la fin de ce chapitre.

La méthode numérique peut €tre generalisée a d’autres classes des problemes. En particulier,

au cours de cet chapitre on étudie numériquement des questions liées aux problémes suivants :

e Probleme de Wentzell
Au=0 dans

—BAu+ % =ou sur 0,

ou A, est I’opérateur Laplace-Beltrami associé a 0f2.
e Probleme de Steklov modifié

—Au+u=0 dans

g—“ =ou sur Jf).
mn

en lien avec des inégalités de trace.

La derniere contribution de ce chapitre est une extension de la méthode radiale qui doit
pouvoir traiter tous les domaines simplement connexes. Au lieu de considérer des courbes

paramétrées par une fonction radiale, on peut considérer des courbes paramétriques (x(t), y(t))
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pour t € [0, 27| avec x,y des fonctions périodiques. On fait la méme chose que dans le cas
des fonctions radiales : on développe x,y en séries de Fourier et on retient un nombre fini de
coefficients. On peut calculer la dérivée de la valeur propre par rapport a tous ses coefficients et
on peut étudier de la méme maniere des problemes d’optimisation. Cette méthode est nouvelle

et, a ma connaissance, n’a pas été étudié dans la littérature auparavant.

4.1 Introduction

For an open, bounded, simply connected set {2 with Lipschitz boundary, we can consider the

Steklov eigenvalue problem:

Au=0 1in )
%:au on 0.

The Steklov spectrum of {2 consists of a sequence of the form

0=100(R) <01(2) < 02(N)... = +00.

Various optimization problems for functionals of the Steklov spectrum under certain constraints
on the geometric properties of ) have been studied.

Weinstock [93] observed that 0 (€2) is bounded above by 27/ Per((2) in the class of simply
connected sets. This means that the disk maximizes the first Steklov eigenvalue in the class of
two dimensional simply connected sets, under a perimeter constraint. It is straightforward to
see that this implies that the disk maximizes o4 (€2) under volume constraint (see Remark 4.2.4).

Girouard and Polterovich proved in [56] that the estimate
01(2) Per(Q) < 2kw

provided by Hersch, Payne and Schiffer is sharp in the class of simply connected domains, but
is not attained in that class. We refer to [56],[65, Section 7.3] for further details.

In general, the known results concerning the optimization of functionals of the Steklov
spectrum are proved by finding an optimizer explicitly. Once an optimizer (2* is identified,
it is proved that the value of the functional on 2* is the best possible. In the cases where the
optimal shape is not known explicitly, we would like to be able to provide at least an existence
result.

First, let’s note that in the case of the Steklov eigenvalues, it is only relevant to study opti-
mization problems in which the Steklov eigenvalues are maximized. Indeed, Colbois, El Soufi

and Girouard proved in [37] that the Steklov eigenvalues satisfy the bound

4.1.1)

Thus, keeping constant volume and increasing the perimeter, we can make the Steklov eigenval-

ues as small as we want.
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A natural way to study optimization problems is to use the classical methods of the calculus
of variations. In order to study the problem

ey ()

where A is an admissibility class (containing, eventually, some constraints), we need a result
concerning the upper semicontinuity of o, with respect to some type of convergence.

We mainly deal with the convergence related to the Hausdorff distance, but in a stronger
sense which is described in the following. Note that maximizing o (2) under perimeter or vol-
ume constraint, together with the bound (4.1.1), means that a maximizing sequence (£2,,) will
have a bound on the perimeters (Per(€2,)). It is well known that a perimeter bound, together
with a bounding box constraint implies L! compactness of characteristic functions. These con-
siderations allow us to work directly with maximizing sequences converging in the Hausdorff
distance and in L.

The main results of the first part of this chapter concern inequalities of the type

lim sup 0 (€2,) < 0(Q), (4.1.2)

n—oo

under certain regularity assumptions on (£2,,) and €2. We work in the framework of sets which
satisfy an e-cone condition, which is equivalent to a uniform Lipschitz property. In particular,
this allows us to extend functions in H1(Q) to H'(D), when Q C D. Another advantage is that
we can work with graphs of Lipschitz functions instead of dealing with general sets. We believe
that our results could be extended to a more general class of sets described in [88].

We found that in order to prove inequalities of the type (4.1.2) it is essential to have a result
on the lower semi-continuity of traces of Sobolev functions on moving boundaries presented
in Proposition 4.3.2. The main result is Theorem 4.3.5 and it states that if the sequence of
sets (€2,,) satisfy a e-cone condition and converge to € in the Hausdorff topology then (4.1.2)
holds. Moreover, if the perimeters of (2,, converge to the perimeter of {2 then we have equality
in (4.1.2). We give a direct proof that the Steklov spectrum of a convex set is close to zero if the
diameter is large. This result is a direct consequence of the bound (4.1.1), but it avoids the use
of the technical argument presented in [37]. In the end, we are able to provide existence results
in the class of sets satisfying a uniform e-cone condition, as well as in the class of convex sets.
In Figure 4.8 we present some convex sets obtained numerically for which we have observed the
highest, area normalized, k-th Steklov eigenvalue for k& € [2,10]. These shapes were obtained
using shape gradients and performing a projection on the convex hull.

As stated above, the semi-continuity result, and the existence results are proved in the class
of sets which satisfy a uniform e-cone condition. It is not clear if these results still hold if
this hypothesis is removed and we work in the class of general Lipschitz domains. In the
case of the area constraint, Brock proved in [24] that the disk maximizes the first non-trivial
Steklov eigenvalue, without any assumptions on the topology of the domain. Ongoing research

suggests that in the case of the volume constraint, an existence result can be obtained for a
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relaxed formulation of the Steklov eigenvalues. Furthermore, numerical results presented in the
end of this chapter show that is likely that in the case of the area constraint we may have an
existence result even without additional topological assumptions.

As you can see in Figure 4.5, the perimeter constraint gives a different behaviour. If we
remove the simple connectedness condition, then the disk is no longer the maximizer of oy;
making a suitably sized hole in the center of the disk increases the scale invariant Steklov
eigenvalue. This behaviour has been announced in [57].

The second part of this chapter presents a new numerical method for computing the Steklov
spectrum on two dimensional domains. The method is inspired by the work of Alvez and
Antunes [4] and it uses fundamental solutions. The idea is to work with functions which are
already harmonic in an analytic way, and search for those which satisfy the good boundary
eigenvalue condition. In order to do this, we choose a set of points (x;),7 = 1, ..., N on 02 and
a set of associated exterior points (y;), ¢ = 1, ..., N. We consider radial harmonic functions ¢;

with centers y; and we search solutions of the form

u = Ozlgbl + ...+ OzNQZ)N.

The coefficients «y, ..., oy are the only unknowns here, and they satisfy a generalized eigen-
value equation. The corresponding eigenvalues are good approximations of the Steklov spec-
trum of the domain ).

We perform many tests in order to test our method. The first such test is to compare the
eigenvalues obtained using our method with the ones given by an algorithm which uses meshes
for the eigenvalue computation. A straightforward implementation can be done in FreeFem++.
We notice that as the meshes are refined, the corresponding eigenvalues converge to the ones
obtained using fundamental solutions. We applied techniques similar to the ones used in the
result of Moler and Payne [73] and we obtained a theoretical error estimate for our algorithm,
which has the following form

Theorem. 4.6.3 Consider €) to be a bounded, regular open set and let u. be a solution of

—Au, =0 in 2
0
81;16 =o.u: + f.  on S
. . . |Ua - Uk|
with ||ue||r200) = 1 and || f-||1200) = 6 < 1. Then it exists k € N* such that ———— < 0.

Ok
Using this result, we approximate numerically the error 0,,u — ou on 0f2 by looking at a family

of points which is 100 times more dense on 0f). The numerical computations and the above
result suggest that the errors made are of order 107%. The method and the error result can
be extended to a larger class of problems in relation to the Wentzell spectrum, which will be
described in the second part of this chapter.

Once we have a method which is fast and precise, we can perform numerical optimization
algorithms. We can use the same parametrization of the radial functions with Fourier coeffi-

cients that was presented in Chapter 1. With the aid of the shape derivatives formulas presented
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in [42], we are able to compute the gradient of the Steklov/Wentzell eigenvalues with respect
to every Fourier coefficient. This numerical algorithm allows us to study a variety of problems
regarding the Steklov spectrum. The speed of the algorithm computing the spectrum allows us
to perform a thousand iterations in the descent algorithm in just a few seconds.

We would like to remove the rather strict limitation that is to work in the class of star-
shaped domains. We devised a method which consists of parametrizing each of the coordinates
in a general parametrization ¢t — (z(t),y(t)) using Fourier coefficients. In this way, we can
work directly in the class of simply connected domains while still keeping only a finite number
of parameters. We used this parametric method to study the problem of maximizing the k-th
Steklov eigenvalue in the class of sets with fixed area. Using this method we did not obtain any
significant improvements over the results obtained in the radial case. Nevertheless, working
with a general parametrization allowed us to explore a wider class of domains. After obtaining
these results we are more confident that the optimal shapes are indeed star-shaped, and that

working with a radial parametrization is not an assumption which is too strict.

4.2 Preliminaries

We recall below some theoretical tools needed to prove our results.

4.2.1 Convergence of sets

In the study of optimization problems where the variable is the shape of a domain it is often
necessary to define a topology on a family of shapes. The choice of such a topology is not
obvious, and different situations require different topologies. In our study, we use the Hausdorff
compelentary convergence on open sets and the L' convergence of a of characteristic functions.

We recall that the Hausdorff distance between two compact sets K1, /5 is given by

dy(Ky, Ky) = max{sup inf d(z,y), sup inf d(z,y)}.
rE€K, YEK2 yeKs TEK1
If we consider a bounded open set D and the open sets €21, {25 C D then we define the Hausdorff

complementary distance as
dHc<Ql7 Qz) - dH(D \ Ql7 D \ Qz)

These two types of convergence are not equivalent in general. Still, it is possible to prove
that if we have a bounding box, then any sequence of open sets (£2,,) has a subsequence con-
verging in the Hausdorff topology to 2. Furthermore, if the sequence of perimeters of (£2,,) is
bounded, then (£2,,) has a subsequence which converges in both topologies presented above. We
will consider this combined convergence, which provides, in addition to the properties of the

Hausdorff convergence, continuity for the volume and lower semi-continuity for the perimeter.
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4.2.2 Uniform cone condition
We recall the following definition from [66, Chapter 2].

Definition 4.2.1. Let y be a point in R%, ¢ a unit vector and € > 0. We define the cone C(y, &, €)

of vertex y, direction £ and dimension ¢ by
Cy,&e)={r €RY: (z —y,&) > coselz —y|land 0 < |z — y| < }.

We say that an open set ) has the e-cone condition if for every x € 02 there exists a unit vector
&, such that for every y € QN B(x,¢) we have C(y, &, €) C L.

In the proof of our results we use the fact that sets which have the e-cone condition can be
represented locally as the graph of a Lipschitz function. Theorem 2.4.7 from [66] assures us

that the e-cone condition is equivalent to the following uniform Lipschitz condition.

Definition 4.2.2. We say that a subset Q of R? has a uniform Lipschitz boundary if there are
some uniform constants L, a,r such that for any point vo € 0S) there exists an orthonormal
system of coordinates S with origin at xo, a cylinder K = By_1(xo,7) X (—a, a), and a function

¢ : By_1(xg,r) = [—a, a] which is Lipschitz, with constant L and ¢(0) = 0 such that

INNK ={(y,0(y)):y € K},

QNK={(y,zy) € K :zny > ¢(y)}.

One advantage of working with sets satisfying an e-cone condition is the fact that the two
types of sets convergence defined before are connected. The Hausdorff complementary conver-
gence of a sequence of sets implies the convergence of characteristic functions in L!(D) to the
same limit. We refer to [66, Theorem 2.4.10] for a proof. Furthermore, if {2 satisfies a e-cone
condition, then the constants L, a, 7 in the above theorem depend only on €.

The following proposition mentions an interesting property of the sets which satisfy an e-
cone condition. Using the fact that the boundary of such a set has a local representation as the

graph of a Lipschitz function, we can find a bound on the perimeter.

Proposition 4.2.3. Suppose D is a bounded, open set in R? and suppose that Q0 C D satisfies
a e-cone condition. Then Per(QQ) is uniformly bounded by a constant which depends only on &
and D.

Proof: The above remarks, allow us to say that for every zy € OS2 there exist a cylinder K of
the form B,_;(zo, 7) X (—a, a) centred at x such that 9QN K is the graph of a Lipschitz function
with Lipschitz constant L. Furthermore, L, a,r depend only on . Note that the perimeter of (2
restricted to K, denoted Perx (2), can be expressed as

Perye(Q) — / VT Ve@)Pde < |Bai(xo, )|V T 2.
Ba—1(zo,7)
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Therefore, in every such cylinder K, the relative perimeter of (2 is bounded by a constant which
depends only on €.

We claim that the boundary of €2 can be covered with M such cylinders K, where M de-
pends on D. To see this, we propose the following construction. Choose x; € 0f2 and let K,
be the associated cylinder, like in Definition 4.2.2. At step n, choose z,, ¢ K; U ... U K, 1
and denote K, its corresponding cylinder. This operation must end at some point, since pair-
wise distances between z; and x;, with ¢ # j are bounded below by a constant ¢ = min{a, r}
depending on €.

To see that there exist a maximal number of points inside D satisfying this property, it is
enough to cover D with cubes with a diameter ¢ < ¢. Obviously, since D is bounded, it is
possible to cover D with a finite number M of such cubes. Each cube can contain at most one
of the points z;, since it’s diameter is smaller than c. Therefore, the above construction ends in
atn < M steps.

As a consequence
Per(Q) < ) Perg, () < M|By_y(xo,7)[vV1+ L2
i=1

Thus, the perimeter of €2 is uniformly bounded by a constant depending on ¢ and D. U

4.2.3 The Steklov spectrum

Let Q2 be a simply-connected bounded planar domain with Lipschitz boundary. The Steklov

eigenvalue problem is

—Au=0 in £,
ou __
2= ou on 05,
where a% is the outward normal derivative. The spectrum of the Steklov problem is discrete and

its eigenvalues
0= og < O'l(Q) < O'Q(Q) < 0'3(9) <..— 4+

satisfy the following variational characterization

Vul?d
0,(2) = min max Jo [Vuldz

e =12, ..
Sn ues\ {0} [ uido T

The infimum is taken over all n-dimensional subspaces S, of H'(Q) that are orthogonal to
constants on 92, i.e. faﬂ udo = 0.
The Steklov eigenvalues behave well under domain scaling. Indeed, if we denote ¢{2 an

image of ) by a homothety of ratio ¢ > 0 then we have
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Remark 4.2.4. In view of property (4.2.1), the quantities o (Q2) Per(2) and o (€2)|Q2|'/? are

scale invariant. Thus maximizing o (£2) under perimeter constraint is equivalent to the problem

1

max o (£2)(Per(Q2)) 71,
and maximizing o (§2) under volume constraint is equivalent to the problem
max o, ()] Q[ /<.

Combining the above formulations with the classical isoperimetric inequality, we can con-
clude that if the ball maximizes oy, or another well behaving function of the Steklov spectrum,
under a perimeter constraint, then the ball also maximizes the same function under volume

constraint.

4.3 Stability of Steklov Spectrum under Hausdorff
Convergence

We recall the following result, which can be found in a similar form in in [50, Theorem 2.3.1].
The weak L? convergence coupled with the convergence of a certain integral sequence implies

strong L? convergence.

Lemma 4.3.1. Let Q) be a measurable subset of R™ and suppose F' : R" — R is a strongly

convex function of class C*, i.e. it exists 1 > 0 such that
F(y) = F(z) + VF(z)  (y — @) + ply — 2],

for every x,y € R". Furthermore, we assume that I has the property that if u € L*({2; R")
then VF(u) is also in L*(Q;R™). Let (uy) be a sequence in L*(Q, R™) such that u;, — u in
L2(Q, R™). Suppose the following inequality holds:

lim sup /Q F(uy)dz < / F(u)dx

k—o0 Q

Then
up — win L*(;R™).

Proof: For every x we have
F(ug(z)) = Fu(x)) + VF(u(2)) - (us(2) — u(@)) + plug(z) — u(@)]*.
Integrating on €2 we have
/QF(uk(x))dx > /QF(u(:E))dx+/Q VF(u(:E))-(uk(x)—u(x))derMuk—u|ig(Q;Rn). (4.3.1)
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Note that since V F(u) is in L*(€2; R™) and uj, — u weakly in L?(2; R") we have

lim [ VF(u(z)) - (ug(z) — u(z))dx =0,

n—oo 9]

Taking n — oo in (4.3.1) and using the hypothesis we obtain

0 > plimsup [|ug — vl 2@rn),
n—oo

which implies that u;, — u strongly in L?(Q; R™). O
We apply this Lemma in the case where F' = /1 + ||z||?. This function is not strongly
convex on all R", but it is strongly convex on every bounded open set. Furthermore, VI' =

T

—=—— so [ satisfies all the hypotheses of Lemma 4.3.1.
£/ 1+|x|?

The following general proposition is a central result of the first part of this chapter, that will
allow us to prove a result of shape continuity for the Steklov spectrum. It allows us pass to
the limit when considering traces of a weakly H' convergent sequence on moving boundaries
that converge in the Hausdorff distance. A similar result has been proved in [30] for the more

restrictive class of convex domains.

Proposition 4.3.2. (Convergence of traces) Let D be an open, bounded subset of R%. Suppose
(), C D are open, connected sets which satisfy a uniform e-cone property and €, RiiNyo}
(A) For every (u,,) C H'(D) which converges weakly to v in H*(D) we have

liminf/ |un|p2/ |u|P
e JoQy, Zio)

(B) Consider p € [1,2]. Then Per(§2,) — Per(Q) if and only if for every (u,) C H'(D)

which converges weakly to u in H'(D) we have

[t [
0 o0

Proof: We start with part (B). Note that if the integral convergence holds for any (u,),u
such that u,, — u, then taking u,,, u = 1 we obtain exactly Per(€2,,) — Per((2).

To prove the converse implication, suppose Per(€),) — Per(2). First, let’s note that is
enough to prove convergence result for a subsequence of (u,,). Indeed, from the trace theorem,
we know there exists a constant C' which depends uniformly on L (see, for example, [51]), such
that

unllz200,) < Clltnl|51(0)-

The fact that u,, converges weakly in H'(D) implies that (u,,) is bounded in H'(D) and, by the
above inequality, (u,,) is bounded in L?(02). Furthermore, if p < 2, the fact that §2,, have finite
perimeter, (Per(€2,,)) is bounded and 2/p > 1 allows us to conclude, via the Holder inequality,

that ( [,, |un|P) is also bounded. If we prove the convergence for a subsequence, then any other
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convergent subsequence will have the same limit, so the whole sequence will converge. This
means that in the course of the proof we may pass to a subsequence of (u,, €2,,) whenever it is
necessary.

Consider the open sets U,, = B(xzo,r) X (—a,a) given for each xy by Definition 4.2.2.
These open sets cover €2 which is compact. Thus we can extract a finite cover {U, ..., Ux}.
We can assume, that for n great enough, each 0S2,, is representable as the graph of a Lipschitz
function in the same coordinate system as 0f). We refer to [66, Chapter 2] for more details.

Consider a partition of unity ¢1, ..., ¢ subordinated to the cover {U7, ..., Uy }. It remains

/ |un|Ppido — |u|Ppido.
00, NU; oQNU;

Since u,, — w in H'(D) implies u,¢ — u¢ in H'(D), we can drop the ¢; in the above limit

to prove that

and look only at integrals of u,, and w.

Denote by g,,, g : B = B(xo,7) — R the functions whose graphs represent the boundaries
of 09, 0L), respectively, in an orthogonal coordinate system in a neighbourhood if zy. Note
that B has dimension d — 1 so when we speak of almost every x € B we will mean up to a set of
79=1 measure zero. The fact that €, ——s ) implies ||g, — g]|c — 0. Since g, g,, are Lipschitz
continuous functions, they are differentiable almost everywhere and |Vg|, |Vg,| < L, where L
is their common Lipschitz constant. Denote by v the function  after the change of variables in

the new orthogonal coordinate system. It remains to prove that

/|vnx gn(2))P/ 1+ |Vgn(x Pd:c—>/ lv(z, g(2))[P/1+ |Vg(x)|?dx.

The condition Per(€2,) — Per(), the fact that H*1(, N U;) = 0 and the lower semi-

continuity of the perimeter under L' convergence imply that

lim Per(Q2, NU;) > Per(2NU;),

n—oo

and
lim Per(Q, \ U;) > Per(Q2\ U;).

n—o0

This, in turn implies that we have equality, namely

lim Per(Q2, NU;) = Per(QNU;).

n—o0

Translated into the considered coordinate system this becomes

hm/\/1+|Vgn |2dx—/\/1+|Vg )|2dz.

Furthermore, considering measurable sets of the form V' = B’ X [—a,a| and the fact that
Per(§2, N V) — Per(Q2N V), we deduce that

lim \/ 1+ |V, (z)]2de = / V14 |Vg(z)|?dz, (4.3.2)

n—oo
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for every measurable set B’ C B.

Since v, is a H*(D) function, for almost every = € B we have

(@) gy,
onlgula)) = vala @) + [ )y,
g(x) Y

To simplify the computations, we denote J,,(z) = /1 + |Vg,(2)|?, J(x) = /1 +|Vg|?. We

obviously have J,(z), J(z) € [1,vV1 + L2]. We use the inequality
lla+hP = lal| < p(|hllal”™" + [A["]),

which is trivial for p = 1 and is a direct consequence of the mean value theorem applied to the
function ¢ — |t|” when p > 1.
Thus we have

Blvn(x,gn(fv))l”Jn(ﬂf)daf—/ |on (2, g (@) |P T () d

B

S/Bllvn(l“,gn(x))lp— |on (2, g(2))[P[Jn(2)d

Jn(z)dz (An)

(@) gy
—(x,y)dy
o) Oy

0 [t | [ S e

Study of (A,). Since we only know bounds on the L? norm of the gradient of v,,, we apply

<p

Cauchy-Schwarz inequality and then Holder’s inequality to get

A, <p / lgn(2) — 9(2)]

<plg. gl AVTT T2 [ [ /

1P

gn () 8U2 2
—(z,y)dy| | Jn(z)dx
Ug(x) Ay

o
2

[SIiS)

2

3y —(, y)dy] dx

p

<pllgn — glEVT T I2 (/ / xydy> B

<C'llgn = 915NV unlps 1

9(z)

where C” is a constant which depends on B, p, L and ¢ is chosen such that £ 4 > = 1. Asa

Q=

consequence of the fact that || g, — g||.c — 0 we have (A4,,) — 0.
Study of (B,,). We apply Holder’s inequality for p and its conjugate =

1 gn () avn
Bo<p [ fonlesg@)P! | [ S )y (o)
B g(x) Y
1 1
5 gn () 9y P\ P
VT D ( / |vn<x,g<x>>|pda:) Do yyay| ) do
B B |Jg(z) dy
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Using arguments similar as in the study of (A,) we can see that the last integral is bounded by
1
a term of the form C'||g,, — g||%. To conclude that (B,,) — 0 it remains to justify that the first

integral is bounded. For this, we apply again Holder’s inequality for % > 1 and its conjugate ¢

/B|vn(x,g(x))|pdx < </Bvi(x,g(x))dx)% B

Using the trace theorem on 0f2 we have

[ vt gyt < [ (i@ @i < | i< Clunli)

This finishes the proof of the fact that (B,,) — 0.

to get

To conclude the proof of (B), it is enough to prove that

lim [ Jo(e, g(@))|P T, () do = / vz, g())" T (x)da

n—oo B

First, let’s note that the fact that u,, — w in L?(9)) implies v, (z, g(x)) — v(z, g(x)) for almost
every x € B.

Since g,,, g have Lipschitz constants bounded by L, and B is a bounded set, we deduce that
|Vgn(z)| is bounded in L*(B), so it has a subsequence Vg, that converges weakly in L*(B)
to a function h.

Thus, up to a subsequence, we have Vg, — hin L?(B;R") and

lim | F(Vg,) > / F(h),

where F(z) = /1 + |z|2 is a strictly convex function, if we consider it defined on {z € R" :
|z|| < L}. Thus we can apply Lemma 4.3.1 and find that Vg, — h strongly in L*(B;R").
Passing to a subsequence and relabelling, we can assume that Vg,, — h almost everywhere in
B. Since (g,) — g in L?(B) and Vg, — h we must have g € H'(B) and h = Vg.

We define the measures i, = J,,(x)dx, p = J(x)dx. We note that property (4.3.2) implies
that 1, converges set-wise to ;.. We use the terminology defined in [83, Chapter 11, Section
4]. This allows us to use versions of the integral convergence theorems provided in the above
reference. We recall these results in Remark 4.3.3.

Using the bounds on J,,, J we have

fon( g(@)) P < VIT L2|vn<x,g<x>>\p%.

Since u,, — u in L?(9N) and Per (1) is finite, we have
|on (2, g(2)) " () = Jv(z, g(x))["J (z)

in L'(B), for every p € [1,2]. This means that

i | o )P

Iyt — / jo(z, g(z))Pd
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Furthermore, since J, — J almost everywhere, it follows that, up to a subsequence,

J(x)
Jn(z)

|vn(, g(2))[” = vz, g(2))["

almost everywhere.
Applying a generalized integral convergence theorem, stated in Remark 4.3.3 (ii), we deduce
that

tim [ Jou(e g(2)) P = /£|v<x,g<x>ﬂpdu.

n—=eo /B
This finishes the proof of part (B).
For part (A) the proof is the same, except the last part where instead of applying the inte-
gral convergence theorem we apply the variant of Fatou’s Lemma presented in Remark 4.3.3
(i). Note that general, the measures 1, do not necessarily converge set-wise to . We have

the weaker hypothesis lim inf u,,(B’) > p(B’), which combined with the estimate y,,(B’') <
n—o0
V1 + L?u(B’) is enough to reach the same conclusions. O

Remark 4.3.3. Let () be a measurable set. Suppose f,(z) — f(z) for almost every = € (.
Consider the measures i, 4 defined on €2 which satisfy for every measurable set A C ) the
equality

Tim 11, (A) = p(A).
Following the terminology found in [83, Chapter 11, Section 4] we say that x,, converges setwise

to u.

(i) If (f,.), f are non negative functions we have

/fd,ug liminf/fnd,un
0 n—o0 9]

(ii) If there exist functions g, such that g,, are integrable with respect to (i, | fr| < Gns gn — ¢

almost everywhere, and
lim | g,dp, = / gdu < oo
Q Q

n—o0

then
i [ fuden = [ S
For the part (i), the hypothesis j,,(A) — p(A) for every measurable set A can be relaxed to
liminf 1, (4) > p(A), 1a(A) < Cu(A),
n—oo

where C' > 0 is a constant.

Remark 4.3.4. It will be necessary to apply Proposition 4.3.2 part (B) in the case p = 1 without

the absolute values. Under the same hypothesis we want to prove that

lim U, = / Uu.
=0 Jaqy, le)
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To achieve this it is enough to note that if v, — w in H'(D) then u,” — u™ and u;, — u~ in
H'(D). We have denoted by u™, u™~ the positive, respective the negative part of u. We refer to
[66, Corollary 3,1,12] for a proof of this result. We apply Proposition 4.3.2 for u;7 — u™* and

u, — u~ to find that
lim ul = / ut
o0 Joqy, lo)

lim u, = / U .
" J 00, o0

Subtracting these two equalities we get the desired result.

and

The above proposition helps us to prove the following shape continuity result for the Steklov
spectrum. A general approach has been described in [25] in the case where the operators are
defined on a common space. Another similar result is presented in [30] for the first biharmonic

Steklov eigenvalue in the particular case of convex open sets.

Theorem 4.3.5. (Shape Stability for the Steklov spectrum) Let D be a bounded open subset

of R%  Suppose (2,),Q C D are open sets which satisfy a uniform e-cone condition and
HC
Q, — Q.

(A) The following inequality holds:

lim sup o (€2,) < 0(Q).

n—oo

(B) If Per(S2,,) — Per(Q2) then for every k > 1 we have

lim o4 (2,) = ok ().

n—o0

Proof: We start with part (B). We divide the proof in two parts:

lim sup 0% (£2,) < 0% () (4.3.3)
n—oo
and
liminf 0% (€2,) > 0% () (4.3.4)
n—oo

For an open set 2 we denote by V(£2) the space of functions on H'(2) which are orthogonal
to constants in L*(9€2). Note that if 2 has finite perimeter then V() is closed under weak

convergence in H'(§2) (Straightforward application of Proposition 4.3.2 together with Remark
4.3.4).
1. Proof of (4.3.3). Let ¢ > 0 and consider a k-dimensional subspace S;, of V' such that

Vul?
0k(2) + € > max f9|72‘
weS\0} [y u

Let {uy, .., ux} an orthonormal basis for Sy. Since Sy C H'(Q2) and Q2 has Lipschitz boundary,
each u; can be extended to @; € H'(D).
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For n > 1 we modify each ; in order to make them admissible as test functions on 2,,.
To do this, we modify them with a constant term in order to have zero averages on 0€2,,. This
is possible since €2,, has finite perimeter and we can simply define v} = u; — ¢, where ¢
is a constant defined by 0 = [, (& — ¢f')do = [y @do — ¢} Per(€,). Therefore ¢} =
P Jow, Wido. Since Per(,) — Per(Q) > 0and [y, @ido — [, uido = 0, we find that
lim ¢} = 0 fori =1, ..., k. This implies that u; — 4, in HY(D).

For n great enough, the functions u? span a k-dimensional subspace Sy C H'(D) which is

admissible as a test subspace for oy (€2,,). This implies that

an [Vul® B an [V, |?

- 9
uesp\{0} [, oq, U2 /. o

where we have denoted v,, a choice of the maximizers of the Rayleigh quotient on S}'. The

Uk(Qn) <

maximizer v,, exists since .5}, is finite dimensional.

Consider now u € Si arbitrary. Then there exist coefficients ay, ..., a; such that
Uy = AU + ... + QpUL.
Consider also the functions uj € S} defined by
uy = apuf + ... + apuy.

It easily follows that uj — g in H'(D), since they differ only by a constant term which

converges to 0 as n — oo. The maximality property of (v,,) implies

an |Vu8|2 < an |V, |?

fmn(ug)z B fagnvr%

We want to prove that lim sup o (€2,,) < 04 (£2). Without loss of generality, we can assume

n—oo

that lim o0y (€2,) exists. If not, we take a subsequence which realizes the lim sup. We can find
n—o0

4.3.5)

a decomposition v,, = bju} + ... + bjug. Since the Rayleigh quotient is scale invariant, we
can choose the coefficients such that |b| < 1. Using a diagonal argument we can choose a
subsequence of v,, such that b — b; for 7 = 1, ..., m. Up to relabelling the sequence, we can
assume that v,, — v in H*(D) where v is given by

v = blle + + bkfbk

Taking n — 400 in inequality (4.3.5) and using Proposition 4.3.2 we obtain that

fQ |VU0|2 < fQ |VU|2
Jous ~ Joa v
Since u( was chosen arbitrary, we have that

max fQ |vug|2 S fQ ‘VIUP.
w0eS\0}  [o U Joo V2
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The restriction of v to §2 is also in S, so the above inequality is, in fact, an equality.
We have just proved that

Jo, IVl [ IV0 - Jo I Vul? _

limsup 0;(€2,) < lim = = < 0,(Q)) + €.
VHOOp () oo faQn u, faQ v? u€Sk\{0} fag u? )
Taking ¢ — 0 we obtain the lim sup inequality.
2. Proof of (4.3.4). Consider ¢ > 0 and subspaces S} of H'(D) such that
an |Vul?
0k(Q2,) +e> max —r—n- (4.3.6)

ueSTM\{0} faﬁn u?

We want to prove that lim inf,, ., 0x(£2,) > 0, (). We can assume that the limit exists by
taking a subsequence which realizes it. Consider for each S}' an orthonormal basis {uf, ..., u} }.
Up to choosing a diagonal subsequence, we can assume that each (u]') converges weakly in
H'(D) to some u;, i = 1,....;k. Using Proposition 4.3.2 and Remark 4.3.4 it follows that
fm u; = 0, s0 S, = Span{uy, ..., ux } is admissible as a test space for o (£2).

Take u = ajuy + ... + agpug € Sk \ {0}. Then v, = auf + ... + apu} € S, \ {0} satisfies
v, — win H'(D). The inequality (4.3.6) implies that

Vou,|?
faQn Un

The weak convergence of (v,) to u and Proposition 4.3.2 imply that

liminf/ \an|22/\Vu|2 and lim vi:/ u?.
n—oo  Jo Q n—=% /o0, o0

As a consequence, we have

- fQ [Vul?
liminf o4 (Q,) + 6 > =—-.
Since u was chosen arbitrary, we can take the maximum for v € Sy, \ {0} in the right hand side

of the above inequality and we get

Vul?
liminf 0% (€2,) + € > max IQ”|7|

> 0,(Q).
n—00 T ueSE\{0} fagn u?z Uk( )

Taking € — 0 se obtain
lim inf o (€2,) > 01(Q2).

n—oo
Combining the two parts of the proof we conclude that under the hypotheses we considered

we have

lim o4 (2,) = ok ().

n—o0
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In order to prove part (A) we argue by contradiction. Suppose that lim sup oy (€2,,) > 04 (£2).
n—oo
The variational formulation implies the existence of some £ > 0 and a k dimensional subspace

Sy of V() such that up to a subsequence we have

. Jo [Vul?
lim 0y(Q,) > 0k(2) + € > max =——-.
n—00 u€Sk fBQ u?
Therefore, for n great enough we have
Jo [Vul?

01 (§2,) > 01 (£2) + € > max .

k(2n) > 01(2) T e

Consider a basis {uq, ..., ux } of Sy. Like in the proof of part (B), we construct the functions v

which are perturbations by constants of ' extensions of ; to the whole D such that |, oa, Wi =

0. In this way we construct the k-dimensional subspaces S} = {u7, ...u} } which are admissible
as test spaces for 0% (£2,). Thus we have

Vul? Vul?
maxfﬂn|7| > 01(2,) > 01 (2) + ¢ > maXM

uesy fagn u? u€eSy, faQ u?
Denote v,, a choice of maximizers of the Rayleigh quotient on S}'. We have the representation
Uy, = DUl + A DRu} = by 4 ..+ bRy, — (B + ... 4 bEcy). Like in the first part we have

= Jo, @ido, and we can choose the coefficients (b;') such that [b}| < 1. Note that in

1
Per(Qn)
this setting we do not necessarily have ¢! — 0 as n — oo, but there is a uniform bound for (¢").
We can choose a subsequence and relabel it such that v,, — byty + ... + bgtiy — C' = ug — C'in
HY(D).

Using Proposition 4.3.2 part (B), we have

liminf/ U?LZ/ (uO—C)Qz/ ug—QC/ uo—i-CQPer(Q)z/ ug,
=0 Jaq, 1Y) BlY) 0 80

since [, uo = 0. Furthermore, the fact that v,, — ug — C'in H'(D) and xq, — Xxq in L'(D)
imply that

lim |an|2:/|Vu0|2.
Qnp Q

n—oo

Taking n — oo in the following inequality

fQ Vv, |?
e O'k(Qn) > O'k(Q) +e
Joa, Vi
oy N
we obtain , f | |2 ,
Vu Vo Vu
mabxfﬂ‘72| < 04(Q) + € < limsup == Z < Jo. g| .
uese [y u n—00 faQn Un Joo 1§
This is a contradiction, since ug € Sj. O

The hypothesis that Per(£2,,) — Per(§2) was crucial in the proof of part (B) of the above the-

orem, and cannot be discarded. To justify this fact, we propose the following counterexample.
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Example 4.3.6. Denote by S the unit square and by .S,, the unit square where we have added
a saw-tooth shape with 2" sides on the upper side of S. For example, we can take S; to be S
with a right isosceles triangle glued to S. S, can be obtained by cutting a square of length /2 /4
from the top of the “tooth” of S;. S5 can be obtained from S, by cutting squares of side v/2/8
from the top of each tooth of Sy. This procedure constructs inductively the sets .S,,. Note that
the sets S, satisfy a uniform cone condition.

Furthermore, all the shapes S, have the same perimeter, equal to 3 + /2, thus Per(S,,) —
3+ /2 > 4 = Per(S). We will show that the Steklov spectrum of S,, does not converge to the
Steklov spectrum of .S.

Proof: In the proof we will denote by 7" the edge of the square .S to which the saw-tooth
is glued, and B the other three edges of the square S. We denote by g, the function whose
graph represents the sawtooth in an orthogonal system of coordinates where the horizontal axis
is directed by 7". Note that in this case |g/,(z)| = 1 for almost every x € T'. Denote by 7, the
graph of g,, on 7.

Let u € H'(S) be an eigenfunction of .S, corresponding to o;(S). Since S is a Lipschitz
domain, u can be extended to H'(R?), and then take the restrictions of u to S,, as test functions
in the definition of o4 (.S,,).

To do this, we need to make these restrictions admissible by modifying them with a constant

in order to have the orthogonality to a constant function on S,,. We define u,, = u — ¢,, such that

0= / Uy = / u — ¢, Per(S,).
0Sn 0Sn

1
Per(Sn) fasn u
With the above notations we have

/ = | e gnla) VT g )P

—\f/ dex+\/_// xydydl“

Using techniques similar to the ones involved in the proof of Proposmon 4.3.2, we find that

/ u—>\/§/uasn—>oo.
Th T

In the same way, we can prove that

/ u2—>\/§/u2asn—>oo.
. T

/a N cn)? = /8 . u? — ¢ Per(S,,)
[ [ -Gt

This implies ¢,, =

We evaluate
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and we see that for n — oo we have

:/e)SUZJF(\/i_l)/TuQ_%(/Tu)

>/ u?,
oS

by the Cauchy-Schwarz inequality. The equality could take place only if w is constant zero on
T, but if this happens for every side of the square, then u is zero on the whole S, which is a
contradiction.
Thus )
= M > lim M > liminf 04 (S,,).
Jos? T moee fo un n—eo

Therefore the sequence of first Steklov eigenvalues of S,, does not converge to the first Steklov

0'1(5)

eigenvalue of S. U

There exist examples in the literature which illustrate the fact that the e-cone condition is
also essential. Girouard and Polterovich consider in [55] one such examples. It consists of
taking €). being two disks of radius 1 connected by a thin tube of length £ and width £3. In the
limit, these connected disks converge to {2 which is formed of two tangent disks. Obviously,
such sets do not satisfy a uniform cone condition. We have Per(€2.) — Per(£2), but the Steklov

eigenvalues of ). converge to zero.

4.4 EXxistence results for the optimization of
functionals of the Steklov spectrum

In this sections we present some consequences of the facts proved in the previous sections.
We are able to establish some existence results for the problem of maximizing the Steklov

eigenvalue of () under different constraints.

Theorem 4.4.1. Suppose D is a bounded, open set in R. Denote by O, the class of open

subsets of D which satisfy an e-cone property and have unit volume. Then the problem

0
max 0(2)

has a solution.
Proof: Take (€),) a maximizing sequence. The Hausdorff convergence is compact, O is
closed under this convergence and therefore there exists an open set {2 € (. such that up to

taking a subsequence and relabeling, we have 2, 0. Proposition 4.2.3 or the estimate

(4.1.1) implies that there exists an upper bound for Per(€2,,). The compactness properties of
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the perimeter (see for example [70, Theorem 12.26]) imply that there exists a subsequence
denoted again (£2,,) such that (€2,,) converges to € in the sense of characteristic functions and
furthermore, lim Per(£2,) > Per(£2) and applying Theorem 4.3.5 (A) we deduce that

n—oo

lim sup 0% (€2,,) < 0% ().

n—oo

The fact that (€2,,) is a maximizing sequence coupled with the above inequality proves that € is
the set which maximizes oy (€2) in the class O,. O

Note that convex sets {2 satisfy a e-cone condition, with € depending on the radius of a ball
contained in {2, as well as of the box D containing ¢2. We would like to give a general existence
result for the maximization of o4 (£2) in the family of the convex sets. In order to apply the
results of the previous section, we would need a bounding box for 2. The result given below

proves that a maximizing sequence for o (£2) is always confined in a bounded open set D.

Proposition 4.4.2. Suppose that (€),,) is a sequence of open, convex sets with unit volume, which
satisfy the property that diam(§2,,) — oo. Then oy (2,) — O.

Proof: This result is a consequence of the bound (4.4.1) proved in [37], which states that if
we denote by () = Per(Q)/|Q|“T then

4.4.1)

Indeed, we could consider a diameter of length M and make a Steiner symmetrization in the
direction of the diameter. There exists a section w orthogonal to the diameter which maximizes
H" '(w). The fact that Q has unit volume implies H"~!(w) > 1/M. Consider the cone C
generated by w and the considered diameter. This cone is contained in €2, and by convexity,
the perimeter of {2 is bounded from below by the perimeter of the cone C. Using techniques
similar to those in our proof presented below, we can see that the Per(C) > cM ﬁ, where c is
a dimensional constant. This, together with (4.4.1) implies that o4 (2) — 0 as M — oc.

In the case of convex sets it is possible to give a direct proof, which we present below. This
proof avoids the technical measure theory result used in [37] to prove (4.4.1).

Let € be an open, convex set of R, having unit volume. Denote by M its diameter, and
denote XX} one of its diameters. In order to make the proof easier to read, we divide it into
several parts.

Part 1. Bound from below of the volume of a region. We call a cap of () the part of €2
contained in a halfspace determined by a hyperplane « orthogonal to the diameter X(.X;. We
call region of €2 a subset of () contained between two hyperplanes «, 5 which are orthogonal to
XoXk.

Let’s start by giving a lower bound for the volume of a cap. Denote Y = a N Xy X}, and the
length XY by L. Denote Q2 and Q7 the caps of 2 determined by «, which contain X, and
X, respectively. Denote C~ the cone with vertex X and base 2 N «. Denote also with C't the
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cone which is the dilated of C'~ with center X and a factor M /L. The convexity of {) implies
C-cQ andCT\C™ D>OQF.
Therefore we have
O P < B
QF] T [CH =07 MY - L&
which, in turn, implies |Q~| > L¢/M?|Q].
If instead of a cap, we consider a region, we can apply two times the above bound and find

a similar lower bound. Denote {2~ the part of {2 contained in the halfspace determined by
which contains X, Q* the part of 2 contained in the halfspace determined by 3 whcih contains
Xy and €0 the region determined by « and 5. Denote also A = a N XX, B = N X X.

Using the bound on a cap, we have

AB?
Qo| > ——=|Qu Q"
0] 2 WU 0"
and ny
X
QT U Q| > kd|Q|.
Xo X},
Combining the two bounds, we arrive at
Ld
€] = W|Q|v

where we have denoted the length of AB by L.

Part 2. Bound from below of the perimeter of a region. Suppose we have a region {2, of
width L, like in the previous section. In the following, we will denote by ¢, a constant which de-
pends only on the dimension of the space. We perform a Steiner-symmetrization of this region
with respect to the direction AB, which we denote (2. For an introduction to Steiner sym-
metrization see [66, Chapter 6] or [27, Chapter 6]. It is known that performing a Steiner sym-
metrization preserves the volume, preserves the convexity and decreases the perimeter. Thus, as
a first consequence, Per(€)§) < Per(£2). Another property of the Steiner symmetrized set €2,
is that all slices with a hyperplane orthogonal to AB are d — 1-dimensional balls. Among these
balls, there is one, denoted w, having radius 7y, which has the maximal H?! measure. Denote
a=d(A ,w),b=d(B,w). Obviously, we have a + b = L. Since

Id

we deduce that H4 1 (w) > %, which gives us a lower bound r > ch% )
We denote w; = a N Q,wy = BN Q. The fact that () is convex, and its d — 1-dimensional
slices orthogonal to AB are disks, means that the truncated cones determined by 77 = (w,w;)
and T; = (w,w,) are contained in ).
We know from [27, Lema 2.2.2] that since 77 U T} C € and 17 U T3, () are convex,

we have Per(T) U T}) < Per(Q). If we denote by R the region of R¢ situated between the
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hyperplanes «, /3, then Per(77 U T3, R) < Per(€2, R). This inequality is true because the part
of the perimeters of €2 and 7} U 75, which is contained in OR is the same for both sets.

All we need in order to conclude, is to bound from below the lateral area of a truncated
cone. If we denote by r1, r the two radii of wy, w, then we have two cases. If r; = r then 77 is

a cylinder and the lateral area of T is equal to aH? %(w) = cqar® 2. If r; < r then the lateral

a2 pd—1 _ Tffl e
14+ ——= > cpa—— > cqar® ~.
\proj o1 (r =) r—n

Thus the lateral area of 77 U T5 is bounded below by

area is given by

Per(Ty U Ty, R) > cqLr® 2.

Combining all the above estimates, we arrive at

Ld—l

d(d—2) *
M =T

Per(€) > ¢q

Thus for a region €2y of €2 with width L = M we have
Per(Qg) > caa M

Part 3. Upper bound on the Steklov spectrum

For k£ > 1 divide the diameter XX}, into k equal parts using points X;, and use orthogonal
hyperplanes «; through X; to divide € into % subsets of width M /£ (in the direction of X X}).
We define & functions (u;) C H'(€2) such that u; is supported in region i. We choose them to

depend only on the distance from the bounding hyperplanes. One choice is the following:

e v, starts from O on «;_; and increases with gradient 1 until it reaches 1.

u; 18 constant for a while.

u; descends with gradient 1 until it reaches —1.

u; 18 constant for a while.
e 1, increases with gradient 1 until it reaches 0.

A schematic picture can be found in Figure 4.1. Furthermore, we can translate the part
where u; grows from —1 to 1 so that |, a0 Wi = 0. With this construction we have the following

bound on the Rayleigh quotient corresponding to w;:

ot~ HE(IQN {u; = +1))

138



Figure 4.1: Form of the function u; in the direction of the diameter

Using the bounds obtained in the previous section, we have

’Hdil(ﬁﬂ N{u; =1}) > cdailfl(M/]{;)ﬁ
HTHIQ N {u; = —1}) > cqag (M /K)o

where oy +ag > 1 — %. Thus
HEN (O {u; = 1) + H (0 0 {us = —1}) = calan + az) (M/R) .

These bounds allow us to conclude that as M — oo we have

1

Vu|? ka1 o
fQ| u2| < ¢y — M=o
Joq U3 (1 — dk/M)d-1 N7

As a consequence, we have the bound

|2 12
—fﬂ Vo alul|2 < max 7‘&2 |Vu;| ;
fBQ<Z a;u;) faQ uj

where we have used the fact that the functions u; have disjoint support in §2. This means that

0, () < max

0,(Q) = 0as M — oc.

O
Using the previous result, we can deduce the existence of a maximizer for the k-th Steklov

eigenvalue in the class of convex sets.

Corollary 4.4.3. The problem

has a solution in the class of convex sets.

Proof: Take (£2,) a sequence of sets with measure 1 such that 0,(§2,) — supjg_; o%(2).
If (©2,,) contains a subsequence such that diam(€2,) — oo, then by Theorem 4.4.2, o4 (£2,)
would have a subsequence converging to zero. This is impossible, since (£2,,) is a maximizing
sequence. Thus the diameters of (£2,,) are bounded from above, and therefore we can assume

that all the sets €2, are contained in a bounded open set D.
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The by the compactness of Hausdorff convergence, there exists a subsequence denoted (2,,)
such that €2, Q. The properties of the Hausdorff convergence imply that 2 is also convex
and contains a compact ball B (see [66, Chapter 2]). Proposition 2.2.15 in [66] proves that for
n large enough, we must have B C §2,,. Proposition 2.4.4 in [66] allows us to say that for n
large enough, the sets {2,, and the set € satisfy a uniform cone condition. Thus, we can apply
Theorem 4.3.5 to conclude that

lim sup 0% (€2,,) < 0% ().
n—oo
The Hausdorff convergence implies the convergence of characteristic functions in L!(D), which,
in turn implies that |2| = lim |Q,| = 1. Thus 2 maximizes o ({2) among convex sets of the
n—oo

same measure. ]

Remark 4.4.4. The treatment of the perimeter constraint, in the case of convex sets, is also

straightforward, since we can apply Theorem 4.3.2 directly, for a maximizing sequence.

Corollary 4.4.5. In the following, we consider A to be the class of e-cone sets contained in a

bounded open set D, or the class of convex sets.

(A) If F : RF — R is upper semi-continuous and increasing in every variable, then the
problem

max F(o1(),...,01()).

has a solution.

(A) If G : R¥ — R is lower semi-continuous and increasing in every variable, then the

problem

min G(1/01(Q), ..., 1/04(£2)).

QeA

has a solution.

We may ask if this existence result can be improved by dropping or weakening the hypoth-
esis on the regularity of the domain. We discuss below the perspectives by treating separately

the perimeter and area constraints.

e Perimeter constraint. Recent works announced by I. Polterovich and his PhD student ...
suggest that if we drop the s-cone condition, we do not have existence. Their argument
is based on the fact that making small holes in certain well chosen spots in the domain
increases the first rescaled Steklov eigenvalue. Thus, having no constraint on the number
of holes or on the simple connectedness of the domains does not seem allow us to have

an existence result.

e Area constraint. The case of the area constraint is different, and this can be seen from

the study of the first Steklov eigenvalue. Brock’s optimality result in the case of the area
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constraint does not assume any regularity of the domain. On the other hand, Weinstock’s
result depends crucially on the fact that only simply connected domains are admitted.
Numerical results shown in further sections suggest that in the case of the area constraint,

optimal domains exist in general and are simply connected.

4.5 A numerical method for computing the
Steklov/Wentzell spectrum

Steklov eigenvalues can be computed using mesh-based methods. The difficulty is the fact that
we need to work with boundary meshes for the treatment of the boundary condition equation.
This can be done rather quick in FreeFem++ [61], and an example code is given in Section
4.11. The mesh-based method has the disadvantage that high precision computations needs a
fine mesh. On the other hand, as meshes become more and more refined, computations become
slower. We present below a numerical method which is fast and precise for computing the
Steklov spectrum in cases where the boundary behaves nice enough. This method can be applied
to a more general class of problems. The Steklov eigenvalue problem can be seen as a particular

case of the following type of problems called Wentzell eigenvalue problems.
—Au =0 dans €2,
—BAu+ Ou,, = ou  sur Of).

It is easy to see that the Steklov case corresponds to 5 = (0. We consider the case of star-
shaped domains, which have the advantage that their boundary can be parametrized by a radial
function. In the end of this chapter we present a different approach which can treat general
simply connected domains.

The method of fundamental solutions, introduced in [69], is a part of the class of so called

mesh-free numerical methods. The goal is to approximate the solution of a problem of the type

Au=01in
Bu = 0 on 9f2

4.5.1)

where A, B are suitable linear differential operators. In contrast to methods using meshes, the
method of fundamental solutions considers a sufficiently rich class of functions which satisfy
Au = 0 analytically in €2. Thus a linear combination satisfies directly Au = 0 in €2, and the
coefficients in the linear combination are be chosen such that Bu = 0 is close to zero on 0f2.
As we will see in the following, the condition Bu = 0 can only be imposed in a finite number
of points, so the condition Bu = 0 will be satisfied only in an approximate manner on 0f2.
To justify our numerical approach, an error bound is provided in Section 4.6, which basically
says that if Bu is small enough, then w is close to the real solution. This type of method was
successfully used in [4] in the study of the eigenvalues of the Dirichlet Laplacian in two and

three dimensions.
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In our case, the operator A is the Dirichlet Laplacian and the operator B is given by — A +
o ou, where A is the Laplace-Beltrami operator associated to 0€2. Our set of fundamental
n

solutions will consist of harmonic, radial functions, with centers outside 2. In this way, any

linear combination of such functions will still solve Au = 0. The only thing we need to do is to

find the right coefficients so that the condition — A u + P _ suis satisfied on Q. Tn order

on
to compute the Laplace-Beltrami on 02 we use the expression
ou  0*u
A = AT a_ a 99
u u+H 7 + o2

2
which is valid on 0€2. We have used the notation 6—2; to denote (D?u.n).n. As usual, H denotes
n

the curvature of J€). For more details we refer to [66, Chapter 5].

In R?\ {0} a radial solution of the Laplace equation is given by ¢(z) = In|z|. Note that
this solution has a singularity at z = 0. For every y € R? the function ¢, (z) = ¢(z — y) is
harmonic in R? \ {y} and radial with center y. Given Q C R? we choose y1, ..., yy € R?\
and x1, ..., zx € 0. The function z — a1y, () + ... + ant,, (x) is harmonic in € for every

choice of the coefficients ()Y ,. We impose the boundary relation

<—5AT + agn) (aqthy, () + .. + antyy (21)) = Moy, () + ... + anthy, (2;)), i = 1...N
(4.5.2)
This amounts to solving a generalized eigenvalue problem for square matrices.

In this statement, it is straightforward to find the first eigenvalues corresponding to the gen-
eralized eigenvalue problem determined (4.5.2), using, for example the e igs solver in Matlab.
One of the main difficulties is the choice of the points (z;)Y ,, (y;)¥,. As noted in [4], an arbi-
trary choice for (z;), (y;) may give fail to give us a valid approximate solution for the desired
eigenvalue problem. We have noticed the same behavior, and for this, we discuss below the
choice of the points (z;), (y;)-

We use two choices for the points (x;). The first one consists in taking a uniform division
(0;) of [0,27] into N intervals and then choose z; = p(6;)(cos 6;,sin§;), where p is the radial
function which parametrizes 0€2. A second choice is choosing x; at equal arclength distances
on the boundary 0S). Having chosen (x;), we can compute the corresponding outer normals (77;)
and we define y; = z; + 0.1 - 7; (for figures with diameter roughly equal to 2). It seems that
the choice of the factor 0.1 is essential in our setting. Even slight perturbations of this factor
give results which are far from the actual Steklov eigenvalues of (2. This is due to the fact that
for larger or smaller values of this parameter, the matrices involved in the computation are ill

conditioned.

4.6 Error estimates

In the case of the Dirichlet Laplacian, the result proved by Moler and Payne in [73], states that

if a function u satisfies —Awu = Au in {2 and w is sufficiently small on OS2 then A is close to an
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Test figure. Positions of (), (y;)

Figure 4.2: Figure given by Fourier coefficients: [1,0.1,0,0,0,0.1,0,0.1,0,0, —0.1]

eigenvalue of the Dirichlet-Laplace operator associated to §2. In order to validate our numerical
computations, we provide a similar result below, in the case of the Steklov eigenvalue problem.
In the following paragraphs we assume that ) has Lipschitz boundary and that it has finite
perimeter. In the following we denote V() = {u € L*(09) : [, u = 0}.

As in [42] we introduce the Hilbert space H(Q2) = {u € H'(Q) : Tr(u) € H'(0Q), [,,u =
0} where Tr is the trace operator. In the case 8 = 0 it suffices to take H(Q2) = {u € H*(Q) :
S50 u = 0}. Consider for f € V(£2) the minimization problem

1
min — Vul? + / V7u2>—/ U
UEH(Q)Q(/Q| P [ 19al) - [ ur

which has a unique solution. This solution satisfies the weak formulation

/ Vu-Vo+p V., uV,p = fo, Yo € CHQ), 4.6.1)
Q o0 o9

of the partial differential equation

—Au =0 in 2

, (4.6.2)
—BAu+ 5t =f ondQ.

where A is the Laplace-Beltrami operator and V. is the tangential gradient associated to 0.
Thus, we can define the resolvent operator Rg : V' (£2) — H (€2) associated to this problem. The
trace operator 7' : H(£2) — V/(2) being continuous it follows that the operator ToRg : V() —
V() is compact and injective. We can define its inverse Az : D(Az) C V() — V().
Since T o Rp is a compact operator, the spectrum of the operator Az consists of an increasing
sequence of eigenvalues )\ 5(€2) which diverges. The corresponding eigenfunctions form a
Hilbert basis for V(2). By considering the constant function 1 associated to the zero eigenvalue
of this operator, we can say that the set of corresponding eigenfunctions forms a Hilbert basis
of L?(92). The following result proves that the operator 7' o Rz is bounded and gives an idea
of how to find its norm. By abuse of notation we denote the trace of a function w € H'(2) by

w.
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Proposition 4.6.1. Let 2 be a bounded, open domain with Lipschitz boundary. Suppose f €
V() and w = Rgf € H* (). Then there exists a constant C, depending only on (), such that

[wllz2@0) < Cfllz200)-

Proof: The trace inequality (Chapter 4.3 [51]) for {2 implies the existence of a constant C'y
(depending only on §) such that ||ul| 1290y < Ci|jul| g () for every u € H'(€2). The Poincare-
Wirtinger inequality implies the existence of a constant C'; which depends only on €2 such that
|0 220y < Col|Vw||2(q), where 0 = w — |—§12‘ ||| z2(2)- The weak formulation of the equation

Apw = f and the Cauchy-Schwarz inequality imply that

/ VaP+p [ |v.af = / £ < 11l z2co0 10l 2o,
Q o0 o0

Using the remarks above, we obtain

101172 00) < CYI@[IZ20) + [IVDII720)) < CEA + C3) VD720

Thus
H’JJH%WQ) < CY (1 + CH)|If |l 200 10]] £2 00
which implies
@] 1200) < CT(L+ CHIIf | 200)-

On the other hand, since w has average 0 on 02, we know that the L2(8Q) norm of w + c is

minimal when ¢ = 0 (here c is a constant). Therefore

lwllr200) < |0l 1200) < CT(A + CH| f Il L2(00)-

0
Using ideas similar to the ones used by Moler and Payne in [73], we are able to prove the

following error estimate. For simplicity of notation we omit the reference to 5 from Rg.

Theorem 4.6.2. Consider () a bounded, open, regular domain, and suppose that u. satisfies the

following approximate eigenvalue problem:

—Au, =0 in 2

O, (4.6.3)
—BAu. + = Al + fo on 0N).
n

. - HweHLQ(aﬂ) .
Denote w. = Rf.. Let 6 = W and suppose that 5 < 1. Then there exists an Wentzell
Ue || L2(00)
eigenvalue \i. satisfying
A Ae
<\ < .
1+~ "F=1-9
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Proof: We know that there exists a Hilbert basis of L?*(02) formed of Wentzell eigenfunc-

tions (u,,) corresponding to the Wentzell eigenvalues \,, of 2. We denote the standard scalar
product in L?*(9Q) by (u,v) = / wv. Let a, = (u.,uy), b, = (we,u,). The resolvent opera-
tor R is symmetric and thereforea&g, Ru,) = (Ru.,u,). This implies that R(A.u. + f.) = u.
and Ru,, = )\iun Thus

Ap = (ue7 un) = (R(Aeue + f€>7 un)
= (Aeua + faa Run)

1
=3 )\5 € ey Un
O+ o)
L (a4 \by)
= 7 (Aclp nn ).
An
Thus, for every n we have "¢ — 7 Since (\n) is increasing and divergent, there exists
n an
an index k such that
|)‘k — >‘6| — min |>‘n — )‘6|
| Ak no A
For this index k£ we have
o= Ael ) < b,
| Al
for all n and
p‘k — A | - 2
< b;.
Ve Z <2 %
This is exactly
Xl
P
which finishes the proof. l

The only hypothesis in the above theorem which needs to be verified in order to apply it in
our case is that we can solve the partial differential equation Agw. = f. in the case where f.
is a combination of our fundamental solutions. It is a standard application of Lax-Milgram’s
theorem ([22] Chapter 5) to see that the necessary and sufficient condition is that f 50 f=0.
Note that this condition can always be satisfied by adding a constant function to the family of

fundamental solutions.

4.7 Testing the numerical method

Let’s note that the first Wentzell eigenvalue of €2 is A 3(€2) = 0, corresponding to a constant
eigenfunction. We will denote )\, 5(€2) the k-th Wentzell eigenvalue after A\ s(€2). There are
few shapes for which the Wentzell spectrum (or the Steklov spectrum in the case 5 = 0) is
known analytically. One such shape is the unit disk D;, which has the eigenvalues

-] 5
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Figure 4.3: Absolute errors for 4 € [0, 100] - the case of the disk

As an initial test for our algorithm, we computed the Wentzell spectrum of the disk. With
N = 300 points on dD; and 300 corresponding fundamental solutions. For 5§ = 0 we have 10
digits of precision for the first 10 lowest eigenvalues. In Figure 4.3 we plot the absolute error
for the first 10 Wentzell eigenvalues 5 € [0, 100]. We note that for § = 100 we still have 6
digits of precision.

In order to test our algorithm for shapes for which no analytical expression is known for
the Wentzell eigenvalues, we used FreeFem++ [61], which uses meshing in order to solve the
problem. The tests we performed show that as the number of triangles increase, the values
found with FreeFem++ approach the values found with our algorithm. The downside of the
mesh-based method is the execution time, which is significantly more important. An example
of implementation is presented in Section 4.11. In Tables 4.1, 4.2, 4.3 we compare the Wentzell
eigenvalues computed with our method (MFS) and the ones obtained with FreeFem++. As a
test case we take the shape found in Figure 4.2, for various values of 3. Note that as the number
of triangles increases, the values computed with the FreeFem++ method approach the values
found with our algorithm. We underline the fact that our algorithm runs in approximately 0.1
seconds', whereas the FreeFem++ algorithm, with over 450000 triangles takes about a minute
on the same machine.

Another way of testing our algorithm is to do numerical optimization procedures for shape
optimization problems with known optimizers. There are many such results for the case £ = 0
(the Steklov eigenvalue problem). We start from a random shape and look if the algorithm
converges to the expected shape. We mention that all computations are made in the class of

simply connected sets. We were able to test our algorithm in the following cases:

e max o (£2) is achieved when €2 is a disk, in the case of perimeter and area constraints
([931.[24]);

e max o1(£2)02(§2) is achieved when (2 is a disk, in the case of perimeter and area con-
straints ([67]);

"Machine configuration: 2.2 Ghz quad-core i7 processor, 6 Gb RAM memory
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our algorithm FreeFem++ (refined meshes)
k MEFS 19146 A | 53236 A | 2112904 | 474634 A
1 0.712751 0.712989 | 0.712837 | 0.712773 | 0.712761
2 0.940247 0.940538 | 0.940352 | 0.940274 | 0.940259
3 1.381278 1.38211 | 1.38158 | 1.38135 | 1.38131
4 1.443204 1.44411 | 1.44353 | 1.44329 | 1.44324
5 3.146037 3.14712 | 3.14643 | 3.14614 | 3.14608
6 3.443637 3.44496 | 3.44411 | 3.44376 | 3.44369
7 3.757833 3.761 3.75897 | 3.75812 | 3.75796
8 3.922821 3.9263 3.92407 | 3.92313 | 3.92296
9 4.274362 4.28034 | 4.27651 4.2749 4.2746
10 4.693206 4.70035 | 4.69578 | 4.69385 | 4.6935

Table 4.1: Comparison with FreeFem++, 8 = 0 (Steklov) for the shape given in Figure 4.2

our algorithm FreeFem++ (refined meshes)

k MFS 19146 A | 53236 A | 2112904 | 474634 A
1 2.375744 2.37628 | 2.37594 | 2.37579 | 2.37577
2 2.644741 2.6453 | 2.64494 | 2.64479 | 2.64476
3 8.042223 8.04527 | 8.04332 | 8.0425 8.04234
4 8.257585 8.26043 | 8.25861 | 8.25784 8.2577

5 16.909967 169197 | 16.9135 | 169108 | 16.9104
6 17.383930 17.3932 | 17.3873 | 17.3848 | 17.3843
7 28.883924 28.9094 | 28.8931 | 28.8862 | 28.8849
8 29.113307 29.1374 | 29.122 | 29.1155 | 29.1143
9 43.718607 43.77 43.7371 | 43.7232 | 43.7207
10 44.142742 44.1996 | 44.1632 | 44.1479 44.145

Table 4.2: Comparison with FreeFem++, 8 = 2 for the shape given in Figure 4.2

our algorithm FreeFem++ (refined meshes)
k MFS 19146 A | 53236 A | 2112904 | 474634 A
1 4.750048 475121 | 4.75047 | 4.75015 | 4.75009
2 5.02106 5.02224 | 5.02148 | 5.02117 | 5.02111
3 17.557103 17.5638 | 17.5595 | 17.5577 | 17.5574
4 17.774667 17.781 17.777 17.7752 | 17.7749
5 38.179237 38.2016 | 38.1873 | 38.1812 | 38.1801
6 38.65575 38.6771 | 38.6634 | 38.6577 | 38.6566
7 66.764114 66.8228 | 66.7852 | 66.7694 | 66.7665
8 66.995238 67.0507 | 67.0152 | 67.0002 | 66.9975
9 102.91875 103.038 | 102.962 | 102.929 | 102.924
10 103.34252 103.474 | 103.39 | 103.354 | 103.348

Table 4.3: Comparison with FreeFem++, 8 = 5 for the shape given in Figure 4.2
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e min Z w is achieved when () is a disk, in the case of perimeter and area constraints
Ok

e max 0 (€2) under a rotational symmetry of order ¢ is achieved by a disk in the case of the

perimeter constraint ([13]).

We may ask whether this method of fundamental solutions can be adapted to compute the
Laplace-Beltrami spectrum of a two dimensional closed simple curve. We can consider solving

the equation

Ar(oqty, () + ... + antyy (2:) = Maghy, (z;) + ... + any (2;)), i =1..N  (4.7.1)
which also leads to a generalized eigenvalue problem. The Laplace-Beltrami spectrum of a

k+11%(2m)°
one dimensional curve depends only on its length and is given by A\, = {% (%) . The

method of fundamental solutions computes these values with a relative error of order 10~7 (with
the same parameters: 300 boundary points and exterior points at distance 0.1 of the boundary).

We may use Theorem 4.6.2 in order to have a more precise evaluation of the error on a
general domain. The result cited above states that the relative error made in the numerical com-
putations are of the order of || fc||12(an), Where f is the error term in (4.6.3). We may estimate
numerically f. as follows: given a shape (2, we compute its Steklov/Wentzell eigenvalues with
the algorithm presented in previous sections. We know that the eigenvalue equation is satisfied
to machine precision on the discretization points chosen on 9. In order have a more precise
evaluation of what happens between these points, we make a refinement containing 100 times
more points on 02, which gives 100 supplementary points between every two discretization
points. We evaluate the error made in the eigenvalue equation (that is f.) in each of these points.
The maximal point wise error will give us information on the general error. Below you can see
plots of f. for the first 10 eigenvalues in three different cases. By looking at the maximal errors,
we can observe that || /.|| 12(gq)) is of order 107¢ or smaller. As expected, different domains

give different behaviours, and the precision can be much higher.

4.8 Numerical optimization of functionals depending
on the Wentzel spectrum

Using the algorithm presented in the previous sections, we can study numerically shape opti-
mization problems regarding the Wentzell spectrum, in the particular setting where the domains
are star-shaped.

We consider our domain parametrized by its radial function p : [0, 27) — R,. We approxi-

mate p by the truncation of its Fourier series to 2n + 1 coefficients:

p(0) ~ ag + Z a; cos(i0) + Z b; sin(i6).
i=1 i=1
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Figure 4.4: Graph of the error term in the computation of the Steklov and Wentzell eigenvalues
(various values of (3).

In this way, we express an approximation of oy (€2) using a finite number of parameters. Using

the shape derivative formula provided in [42, Section E] we can deduce that

a 2
% = / (IVrug)® = [Opur|* = XH|ug|* + B(HI — 2D?*b)Vyuy,.Vruy) p(6) cos(i6)dé
i 0
and
80-k; 2 2 2 2 2 . .
T (IVrue)® = [Onun|® = AH|ug|* + B(HI — 2D?*b) V..V ruy) p(6) sin(i6)dé
j 0

We use the notation H for the mean curvature of 9§2. We denote by D?b the hessian of the
signed distance function, or equivalently, the differential of the normal vector. We have denoted
uy, the eigenfunction corresponding to o, (€2) normalized in L?(02).

Since we can approximate oy (€2) by a function oy (ao, ay, ..., a,, by, ..., b,) for which we
know the gradient with respect to every component, we can use a gradient descent approach for
solving different optimization problems related to the Steklov eigenvalues. This approach was
used in [78] and [9] for optimizing functionals of the eigenvalues of the Dirichlet Laplacian.

In the recent article of Dambrine, Lamboley and Kateb [42], the authors prove that the ball
is a local minimizer for the first non-zero Wentzel eigenvalue if 5 > 0, under volume constraint.

Using the fact that \; g(Bp) is decreasing with respect to R (we denote By the ball of radius
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R), we can deduce that if the ball is a maximizer for the perimeter constraint, then it is also a
maximizer for the volume constraint. It is a well known fact, due to Weinstock [93] and Brock
[24], that when /3 = 0, the ball is the optimizer for both volume and perimeter constraints. Using
our algorithm, we searched for the shape which optimizes \; 3(€2) in two dimensions. For both
perimeter and volume constraints, we obtained that the disk is the numerical maximizer of \; 3
among two dimensional simply connected shapes. We performed tests for 3 € [0, 100], but we
believe it to be true for every 5 > 0 since for large values of 3, A\; 5(€2)/3 converges to the first
Laplace-Beltrami eigenvalue of 9€). We also performed tests in the case of the area constraint
for k = 2,3, 4,5 and we present the results in Table 4.4.

We present some interesting conjectures, verified numerically using our algorithm. Many
of them are related to results known to be true in the Steklov case (8 = 0), namely, the Hersch-
Payhe-Schiffer results [67]. All these results are for domains which are simply connected with

a radial parametrization.

e max \; 5(2) is acheived by the disk;

1
e min Z (@) is achieved by the disk;

e Wesay that A C {0,1,2,3, ...} has the property (P)if1 € Aand2k € A = 2k—1 € A.

1
If A has the property (P) then Z SRR is minimized by the disk in the case of a
keA k. ( ) ] 1
volume and perimeter constraint. For example + + is minimized

Mp() - Aspe)  Aap(Q)
by the disk in the case of the volume constraint and the perimeter constraint. This was

verified for various sets A with property (P) with A C {0, 1, ..., 15}.

As underlined before, in the Steklov case with perimeter constraint, the simple connected-
ness is essential. Making a small hole in the center of the disk and rescaling in order to have the
same perimeter increases the first eigenvalue. This behaviour can be seen in Figure 4.5 in some
computations made with FreeFem-++.

As proved by Brock [24], if we impose an area constraint then the simple connectedness
condition is not necessary. The disk maximizes the first Steklov eigenvalue. We may ask if this
is the case for Wentzell eigenvalues. The answer is negative, as can be seen in Figure 4.6 for
£ = 0.1. Making a small hole and rescaling to have the same area increases the first Wentzell
eigenvalue of a disk.

In the case of the volume constraint, for Lipschitz domains, it is possible to prove that
suppressing holes increases the normalized Steklov eigenvalue. It is enough to observe that

filling holes modifies all the quantities in the variational characterization in the right way.
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)\1 )\2 )\3 >\4 >\5
Steklov
A=1 Ao = 1.64 Az = 2.33 A= 2.97 A5 = 3.66
B=0.1 g ﬁ
A =11 A2 = 1.80 A3 = 2.65 A= 3.42 As = 4.3
B=05 X i
A =15 Ay = 2.39 A3 =4 Ay = 4.53 As = 7.5
ﬁ — 100 Q Q Q Q Q
(large)
A =101 A = 101 Az = 402 Ay = 402 As = 903

Table 4.4: Numerical maximizers for the first five Wentzell eigenvalues for different values of
S. The areas of the domains are equal to 7

1.02885 = 1.03776

Figure 4.5: Behaviour of the Steklov eigenvalue when making holes. The images represent
a unit disk with holes of radii 0.03 and 0.04, rescaled to have total perimeter 2. Note that
the corresponding first eigenvalues are higher than 1 which is the first eigenvalue of a disk of
perimeter 27.
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1.10021 Sy 1.10046

Figure 4.6: Behaviour of the Wentzell eigenvalue when making holes. The images represent
two disks with holes in their centers rescaled to area 7. The first eigenvalues are higher that 1.1
which is the Wentzell eigenvalue of a disk for § = 0.1.

e 00 is Lipschitz, and thus every function in H*(§2 \ B) can be extended to H*(€2). Thus,

the admissible set of test functions is the same for {2 \ B and ().
e The numerator increases passing from 2 \ B to (2.
e The denominator decreases passing from €2 \ B to €).
e The volume increases by filling holes.

Thus, it is not restrictive to assume that the optimal domain for the Steklov eigenvalues, in the
case of the volume constraint, does not have any holes.

To illustrate the flexibility of our numerical framework, we present in Table 4.5 the results
for various shape optimization problems depending on the Steklov spectrum in the case of the
area constraint. Some of the functionals studied numerically, like for example the sum of the

first Steklov eigenvalues, are of interest in the literature (see for example [54])

4.9 Treatment of general parametric simply connected
domains

As mentioned before, restricting the class of study to star-shaped domains is not satisfactory.
Indeed, proving that the optimal set for a shape optimization problem belongs to this class is
hard or impossible, unless other stronger properties, like convexity, are present (see Chapter
1 for the optimization of \; with the perimeter constraint). The purpose of this section is to

propose a new method for the study of general parametric simply connected domains.
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Table 4.5: Various numerical optimizations of functionals depending on the Steklov spectrum
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The idea is to consider a general parametrization 7y : t — (x(t),y(t)) for ¢ € [0, 2 * pi]. The
coordinate functions x,y are supposed to be periodic of period 27. Thus, these functions have

the following Fourier series expansions

x(t) = ag + Z a;j cos(j0) + Z b; sin(j6)
j=1

j=1

y(t) =co+ ch cos(j6) + Zdj sin(70).

=1 j=1
Supposing that the shape €2 bounded by the curve + is regular enough, the coefficients (a;), (b;),
(¢;), (d;) deccay very rapidly to 0. Thus, we expect that truncating these Fourier series to their
first coefficients up to a certain treshold, we don’t lose much information on the shape €.

As in the radial case, the general shape derivative formula provided in [42, Section E]

allows us to find the derivatives of the Steklov eigenvalues with respect to the coefficients

(a;); (bj), (¢;), (dj):

d 2m ) .
% = / (|Vrur* = (Onug)® — o Hui)y'(0) cos(jo)do
j 0
G 19 2 = (Buwn)? = o M)y (6) sin(j0)d8
b ), (IVrug]” = (Onur)” — onHuy )y’ () sin(j0)
% P o 2 _ 2 2\,/ .
T = (IVuk]” — (Opur)® — o Huy)x' () cos(j0)do
€ 0
doy _ _ 27r(|v ug|? — (Opug)? — opHui)x'(0) sin(j60)do
ddj o Wk n Wk k k J ;

where uy, is L?(9) unit normalized eigenfunction associated to 0. All quantities containing
the eigenfunction uy, in the above integrals are always evaluated in (x(0),y(9)).

Having all these formulas we can perform numerical optimizations just as in previous sec-
tions. We underline the fact that the actual computation of the Steklov eigenvalue is the same as
before, using fundamental solutions. In the course of optimization we must pay more attention
to the size of the descent step, since large steps may produce artificial self intersections. Thus,
a basic gradient descent algorithm with small descent step is used in the optimisation process.

In Figure 4.7 we present the numerical candidates for the maximizers of o, (2) under area
constraint for k£ € [2,10]. All the computations performed using the general parametrization
give the same shapes as in the radial parametric case. This gives us confidence in the fact that
the optimizers do indeed belong to the class of star-shaped domains. We notice some interesting

properties of these maximizers:
e The numerical shape which maximizes o, seems to have a dihedral symmetry of order k.

e As in other eigenvalue optimization problems, we are interested in the multiplicity of the

optimal eigenvalues. It turns out that for all £ € [2, 10] the shape which maximizes oy, is
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iR

oq = 2.91 o3 =4.14 o4 = 5.28
o5 = 6.49 o = 7.64 o7 = 8.84
og = 10.00 o9 = 11.19 010 = 12.35

Figure 4.7: Shapes which maximize the k-th Steklov eigenvalue under area constraint, £ =
2,3,...,10.

such that the eigenvalue o is multiple. Moreover, the multiplicity clusters begins at oy,
i.e o > o0p_1. This is exactly opposite as the behavior observed in the minimization of
the Dirichlet eigenvalues A\, where the multiplicity cluster ends at ;. We believe that
this behaviour is due to the fact that here we study a maximizing problem, as opposed to

the case mentioned above, where we have a minimizing problem.

In previous sections we proved that the problem of maximizing the k-th Steklov eigenvalue
under fixed area constraint has a solution in the class of convex domains. We use the numerical
method developed in previous sections to find some candidates for these convex optimal shapes.
Performing optimizations in the class of convex sets is not straightforward. In our computations
we chose to use a gradient descent algorithm together with an operator which, at each iteration,

projects the shape onto its convex hull. These numerical results can be seen in Figure 4.8.
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OO U O

o1 = 1 09 = 2.88 03 = 3.91 04 = 4.64 05 = 5.66
Og — 6.29 o7 = 7.43 g8 = 8.03 09 = 9.21 g10 = 9.79

Figure 4.8: Convex shapes with unit area which give highest k-th Steklov eigenvalue in our
numerical observations

4.10 A modified Steklov problem

In this section, we study numerically the domain which optimizes the following quantity related

to the best constant in the trace inequality:

2 2
o(92) = min Jo IVul + Jo u” (4.10.1)
G
o0

It is not hard to see that o({2) is the first eigenvalue associated to the following eigenvalue

problem:
—Au+u=0 1in 4.10.2)
% =ou on 0f), o

which is a modified Steklov problem. It is conjectured that the disk maximizes o ({2) among
the simply connected planar domains with the same area. In the following paragraphs, we give
an idea for computing ¢ (€2) numerically, using the method of fundamental solutions, and we
confirm numerically the stated conjecture.

The only point which is a bit different from the Steklov case previously studied is the family
of fundamental solutions involved. Indeed, we need to work with radial functions which satisfy
—A¢ + ¢ = 0. Suppose that ¢(x) = f(r) where r = |z|. We obtain that f satisfies the

following differential equation

PP () +rf (r) = £ (r) =0,

which is the modified bessel equation of order 0. Once we have the form of the fundamental
solution, we perform the same procedure described in the previous sections in order to compute
the eigenvalues of a shape ). The operator —A + [ is self-adjoint, thus the shape derivative
formula is the same as in the Steklov case. Performing the numerical optimization we observe

that the disk maximizes o in the plane in both cases of the area constraint and the perimeter
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constraint. We make the same remark that here we work in the class of simply connected

domains.

4.11 The FreeFem++ code for solving the Wentzell
eigenvalue problem

int 1i;
real t,beta = 2;
// Domain definition using a radial function
border C(t=0,2x pi) {x=cos(t)*(1+0.1xcos(t)+0.1lxcos(5*t)+
0.1%sin(2*t)—-0.1lxsin(5xt));
y=sin(t)*x (1+0.1%cos (t)+0.1lxcos (5xt)+
0.1xsin(2xt)—-0.1%sin(5*t));}
mesh Th = buildmesh (C(500));
fespace Vh(Th,P1l); // Build Pl finite element space
Vh uh, vh;
// Define the problem via weak formulation
varf va(uh, vh) = int2d(Th) ( dx (uh)*xdx (vh) +dy (uh) xdy (vh) ) +
intl1d(Th, 1) (betax* (dx (uh) *dx (vh) —
dx (uh) *N.x* (N.xxdx (vh) +N.y*xdy (vh) ) —
dx (vh) *N.x*x (N.x*dx (uh) +N.y=xdy (uh) ) +
N.x* (dx (vh) *N.x+dy (vh) *N.y) *N.x* (dx (uh) *N.x+dy (uh) *N.y) +
dy (uh) xdy (vh) -
dy (uh) *N.y* (dx (vh) *N.x+dy (vh) *N.y) —
dy (vh) *N.y* (dx (uh) *N.x+dy (uh) «N.y) +
(N.y) "2+ (dx (vh) *N.x+dy (vh) *N.y) * (dx (uh) *N.x+dy (uh) *N.y) ) ) ;
varf vb(uh, vh) = intl1ld(Th, 1) (uh * wvh);
// Solve the generalized eigenvalue problem
matrix A = va(Vh, Vh ,solver = sparsesolver);
matrix B = vb(Vh, Vh);
real cpu=clock(); // get the clock
int eigCount = 10; // Get first Eigenvalues
real[int] ev(eigCount); // Holds Eigenfunctions
Vh[int] eV (eigCount); // Holds Eigenfunctions
// Solve Ax=1%Bx
int numEigs = EigenValue (A, B, sym=true, sigma=0,
value=ev, vector=eV) ;

for (int i=0;i<eigCount;i++) // Plot the spectrum
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plot (evV[i], fill=true,value=true,cmm= ev[i]);
cout << " CPU time = " << clock()-cpu << endl;
for(i = 0;i<eigCount;i++)

cout << ev[i] << endl;
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CHAPTER 5

Optimal partitions on manifolds

Résumeé

Dans ce chapitre on propose une méthode pour étudier les partitions optimales sur des surfaces.
L’idée générale est d’étendre les méthodes utilisées en dimensions deux, au cas des surfaces.
On voudrait utiliser des fonctions densités pour représenter les formes, et traiter la condition
de partition en imposant que la somme des fonctions représentatives est égale a 1 partout. Les

deux ingrédients essentiels sont alors de
e trouver une bonne discrétisation de la surface en utilisant un algorithme de triangulation,
e trouver une formulation relaxée adaptée pour la fonctionnelle a optimiser.

On arrive a construire des méthodes qui nous permettent d’étudier deux problémes de partition-

nement optimal sur des surfaces :
1. Minimiser la somme des périmetres d’une partition de la surface en aires égales.

2. Minimiser la somme des premieres valeurs propres Laplace-Beltrami correspondant aux

ensembles d’une partition d’une surface.

Pour ces deux problemes 1’étape initiale est la méme : construire une triangulation qualitative
de la surface et représenter les fonctions densités comme des fonctions linéaires sur chaque
triangle du maillage (éléments finis P ).

Le premier probleme consiste a étudier les partitions qui minimisent le périmetre sous con-
trainte d’aire. Ce probleme a été étudié par Cox et Flikkema en [39] en utilisant le solveur
Evolver [21]. Ils font le calcul direct du périmetre de chaque cellule, et ils ont besoin de trou-
ver la topologie optimale dans chaque situation. L’approche utilisant les densités proposée ici a
I’avantage que la topologie ne doit pas €tre imposée au cours de 1’algorithme. Pour implémenter
cette méthode on a besoin d’un résultat de relaxation du type Modica-Mortola pour le périmetre
sur des surfaces. Un tel résultat est présenté en [12] et il consiste juste a remplacer le gradient

par le gradient tangentiel dans la formulation relaxée.
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Un autre avantage de cette méthode est qu’elle peut étre utilisée pour n’importe quelle sur-
face, a condition de pouvoir fournir un maillage de bonne qualité. On présente des exemples des
partitions obtenues pour la sphere, le tore et d’autres surfaces. Il n’est pas possible de comparer
directement nos résultats avec ceux de Cox et Flikkema, car la valeur donnée par notre fonction-
nelle est une valeur approchée du périmetre. Pour pouvoir faire cette comparaison on profite de
la structure spéciale de ces partitions sur la sphere (cf. [74]). Vu que les frontieres des cellules
sont des arcs de cercles on extrait la structure topologique et on fait une nouvelle optimisation
en calculant exactement les périmetres et les aires a 1’aide du théoreme de Gauss-Bonnet. La
conclusion est que notre methode nous permet d’obtenir tous les résultats de Cox et Flikkema
et les valeurs optimales obtenues sont les mémes.

Le deuxieme probléme considéré consiste a trouver les partitions d’une surface en ensem-
bles qui minimisent la somme de leurs premieres valeurs propres. Cette étude est motivée par
les questions ouvertes, de nature théorique, qui sont liées a ce probleme. Méme pour les par-
titions dans un nombre petit de cellules il n’existe pas de résultats théoriques concernant la
structure ou les composantes d’une partition optimale. Une premiere étude numérique a été
faite par Elliott et Ranner dans [48] en utilisant une formulation énergétique du probleme et des
méthodes d’éléments finis sur des surfaces.

Notre méthode est inspirée des méthodes utilisées dans [18] et dans le chapitre 3. Pour
chaque densité représentant un ensemble de partitions on résout un probleme pénalisé qui nous
permet de trouver une approximation numérique de la valeur propre en travaillant sur un do-
maine fixe. Cette premiere étape nous permet de trouver une bonne approximation de la parti-
tion optimale. On peut observer que les partitions optimales sont formées par des ensembles
qui sont des polygones géodésiques, aspect qui motive une deuxieme étape d’optimisation.

La deuxieme étape, de raffinement, est faite en faisant une extraction de la topologie opti-
male et en calculant précisément les valeurs propres en faisant un maillage de chaque cellule.

Pour calculer les valeurs propres d’un tel ensemble on utilise deux méthodes :
e des éléments finis ;
e des solutions fondamentales.

Ayant un candidat pour la partition optimale, ayant une structure de polygones géodésiques,
on peut optimiser la position des sommets de cette partition pour obtenir une description plus
fine de la partition. On observe que si la topologie obtenue n’est pas optimale, 1’algorithme de
raffinement détecte cet aspect et il s’arréte en essayant de changer la topologie.

On présente les candidats pour les partitions optimales sur la sphére pour n € [3,24] U {32}.
On observe que pour n € {3, 4, 6, 12} on obtient une partition réguliere de la sphére. En général
les partitions optimales ne sont pas des équi-partitions, cela signifie que, les valeurs propres ne
sont pas les mémes pour toutes les cellules de la partition. Ceci nous montre que les partitions ne
sont pas en fait des partitions optimales pour la fonctionnelle max A2 (€);). En faisant quelques

tests numériques on observe que si au lieu de minimiser la somme on minimise le maximum
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des premieres valeurs propres, la topologie de la partition ne change pas, mais les sommets de
la partition changent leurs positions pour que les valeurs propres de toutes les cellules soient
égales.

Dans cette deuxieme partie on présente aussi une méthode de calcul des valeurs propres sur
la sphere en utilisant des solutions fondamentales. Elle est inspirée de la méthode présentée
en chapitre 4. Au lieu de travailler avec des fonctions définies uniquement sur la surface, on
considere des fonctions harmoniques en espace qui vérifient la condition de valeur propre en
un nombre fini des points sur la surface. En faisant des tests numériques, on observe que cette

méthode nous permet d’avoir une précision de calcul importante.

5.1 Introduction

As we have seen in previous chapters, relaxation formulations are useful in studying partitioning
or multiphase problems in the plane. In this chapter we extend the previously studied methods

in the case of closed surfaces in R3. There are two main difficulties:
e The theoretical aspect concerning the relaxations of the functionals considered;
e A numerical framework which is well adapted for these problems.

We study two partitioning problems:

1. Minimizing the sum of surface perimeters of n cells of equal areas which partition a
closed three dimensional surface. This problem has been considered in the case of the
sphere by Cox and Flikkema in [39]. They used the software Evolver [21] in order to
study these optimal partitions. One drawback of their method is that they need to do a

combinatorial optimization in order to find the topology of the optimal partition.

2. Minimizing the sum of the fundamental Laplace-Beltrami eigenvalues of the cells of a n-
partition of a closed three dimensional surface. This problem was studied theoretically by
[64],[63] and numerically by Elliott and Ranner in [48] for three three types of surfaces:
the sphere, a torus and another closed surface. Their method is based on a penalized
energy formulation presented in [33] and they used finite elements on surfaces in order to

compute the eigenvalues.

We begin by the study of the equi-areal perimeter minimizing partitions. In the two dimen-
sional case we have the Modica-Mortola theorem which provides the appropriate relaxation.
This theorem extends in the three dimensional case by simply replacing the gradient by a tan-
gential gradient with respect to the considered surface. A similar result was provided on general
manifolds by Baldo and Orlandi in [12]. They did not prove that the functionals I"-converge, but
they did provide a proof for the important property which interests us: any limit of a sequence

of minimizers for the relaxed formulations converges to a minimizer of the geodesic perimeter.
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Of course, one needs to extend this result in the case of the partitions, and this is not trivial. We
did not manage to give a complete proof of the I'-convergence result, as the technical details of
the proof are still a work in progress.

The numerical framework needs to allow us to compute all the quantities required for the
computation of the relaxed formulation. Furthermore, the fixed areas constraint needs to be
treated in a simple manner. A good way to address all these concerns is to consider a triangula-
tion of the surface. On this triangulation we can construct a finite element space and this allows
us to compute the value of the functional. We present an orthogonal projection algorithm which
allows us to treat the constant area constraint and the partition constraint at the same time. Of
course, one needs also to address the choice of the parameter € which must be large enough in
the beginning to allow the cells to move in the right position. Then, the parameter is decreased
at the same time as we refine the discretization in order to have more refined results. The param-
eter € is always chosen larger than the sides of the triangles. We are able to apply this method
for a number of surfaces: the sphere, a torus, a double torus, etc. Any closed surface can be
studied, as soon as a qualitative triangulation is found. The computation of the well behaved
triangulation is made using the publicly available software DistMesh [77]. In the particular
case of the sphere we can construct manually triangulations which are successive refinements
starting from the icosahedron.

One further objective which we manage to achieve only in the case of the sphere is to
perform a refined optimization computing exactly the perimeter of the cells. The advantage of
starting with the optimization in the relaxed formulation is that there is no need to take care
of the topology of the cells. In a second step we can extract the topological structure, i.e. the
triple points, edge connections and faces. The results of F. Morgan [74] say that such optimal
partitions exist, that the boundaries between two cells are curves of constant geodesic curvature
and that at junction points boundaries meet in threes making angles of measure 27 /3. This
result allows us to deduce that in the case of the sphere boundaries between two cells are arcs
of circles (not necessarily geodesics). Furthermore, the Gauss-Bonnet formula gives an explicit
expression for the areas of the cells in this case.

The second problem we study in this chapter deals with the optimization of the sum of the
first Laplace-Beltrami eigenvalues of partitions of a surface. We propose a relaxed framework

inspired from [18]:
e We construct a triangulation of the surface.

e We construct a finite element space on this triangulation, which allows us to compute the

mass matrix M and the stiffness matrix K.

e In order to compute the eigenvalues of a shape w C S we consider the penalized formula-

tion, inspired from the euclidean form given by Dal Maso and Mosco [40]:
—Ayu+ C(1 = p)u = Au,
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where C' >> 1 and ¢ is an approximation of the characteristic function of w, x,.

e We use a gradient descent algorithm in order to find the optimal densities. In order to

impose the partition condition, we use the projection operator

||
Z?:l |¢Z|7

which was also used in [18] and in Chapter 3.

I(g') =

We observe the boundaries of the optimal structure and we notice that, when the number of
cells is great enough, they are close to being geodesic arcs. This behaviour was also noticed in
[48]. This motivates us to perform a refined optimization procedure in the case of the sphere for
the particular case when the boundaries of the cells are geodesic polygons. We do not claim that
these refined partitions are optimal, but we believe that they give a reasonable upper bound for
the energy, at least for a large number of cells. We provide theoretical and numerical arguments
suggesting that in general the optimal cells are not geodesic polygons.

In order to do the optimization in the class of geodesic polygons we need do devise a way

to compute the eigenvalues of such a subset of the sphere. We have two ways of doing this:
e using fundamental solutions.
e using a finite element approach.

In each of these two methods, a meshing procedure is needed in order to find triangulations of
each such polygon. It is not hard to devise a fast triangulation algorithm, by using, for example,
multiple refinements, starting from a generic configuration.

We propose a method of computing the Laplace-Beltrami eigenvalues on the three dimen-
sional sphere using fundamental solutions. As in Chapter 4, the idea is to consider linear com-
binations of function which already satisfy the partial differential equation, and find the coeffi-
cients by imposing the boundary conditions. The problem here is that we only have an equation
on the boundary of S2. In order to have a fundamental solutions framework, we consider func-
tions which are defined in R?, not only on S?, and which are harmonic. The choice of harmonic
fundamental solutions becomes evident once we write the decomposition of the Laplacian in

the Laplace-Beltrami part and the normal part:
Au = Au+ Ho,u+ 8,2Lu.

Thus, if « is harmonic, then the the Laplace-Beltrami operator applied to « can be computed
using only normal derivatives with respect to S?, which can be expressed explicitly. This is a
key point in the numerical computations.

We choose a family of source points outside or inside the ball determined by S?, and and
a family of evaluation points on S? where we impose the boundary condition equation. We

note the following difference with respect to the Steklov problem: since we are not constrained
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on considering functions which are harmonic inside or outside the unit ball, we may choose
which variant we want. We prefer to work with exterior points since we observe an increase in

precision. We notice that the method is precise and we study the errors in the following cases:
e We study the error made as the distance from the source points to S? varies;

e We study the error made when computing eigenvalues of certain pieces of the sphere
by considering certain spherical shapes for which some of the eigenvalues are known

analytically.

This method of fundamental solutions has some drawbacks. If the number of points is too large
or the source points are too close, then we lose precision. This is due to the poor conditioning of
the matrices involved. Another aspect concerns an upper limit on the number of source points
we can consider. The eigenvalue computation problem is reduced to a generalized eigenvalue
matrix problem, and the matrices involved are full. Thus, beyond matrices of size 5000 x 5000
the algorithm becomes very slow. When the fundamental solution methods fail we turn to
classical finite element methods which produce sparse matrices. Thus, in the case of partitions,

when we have more than 16 cells we switch to a finite elements approach.

5.2 Perimeter minimizing equi-areal partitions

Given a partition (w;)!; of a three dimensional surface S, we associate to it the sum of the
lengths of the boundaries of the cells w;. The problem of finding a partition of S into equal area
cells which minimizes the sum of perimeters has been considered before from both numerical
and theoretical points of view. The case where S is a sphere has been studied by Toth [52] and
he proved that under certain hypothesis on the regularity of the partition, the regular ones are
optimal for n € {3,4, 6,12} (partitions corresponding to regular polyhedra). As in the case of
the study of the honeycomb conjecture the difficult part is to be able to prove the same result
without convexity or connectedness assumptions. T. Hales was able to apply the method used
in the proof of the honeycomb conjecture [60] to prove that in the case n = 12 the minimal
partition corresponds to the partition generated by the dodecahedron. His method did not work
for smaller n and positive results are known only for n € {2,3,4} [49]. General qualitative
properties of the optimal partitions are given by F. Morgan in [74]. In particular, the cells of
the optimal partition have boundaries which have piecewise constant curvature and the bound-
aries meet in triple points with equal angles of measure 27 /3. Numerical studies of minimal
perimeter partitions of the sphere were preformed by Cox and Flikkema [39] using the software
Evolver [21]. They presented candidates for the optimal partitions for n < 32.

We may ask ourselves if the problem can be tackled using the same methods developed in
Chapter 2 and [80]. First we need to find a suitable relaxed form for the problem. In [12] the

authors present a candidate for the I'-convergence approximation of the perimeter on surfaces.
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In fact, the functional has the same structure as the Modica-Mortola theorem, but instead of a
gradient term we have a tangential gradient. As the proofs in [12] involve the use of rectifiable
currents instead of classical finite perimeter sets introduced in Chapter 2 we were not able
generalize directly the results of [12] to the case of partitions. Nevertheless, we propose a
conjectured result analogue to the partition approximation in Chapter 2. The technical details
of the proof are still a work in progress.

Given a smooth, compact surface S C R? we define F. : (L'(S))" — [0, o] by

. 1
Z (5/ Vw4 = / W(uz)) (u;) € X and are sufficiently regular
Fo((w) = { =1 s €Js
00

otherwise .

where W : R — [0, 00) is a double-well potential with zeros at 0 and 1 and X is the subspace
of L'(S)™ which satisfies the additional partition constraint u; + ... +u,, = 1 and the constraints
Jgui = c; with 37" | ¢; = A, where A is the area of S.

Define also F': (L'(S))" — [0, oo] by
YorcPerg(w;) (u;) € X,u; = Xu,;, (w;) have finite perimeter on S

F((wi)) =

00 otherwise .

As usual ¢ denotes 2 fol VW (s)ds.
Conjecture. We have that F Ly Finthe L'(S) topology.

The proof of this conjecture is a work in progress. The fact that this result is a natural
generalization of the two dimensional results presented in [80] and Chapter 2 and the fact that
numerical computations presented in the next section give the expected results suggest the va-
lidity of the result. As in Chapter 2, in order to approximate numerically partitions into cells
of equal areas of a surface, we search for minimizers of F. for ¢ small enough. The numerical

algorithm and some results are presented in the next section.

5.2.1 Numerical framework and results

In order to perform numerical computations we need a framework which allows us to compute

1
5/\V7u\2+—/u2(1—u)2,
s €Js

in fast, efficient way. In order to do this we triangulate the surface S and we compute the

the quantity

mass matrix M and the stiffness matrix K associated to this triangulation. Then, if by abuse of

notation, we use the same notation v for the P; finite element approximation of u, we have

/ V., ul? = v Ku
s

and
/u2(1 —u)? =v" Mo,
S

165



where v = u.2. x (1 — u).2. We have used the Matlab convention that adding a point before
an operation means that we are doing component-wise vector computations. Note that once the
matrices K, M are computed, we only have to perform matrix-vector multiplications, which is

really fast. In this setting we use the discrete gradients of the above expressions given by:
V.l Ku = 2Ku,

Vol Mo =2Mv. x (1 — 2u).

The partition condition and the equal areas constraint are imposed by making an orthogonal
projection on the linear constraints as follows. We write the discrete vectors representing P;

discretization of the density functions in the following matrix form
M= (¢ ¢* ... o").

The partition constraint implies that the sum of the elements on every line of M is equal to 1

and the equal area constraint implies that for every column of the matrix /M we have the relation
(v,0") = A/n, where v = 11, - M.

Here the constant A is the total area of the surface, NV is the total number of points in the
triangulation and the notation 1,,, represents the p x ¢ matrix whose entries are all equal to
1. These conditions are discretizations in the finite element setting of the conditions that the
integrals of the density functions u; are all equal to A/n. Indeed, given a triangulation 7 of S
and its associated mass matrix M, we have / 1-u; = Liuny - M - goi, where ' is the vector
containing the values of u; at the vertices of fghe triangulation. The projection routine can be
found in Algorithm 4.

Once we have this discrete formulation we use an optimized LBFGS gradient descent proce-
dure [86] in order to compute the numerical minimizers. In order to avoid local minima where
one of the phases ' is constant, which arise often when the number of phases is greater than 5,

we add a Lagrange multiplier which penalizes the constant functions. In this way, we optimize
- _ 1 ‘ ‘ _
S 192 [0 = )+ Asta(e) — sarger”,
i=1 78 s

where std(() is the standard deviation of (' and starget is the standard deviation of a character-
istic function of area Area(S)/n.

In order to have a nice view of the optimal partition, we want do decrease ¢ so that the
width of the interface is small. We notice that if we chose ¢ of the same order as the sides of
the mesh triangles the algorithm converges. Furthermore, we cannot make € smaller, since then
the gradient term will not contain any real information, as the width of the interface is of size
. In order to avoid this problem, we consider refined meshes associated to each €. At each

step where we decrease € we interpolate the values of the previous optimizer on a refined mesh
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Figure 5.1: Minimal perimeter partitions on the sphere into n equal area cells for n &
{2,3,...,24,32}.
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Figure 5.2: Minimal perimeter partitions on the torus with outer radius £ = 1 and inner radius
r = 0.6 together with their associated flattenings for n € [2, 11]. The center rectangle is repre-
sents the torus, while periodic continuations are made to easily see the topological structure.
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Figure 5.4: Minimal perimeter partitions on a Banchoff-Chmutov surface for n € {2, 4, 6, 8}.



Algorithm 4 Orthogonal projection on the partition and area constraints
Require: A= (aij) € Ryxn, € € Rigpn, d € Ryx1, v;
I: (e;) = >_; ai; — ¢;; (line sum error; N X 1 column vector)
2: (fi) = >_, via;; — d;; (column scalar product error; n x 1 column vector)
3: Define the matrix C of size n X n by

{ — |lv||2/n if ki 1

e = [[0ll3 = [Jvll3/n;

4: (¢;) = (f;) — (v,e)/n; (n x 1 column vector)

5: Compute ();) € R,,x1 with A\, = 0such that C|,—1)x(n-1)(Aj)|n—1 = (¢;)|n—1. The indices
indicate a sub-matrix with the first n — 1 lines and columns, or the sub-vector formed by
the first n — 1 components.

6: S = Zj )‘j;
7:m; = (e; — S - v;)/n; (N x 1 column vector);
8: Ao = (M) - Lixn +v - (N;)T, where 1,4, is the p x ¢ matrix with all entries equal to 1;
9 A=A— Ay ;
return A

and we consider this interpolated densities as starting point for the descent algorithm on the
new mesh. In the case of the sphere we make four refinements ranging from 10000 to 160000
points. In order to keep things simple, we only used a nearest point interpolation, as this was
good enough for our purposes for two reasons: it is fast and simple to implement and we only
need an approximation of the optimal partition, since we re-optimize the interpolated densities.
Some optimal configurations, in the case of the sphere, are presented in Figure 5.1. A detailed
study of the case of the sphere along with a comparison with the known results of Cox and
Flikkema [39] are presented in the next section.

As underlined before, our approach allows a direct treatment of any surface, as long as
a qualitative triangulation is found. We were able to perform some numerical computations
on various shapes like a torus, a double torus, and a more complex surface called Banchoft-

Chmutov of order 4. A few details about the definitions of these surfaces are provided below:

e We consider a torus of outer radius R = 1 and inner radius 0.6 (see Figure 5.2). This

torus is defined as the zero level set of the function
flz,y,z) = (" + >+ 22+ R? = )" —4R*(z° + o).

e The double torus used in the computation (see Figure 5.3 is given by the zero level set of
the function
f(x,y,2) = (z(z — 1)*(x — 2) + y*)* + 2> — 0.03.

e The complex Banchoff-Chmutov surface (see Figure 5.4) is given by the zero level set of

the function
f(xv Y, Z) = T4(:E) + T4(y) + T4(Z)7
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where T)(X) = 8X* — 8X? + 1 is the Tchebychev polynomial of order 4.

5.2.2 Refined optimization in the case of the sphere

The method described in the previous section can be used on general surfaces but has the draw-
back that the value of the relaxed cost functional is close to the real value of the perimeter only
when the parameter € is very small, which means that the discretization needs to be fine enough.
In the case of the sphere we can surpass this difficulty by noting that the results of [74] allow
us to deduce that cell boundaries are arcs of circles. This follows at once from the fact that cell
boundaries are curves of constant geodesic curvature and cf. for example [85, Exercise 2.4.9]
in the case of the sphere the only such curves are portions of circles. The results of Cox and
Flikkema [39] show that optimal configurations are not made of geodesic polygons. In order to
perform an optimization procedure which captures this effect they chose to make an initial op-
timization in the class of geodesic polygons and then divide each geodesic arc into 16 smaller
arcs and restart the procedure with more variable points. They manage to approximate well
enough the general optimal structure but they still work in the class of geodesic polygons with
additional vertices. Our approach presented below is different in the sense that we consider
general circle arcs (not necessarily geodesics) which connect the points.

The first step is to extract the topology from the previous density results, i.e. locate the triple
points, the edge connections and construct the faces. In order to perform the refined optimiza-
tion procedure we need to be able to compute the areas of portions of the sphere determined by
arcs of circles. This is possible using the Gauss-Bonnet formula. If M is a smooth subset of a

surface then
/ KdA+/ ky = 2x (M), (5.2.1)
M oM

where K is the curvature of the surface, &, is the geodesic curvature and (/) is the Euler

characteristic of M. This result extends to piecewise smooth curves and in this case we have

KdA + / kg + > 0; = 2mx(M), (5.2.2)
M oM

where 6; are the turning angles between two consecutive smooth parts of the boundary. In the
case of a polygon the turning angles are the external angles of the polygon. The formula (5.2.2)
allows the computation of the area of a piece of the sphere bounded by arcs of circle. In this
case the Euler characteristic is equal to 1, the curvature of the unit sphere is X = 1 and the
geodesic curvature is piecewise constant. For more details we refer to [45, Chapter 4].

A first consequence of the Gauss-Bonnet theorem in connection to our problem is noting the
fact that, apart from cases where we have a certain symmetry like n € {3,4, 6, 12} the optimal
cells are not geodesic polygons. This is made clear in cases where we have a hexagonal cell.
If the arcs forming the boundary of such a hexagonal cell would be geodesic polygons then its
area would be equal to 6 - 27/3 — 47 = 0. Thus a spherical shape bounded by six arcs of circle

can never be a geodesic polygon without being degenerate.
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In order to perform the optimization we take the vertices as variables and we add one sup-
plementary vertex for each edge. This is enough to contain all the necessary information since
an arc of circle is well defined by three distinct points on the sphere. In the sequel we denote
P, the set of partitions of the sphere into n cells and with A,, the partitions in P, having equal
areas. In order to have a simpler numerical treatment of the problem we can incorporate the
area constraints in the functional by defining for every partition (w;) € P, the quantity defined

for every € > 0 by

wi)) = ZPer(wl + % Z (Area(w;) — Area(w;))?.

If we denote

B Yo Per(w;) if (wi) € A,
Gl =1 o if () € P\ An.

then we have the following I'-convergence result.
Theorem 5.2.1. We have that G a for the L*(S?) convergence of sets.

Proof: For the (LI) property consider a sequence (w$) C P, which convergence in L'(S?)
to (w;). It is clear that we have Area(w$) — Area(w;) and the perimeter is lower semicon-
tinuous for the L' convergence. Thus we have two situations. If (w;) € P, \ A, then
lim. o G.((uf)) = oo. If (w;) € A, then the lower semicontinuity of the perimeter implies
that lim inf._,o G.((w$)) > G((w;)).

The (LS) property is immediate in this case. Choose (w;) € A, or else there is nothing to
prove. We may choose the recovery sequence equal to (w;) for every € > 0. Thus the property

is verified immediately. O

Remark 5.2.2. We note that in the above proof the simplicity of the proof of the (LS) property
is due to the fact that the functionals G, are well defined on the space {G' < oo}, which makes
possible the choice of constant recovery sequences. This is not the case in the Modica-Mortola

theorem and in the results proved in Chapters 1 and 2.

This I'-convergence result proves that minimizers of GG, converge to minimizers of G. As
a consequence, in the numerical computations, we minimize GG, for ¢ smaller and smaller in
order to approach the minimizers of (G, which are in fact the desired solutions to our problem.

Since the parameters are of two types: triple points and edge points, we prefer to use an

optimization algorithm which is not based on the gradient. The algorithm is described below.

e For each point P consider a family of m tangential directions (v;); chosen as follows:
the first direction is chosen randomly and the rest are chosen so that the angles between

consecutive directions are 27 /m.
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Figure 5.5: The difference between optimal configuration (black) and the geodesics connecting
the points (red). Notice that the difference is really small when the number of cells is large.

e Evaluate the cost function for the new partition obtained by perturbing the point P in each

of the directions v; according to a parameter ¢.
e Choose the direction which has the largest decrease and update the partition accordingly.

e Do the same procedure for each edge point by performing the two possible orthogonal

perturbations of the point with respect to the edge.
e If there is no decrease for each of the points of the partition, then decrease ¢.

This algorithm converges in each of the test cases and the results are presented in Table 5.1.
In the optimization procedure we start with € = 1 and we reiterate the optimization decreasing
¢ by a factor of 10 at each step until we reach the desired precision on the area constraints. We
are able to recover the same results as Cox and Flikkema for n € [4, 32]. Furthermore, unlike in
the case of geodesic polygons, all triple points consist of boundaries which meet at equal angles
of measure 27 /3. In Figure 5.5 you can see the results for n = 9 and n = 20. The red arcs are
geodesic connecting the points and are drawn to visually see that not all the boundaries of the
optimal structure are geodesic arcs.

Thus we can conclude that the relaxed formulation presented in the previous section is able
to match the best known configurations in the literature. Furthermore for n € [5,25] U {32}
the algorithm finds the good configuration without much effort, while for n € [26, 31] multiple

tries with different initial conditions were needed in order to find the best configuration.
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our results Cox-Flikkema our results Cox-Flikkema
N || geodesics | area tol. geodesics non-geo. | area tol. non-geo.
4 11.4637 | 2x 107 11.464 11.4637 | 5x 107" 11.464
5 13.4518 | 4 x 107 13.452 13.4304 | 2 x 107" 13.430
6 14.7715 | 2 x 107 14.772 14.7715 | 2 x 1077 14.772
7 16.3604 | 8 x 107 16.360 16.3519 | 3 x 1077 16.352
8 17.7108 | 6 x 1077 17.710 17.6927 | 3 x 1077 17.692
9 18.8672 | 6 x 107 18.867 18.8504 | 2 x 107" 18.850
10 || 20.0152 | 8 x 107° 20.015 19.9997 | 4 x 107" 20.000
11 || 21.1629 |6 x 107° 21.163 21.1398 | 4 x 1077 21.140
12 || 21.8918 |4 x 10" 21.892 21.8918 | 5 x 1077 21.892
13| 23.1117 | 1x107° 23.112 23.0953 |4 x 1077 23.095
14 || 23.9644 |8 x 107" 23.964 23.9581 | 3 x 1077 23.958
15 || 24.8908 | 7 x 10~ " 24.891 24.8821 |2 x 1077 24.882
16 || 25.7359 | 1x 107 25.736 25.7269 | 2 x 1077 25.727
17 || 26.6488 | 2 x 107° 26.649 26.6365 | 3 x 1077 26.637
18 || 27.4783 | 6 x 107° 27.478 27.4647 | 2 x 1077 27.465
19 || 28.2901 |5 x 107° 28.290 28.2735 | 2 x 1077 28.274
20 || 29.0154 | 6 x 107° 29.015 28.9992 | 1 x 1077 28.999
21 || 29.7924 |5 x 107 29.792 29.7748 | 2 x 1077 29.775
22 || 30.5282 |2 x 107° 30.528 30.5094 | 2 x 1077 30.509
23 || 31.2462 |5 x 107 31.246 31.2260 | 2 x 1077 31.226
24 || 31.9326 | 4 x 107 31.933 319117 | 3 x 1077 31.912
25 || 32.6392 | 4 x 107 32.639 32.6172 | 8 x 1078 32.617
26 || 33.2897 |4 x 107° 33.290 33.2675 | 2 x 1077 33.268
27 || 33.9185 | 4 x 107° 33.918 33.8968 | 9 x 10~® 33.897
28 || 34.5746 | 4 x 107° 34.575 34.5521 | 4 x 1077 34.552
29 || 35.2303 | 4 x 107 35.230 35.2065 | 6 x 1077 35.207
30 || 35.8436 | 4 x 107 35.844 35.8199 | 5 x 1077 35.820
31 || 36.4167 |5 x 107° 36.417 36.3941 | 4 x 107° 36.394
32 || 36.9514 | 3 x 107 36.951 36.9310 | 4 x 1076 36.931

Table 5.1: Comparison between our results and the results of Cox and Flikkema in the case of
the sphere. The left part of the table presents the optimal costs in the class of geodesic polygons,
while the right part deals with the general case where the boundaries of partition cells are not
necessarily geodesics.
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5.3 Spectral optimal partitions

In the following sections we present a numerical study of the partitions (w;)!" ; of a compact

surface .S without boundary which solve the problem
min A5 (w) + ...+ ME(w,).

We denote by M\ (w) the k-th Laplace-Beltrami eigenvalue of a set w contained in S. The
existence and the regularity of such optimal partitions has been studied before (see, for example
[38], [63], [64], [27]). Here we deal mainly with the problem of finding numerically candidates
for the optimal configurations. Such a numerical study has been performed by Elliott and Ran-
ner in [48]. They made computations for n € {3,4,5,6,7,8, 16,32} using a method based on
finite elements and a penalized formulation of the partitioning problem which can be found in
[35],[33]. The method presented in the following is based on a relaxed formulation inspired
from [18]. The optimization procedure has two steps: first we find the optimizers in the relaxed
form and secondly we extract the structure and continue the optimization procedure by meshing
each cell of the partition and optimizing the cost function with respect to the position of the ver-
tices. We are able to perform optimizations using the relaxed formulation on general surfaces,
but the refinement procedure is only applied in the case of the sphere. Based on fundamental so-
lutions methods used in Chapter 4 we provide an algorithm for computing the Laplace-Beltrami
eigenvalues on the sphere or on portions of the sphere. This algorithm seems to be very efficient

and precise when the domains we consider are not small relative to the surface of the sphere.

5.3.1 Laplace-Beltrami eigenvalues on the sphere

Motivated by the fact that the Laplace-Beltrami eigenvalues of a closed curve in R? can be
found using fundamental solutions, as noted in Chapter 4, we extend the method to the case of

the unit sphere in R3. In order to do this we consider the extended problem

—Au=Mu on$S?
—Au =0 inaneighborhood of S*.

(5.3.1)

The motivation behind this consideration is the following decomposition of the Laplacian

ou  0u

For a proof of (5.3.2) and more details we refer to [66]. As usual, H denotes the mean curvature
2

of the surface. We denote % = (D’n.u).u.

As before, we seek u as a linear combination of radial harmonic functions in R? which do not
have singularities on S?. We consider the fundamental solution of the Laplace equation in three
dimensions given by ¢(x) = 1/|z|. We choose a family of N evaluation points (z;) on S? which

are uniformly distributed. We can do an explicit construction starting from a dodecahedron in
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Figure 5.6: Absolute errors - approximation of the first 10 Laplace-Beltrami eigenvalues of S2.

the case of the sphere, or we can use DistMesh [77] in general situations. The source points
(y;) are chosen on the normals at S in z; at a fixed distance r. As we will see below, the
behaviour of the error depends on r and N. These parameters must be chosen such that the
matrices involved in the computations are well conditioned, in order to have meaningful results.
For each y; we consider the fundamental solution centered in y; defined by ¥;(z) = ¢(|z — y,|).
We seek u in the form

U= 1y, + ... + ANy,

We impose the eigenvalue condition in each of the points (x;) and we obtain the equations

— A (a1, () + o+ anyy (7)) = NP(S?) (a1, (27) + ... + antyy (7:)), i = 1...N.
(5.3.3)
Solving this generalized eigenvalues problem we expect to find the values of the Laplace Bel-
trami eigenvalues on the unit sphere. The explicit eigenvalues are of the form /(¢ + 1) with
multiplicity 2¢ + 1, with £ > 0. We recall that r is the distance from the exterior points (y;) to
the boundary of the sphere. The choice of the sample points (x;) is not random. As noted in [8],
the sample points should be distributed evenly across the surface in order to obtain meaningful

results. We tried multiple choices for the points (x;):
e Uniform sphere mesh found with Distmesh [77].
e The layer method described in [8]
e A uniformly refined mesh of the sphere starting from an icosahedron.

For all these choices of points we observe that the values obtained with our algorithm are very
close to the analytical ones. An analysis of the dependence of the absolute error of the parameter
r and on the number of sample points is given in Figure 5.6. We can see that the error decreases
drastically with . We also observe that when we have a large number of points and large 7 the
computation is not stable anymore. These estimates are valid for the first 10 eigenvalues.

We can use the method of fundamental solutions in order to compute the Laplace-Beltrami

eigenvalues with Dirichlet boundary conditions of a shape w C S?. In order to do this we
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consider only sample points z; € w and approximate A\*?(w) using a variation of equation
(5.3.3). Indeed, let (;)Y -, be points in the interior of w (relative to S?) and (z;), be points on
Ow (relative to S?). Using the same method of fundamental solutions, the eigenvalue condition

is exactly (5.3.3). The boundary conditions can be written as
alwyl(zj) + + OZN’QZ)yN(Zj) = 0, j = 1M (534)

It is possible to couple the systems (5.3.3) and (5.3.4) into one single generalized eigenvalue

(5) = (0)
v=A v (5.3.5)
B O

o A= (_Ar¢yj($i)), 1=1..N— M, ] =1..N

problem in the form

where

o B= (i, (%)), k=1.M, j=1...N

X = (¢by,(2;)), i = 1.N = M, j =1..N

O is the zero matrix of size (N — M) x N.
o v=(ag,..ay)l.
The points (z;), (z;) are chosen by performing a triangulation of the set w C S, which in our
computations will always be a geodesic polygon. In order to compute such a triangulation, we
divide the polygon in to triangles and then refine this triangulation multiple times by considering
the classical midpoint refinement.

In order to test our computational method, we consider some particular subsets of the sphere
for which some of the eigenvalues are known explicitly. In the following we call lens of angle 6,
a portion of the sphere contained between two half-meridians which make angle #. We denote
the first eigenvalue of a lens of angle 6 by L(6). We call a double-right triangle of angle 0
a half (divided by the ecuatorial circle) of a lens of angle #. We denote the first eigenvalue
of a double-right-triangle of angle 6 by R(6). The following analytical values are known for
R(6), L(0):

o L(0) = T (g + 1) (see [91]) - numerical example in Figure 5.7.

e R(m/3) =20,R(r/2) =12, R(m) = 6 (see [91]) - numerical examples in Figure 5.8)

Another interesting spherical triangle is the one which realizes the partition of the sphere
into 4 congruent equilateral triangles. We denote one such triangle by 7". The computation of the
first eigenvalue of this triangle came up in [81] in the study of the expected capture time of some
brownian motion predators on the line. The numerical value computed in the above reference

is \FB(T') = 5.1589 (represented by the green line in Figure 5.9). We compute numerically its
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first eigenvalue and compare it to the values presented in the cited article (see Figure 5.9). We
observe that for € [1.8,1.9] the error made by our algorithm is really small. We see again
the instability in the computation as 7 increases. In order to further test this numerical value,
we used a finite element discretization of the triangle 7', and we compute the first eigenvalue
in terms of on a mesh having 98000 points. We obtain Af?(T%.,,) = 5.1593, which is close
to both the result of [81] and our values. We note, though, that in order to reach this precision,
more than 50 times more points are needed in the discretization.

Until now we only considered exact subsets of S?. We can extend our method to compute
the spectrum associated to an approximation ¢ of x,. In order to do this, we use the relaxed

formulation inspired from [40], [18] given by
—Aju + pu = Au,

where 4 is a capacitary measure which penalizes points outside w. This relaxed formulation
includes the classical case. We can compute the eigenvalues of w C S? by imposing p = +00
in S? \ w and ;1 = 0 in w. The advantage is that we work on the whole sphere and the measure
i takes into account the change of shape. Using this technique, it is possible to study the

partitions of the sphere which minimize the sum of their first Laplace-Beltrami eigenvalues.
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Figure 5.9: Behavior of the approximate first eigenvalue of 7" with respect to r (left), corre-
sponding first eigenfunction (right)

The Euclidean case of this problem was considered by Bourdin, Bucur and Oudet in [18], while
the spherical case was recently treated by Elliott and Ranner in [48] using a different method.

We choose 1 = C'(1 — ¢)do and the penalized formulation becomes
—A;u+ C(1 = p)u = Au. (5.3.6)
This can be written in matrix form as
(A + Cdiag(1 — ¢)B)v = ABv,

where

o A= (—-Ai(xy)), i,j=1.N

o B=(y(x;)), i,j=1.N

o v=(ay,.,an)"
e diag(1l — ¢) is the diagonal matrix with diagonal entries 1 — .

For the generalized eigenvalues computations we use the Matlab e igs function. In order to be
able to perform an optimization, we need to compute the gradient of the eigenvalue with respect

to . For this we have two options:

e Compute the gradient in the analytic setting and obtain V() = —Cv? where v is the

associated eigenfunction. This was proved in [18].

e Compute the gradient in the discrete setting, by differentiating the generalized eigenvalue
problem. In order to do this, we need the corresponding right eigenvector v and the left

eigenvector w. We obtain that
VA(p) = —Cw ® Bv/(w' Bv),
where ® is the usual tensor product.
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Both of the above methods work, but the second needs to perform two times the amount of
computations as the first, since we need both the left and right corresponding eigenvectors. In
our computations we prefer the first approach, as it is faster. The optimization is made using a
standard gradient descent algorithm. We need to impose the partition condition at each iteration,

and we do this by applying the following projection operator

||
(¢ = =——-
Zi:l |SOZ|

5.3.2 Numerical optimal partitions

There is an interest in computing numerically the spectral optimal partitions on the sphere. This
interest is motivated by the fact that problems that are simple to state regarding these optimal
partitions are still open. Bishop proved that the partition of S? into two parts wy,ws which
minimizes AP (w;) + AP (ws) consists of two half-spheres. The similar problem of finding the

minimizer of
)\fB (wl) + )\fB (CUQ) + >\1LB (CU?,), (wl, Wa, u)3) partition of SQ,

is still open. In the same article [17] it is conjectured that the optimal partition in the case n = 3
is made of three 277 /3-lens. A similar problem, which is a consequence of Bishop’s conjecture,
was treated by Helffer et al. in [64]. They proved that the partition of the sphere into three
27 /3-lens minimizes the quantity

max MEB(w;), (wr, wy, ws) partition of S2.

Initial numerical computations of optimal spectral partitions on S? were computed by Elliott and
Ranner in [48]. They confirmed numerically Bishop’s conjecture, and they made computations
forn = 3,4,5,6,7,8,16,32. Their method is based on a penalized energy formulation of the
partitioning problem introduced in [33].

In the following, we propose a different approach, inspired by the two dimensional case
studied by Bourdin, Bucur and Oudet [18]. We represent each phase w; of the partition by a
density function ¢; : S* — [0,1] . The partition condition then translates to » . ¢; = 1.

Given ¢, a density function approximating w, we consider the problem
—Asu+C(1—p)u=IE(C,p)uonS? (5.3.7)

with C' >> 1. As in [18], it can be proved that the mapping ¢ — AZ(C, ) is concave and as
C — oo we have A\[B(C) x,) — MB(w).

We were able to compute numerically the optimal partitions for
n
Z MB(w;), (w1, ..., wy) partition of %,
i=1
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Figure 5.10: The optimal configuration for n = 8 (left) and n = 5(right). The black lines are
geodesic arcs connecting the vertices of a face.

for n € [3,24] U {32}, using about 5000 sample points. It is interesting to note that for n €
{3,4, 6, 12} we obtain the regular tiling of the sphere. For n € {5,7,8, 32} we obtain the same
results as Elliott and Ranner. For n = 16 we obtain something slightly different: they obtained a
configuration of 4 equal hexagons, 4 equal pentagons and another 8 equal pentagons. We obtain
4 equal hexagons and 12 equal pentagons, which is plausible, since this is the most regular 16
tiling of the sphere.

In [48] it is conjectured that the common boundary of two adjacent cells is a geodesic arc.
This fact can be can be seen for he case n = 8 in Figure 5.10, where we plotted some geodesic
arcs on top of the results obtained using density functions. In our density results we can observe
that for n > 8 the common boundary of any two cells is really close to being a geodesic arc.
This motivated us to search for the optimal partitions among geodesic polygons which is a
problem depending only on a low number of parameters. We discuss later the fact that even
if for large n the optimal partition cells are close to being geodesic polygons, this is not true
for n € {5,7}. Moreover Gauss-Bonnet theorem (5.2.2) implies that as soon as we have a
hexagonal cell, its boundary cannot be made of geodesic arcs. Indeed, regularity results proved
in [38] imply that at singularity points the boundaries meet with equal angles. Thus, if we have
a hexagonal cell whose boundaries are geodesic arcs and whose angles are all equal to 27/3,
Gauss-Bonnet formula implies that the area of this cell is zero, which is a contradiction.

A first step in the optimization procedure in the class of geodesic polygons is to extract the
topological structure from the optimal densities. For each polygon in the partition we compute
the corresponding first eigenvalue using the method presented in equation (5.3.5). In order
to optimize the position of the vertices it is possible to write derivatives with respect to each
coordinate of the vertices. Instead of doing this we use a simpler algorithm, which avoids the
computation of numerical integrals on the surface of the sphere. We use the following discrete
algorithm with a probabilistic touch, which is similar to the one used to study the first problem

presented in this chapter:

e For each point P consider a family of ¢ tangential directions (v;)7_; chosen as follows:
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the first direction is chosen randomly and the rest are chosen so that the angles between

consecutive directions are 27/q.

e Evaluate the cost function for the new partition obtained by perturbing the point P in each

of the directions v; according to a parameter ¢.
e Choose the direction which has the largest decrease and update the partition.
e If there is no decrease for each of the points of the partition then decrease ¢.

This algorithm converges and it has been tested by choosing different starting configurations
and observing the convergence. The optimal densities and the optimal partitions consisting of
geodesic polygons are presented in the following figures. We present the results obtained in
the cases corresponding to n € [3,24] U {32}. We remark the fact that for n > 14 optimal
partitions seem to consist of 12 pentagons and n — 12 hexagons. The same argument based
on Gauss-Bonnet formula implies that for n = 11 and n > 13, cases in which we observe the
appearance of hexagonal cells, the boundaries of these hexagonal cells cannot all be geodesic
arcs.

We observe that for n € {4, 6, 12} the optimal partition cells are regular geodesic polygons
corresponding to the tetrahedron, the cube and the dodecahedron. For n large enough, the
partition cells become so close to geodesic polygons that we cannot visualize the difference.
However, the case n = 5, seen in Figure 5.10, raises some questions about the validity of the
claim that boundaries are geodesics. We have devised a numerical test of this claim which is

presented below.

e take the optimal partition into geodesic polygons and add supplementary variable points

at the midpoint of every edge;
e perform again the optimization in this new setting.

To illustrate this better, we give more details concerning the case n = 5. The optimal partition
into geodesic polygons consists of two triangles and four rectangles. Adding the midpoints as
variables gives us a new configuration of two hexagons and three octagons. What we observed
in the cases n = 5,n = 7 is that adding vertices at midpoints we get a new optimal partition
which has a slightly lower value of the cost function. We believe that this decrease in the cost
function allows us to conclude that the optimal cells do not always consist of geodesic polygons.
The test cases n = 5 and n = 7 mentioned above is presented in Figure 5.11. For n = 5 we
obtain a decrease of 0.04 in the cost function, while for n = 7 we obtain a decrease of 0.02.
This numerical observation, together with the argument based on the Gauss-Bonnet formula
suggest that it is probable that the boundaries of the cells are not geodesic curves, except for the
regular cases corresponding to n € {3, 4,6, 12}. This observation is in accordance with the two
dimensional planar case studied in Chapter 3 where numerical results show that boundaries of

the cells are not always segments.
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Figure 5.11: The study of the cases n € {5, 7}; the regions correspond to the non-geodesic
optimal partition and the red arcs are geodesics. Adding midpoints as variables reduces the
value from 34.46 to 34.42 for n = 5 and from 68.99 to 68.97 forn = 7.

It is possible to perform similar computations for surfaces which are more complex than the
sphere. The examples we considered are similar to the ones considered in the perimeter case: a
torus with outer radius R = 1 and the inner radius » = 0.6 and the Banchoff-Chmutov surface
of order 4. Using the proposed algorithm, we can deal with any surface, as soon as we have
a qualitative triangulation. On more complex surfaces only the optimization algorithm using
density functions is used, since the boundaries of the cells cannot be easily characterized.

An equally interesting problem is finding the partition which minimizes the greatest eigen-
value among A\Z(w;). Theoretical aspects of the problem as well as a complete analysis of the
case n = 3 were given in [64]. It is known that if the solution of the problem corresponding to
the sum consists of cells with the same eigenvalue, then this is also a solution of the maximum
problem. In our computations, only the regular partitions corresponding to n € {3,4,6,12}
have this property, and thus they are solutions for the maximum problem as well. In all re-
maining cases we obtained at least two cells with different eigenvalues, which means that our
partitions are not optimal for the maximum. Optimizing the maximum is not straightforward
since we are dealing with a non-differentiable functional. We may expect that minimizing a p-
norm for high p will get us close to the optimal partition for the maximum. Some experiments
done in this direction indicate that the topology of the optimal partition for the maximum is the
same as the one for the sum, but the boundaries are just slightly moved in order to have the

same eigenvalue for every one of the cells.

n = 3 : three 120° lens. This is
a conjecture proposed by Bishop
[17].

optimal cost = 45/4

lens eigenvalue = 15/4.
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n = 4 : the optimal partition
consists of the tiling generated by
a regular tetrahedron inscribed in
the sphere.

optimal cost = 20.635

triangle eigenvalue = 5.1588

n = 5 : two equal equilateral trian-
gles and three equal rectangles.
optimal cost = 34.44.

triangle eigenvalue = 7.26

rectangle eigenvalue = 6.57.

n = 6 : regular tiling generated by
the cube
optimal cost = 48.6.

square eigenvalue = 8.10

n = 7 : two regular pentagons tri-
angles and 5 equal rectangles.
optimal cost = 69.

pentagon eigenvalue = 8.62

rectangle eigenvalue = 10.35.

n = 8 : four equal quadrilaterals
and four equal pentagons.

optimal cost = 91.01.

pentagon eigenvalue = 10.82

quadrilateral eigenvalue = 11.93.
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n = 9 : 3 equal squares and 6
equal pentagons.

optimal cost = 115.9.

square eigenvalue = 13.64

pentagon eigenvalue = 12.38.

n = 10 : two equal squares and 8
equal pentagons

optimal cost = 142.33.

square eigenvalue = 15.85

pentagon eigenvalue = 13.95.

n = 11 : one hexagon, two equal
quadrilaterals, eight pentagons of
three types

optimal cost = 175.38.

n = 12 : regular tiling generated
by the dodecahedron
optimal cost = 203.84.

pentagon eigenvalue = 16.99

n = 13 : one rectangle, two equal
hexagons, 10 pentagons of three

types
optimal cost = 245.55.

n = 14 : two equal hexagons and
12 equal pentagons

optimal cost = 283.93.

hexagon eigenvalue = 17.47

pentagon eigenvalue = 20.75.
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n = 15 : 3 equal hexagons and 12
pentagons of two types
optimal cost = 327.21.

n = 16 : 4 equal hexagons and 12
equal pentagons
optimal cost = 371.76.

n = 17 : 5 hexagons and 12 pen-
tagons
optimal cost = 422.77.

n = 18 : 6 hexagons and 12 pen-
tagons
optimal cost = 475.08.

n = 19 : 7 hexagons and 12 pen-
tagons
optimal cost = 530.5.
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n = 20 : 8 hexagons and 12 pen-
tagons
optimal cost = 585.98.

n = 21 : 9 hexagons and 12 pen-
tagons
optimal cost = 648.05.

n = 22 : 10 hexagons and 12 pen-
tagons

optimal cost = 711.96.

n = 23 : 11 hexagons and 12 pen-
tagons
optimal cost = 779.1.

n = 24 : 12 hexagons and 12 pen-
tagons
optimal cost = 847.39.
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n = 32 : 20 equal hexagons and
12 equal pentagons
optimal cost = 1504.71.
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Figure 5.12: Minimal spectral partitions on a torus for n € [2,9]. The two dimensional pictures
represent flattenings of the torus

Figure 5.13: Minimal spectral partition on the Banchoff-Chmutov surface of order 4 for n €

{2,4,8}
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