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1. On the sides of a triangleD construct equilateral triangles. The three centers
of the equilateral triangles are either on opposite sides or on the same sides as
the center of D and form an equilateral triangle D1 or an equilateral triangle D2.
In Figure 1 we denote D,D1, D2 by ABC,A1B1C1, A2B2C2, respectively.

Figure 1.

The geometric proof of this fact, which one can get without great effort is not
shown here. For the rest, reference can be made to a work by W. Fischer1 and to
the generalization considered in Section 4. The configuration with the equilateral
triangles occurs under different names in the triangular geometry and is named
after Torricelli2. In connection with the question of the equilateral triangle hav-
ing the largest area we mention E.Fasbender3. The same configuration occurs in
M. Filip4, which helps determine the point minimizing the sum of distances to
corners.

In this note, the above mentioned equilateral triangles D1 and D2 will be in-
vestigated, showing that they are connected to the original triangle by notable
relationships. For the sake of clarity, the results in Section 2 underline this con-
nection and proofs are given in Section 3. In Section 4, the relation (I) is extended
to the general case of other attached triangles, whereby some applications result,
and in Section 5 it is shown that the orthocenters of the triangles D1 and D2

coincide at a point that is the center of gravity of D when D1 and D2 are equi-
lateral.

1Arch. Math. Phys. 40 (1863), p. 460
2Enzyklopadie der Math. Wiss. III AB 10, p. 1218
3Journ. fur Math. 30, p. 230—231 (1846)
4Gazeta mat. Bukarest 13, p. 68—71. compare with Fortschritte der Math Jahrgang 1907, p. 541
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2. We denote the areas and the square perimeters (sum of the side squares) of
the trianglesD,D1, D2 with F, F1, F2 and S, S1, S2. The following relations hold
in the case of equilateral attachment triangles:

F1 − F2 = F (I)

S1 + S2 = S (II)

S + 4
√
3F = 8

√
3F1 (III)

S − 4
√
3F = 8

√
3F2. (IV)

From the relation (IV) follows that

S − 4
√
3F ≥ 0,

and that is the inequality of R Weitzenboeck5. For comparison, some other proofs
and analogous inequalities can be found in T. Kubota6.

Given a, b, c the side lengths of the triangle D, we denote

Q = (a− b)2 + (b− c)2 + (c− a)2

and we have

8
√
3F2 = 2S2 ≥ Q. (V)

Together with (IV) we get the following tightening of Weitzenboeck’s inequality:

S −Q− 4
√
3F ≥ 0,

and denoting

u = a+ b+ c =
√
3S −Q

for the triangle D it follows that

u2 − 2Q− 12
√
3F ≥ 0.

Here, as in (V), the equality holds not only for a, b, c equal, but also when one
side has the length zero.

If no angle in the original triangleD is greater than 2π/3, andm is the existing
minimum of the sum of the distances from a point in the plane from the three
vertices of D then

m =

√
4
√
3F1 =

√
S1. (VI)

Since by (I) we have F1 = F + F2, from (VI) we deduce an estimate of U.T.
Boedewadt7,

m ≥
√
4
√
3F

5Math Zeitschnft 5 p. 137—146 (1919)
6Tohoku Math J 25, p. 122—126 (1925)
7Jahresbencht der D M V. 46 (1936), Losung der Aufgabe Nr. 196.
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from which then again a weaker estimate by M. Schreiber8 follows, namely

m ≥ 6r,

where r denotes the radius of the incircle inscribed in D.
From (IV), (II) and (V) follows

m ≤
√
ab+ bc+ ca.

Let N be the minimum of the sum of squares of the distances of a point the
plane from the three sides of the original triangle D. Then we have

N =
F 2

√
3(F1 + F2)

. (VII)

If the area of the largest equilateral triangle circumscribed to the original triangle
D having the same or opposite orientation9 is denoted by U1 or U2, then the
following relations hold

U1 = 4F1, U2 = 4F2. (VIII)

If the areas of the smallest inscribed equilateral triangle in the original triangle
D having the same or opposite orientation10 are denoted by J1 or J2, then

J1 =
F 2

4F1

, J2 =
F 2

4F2

. (IX)

From (VIII) and (IX) we can infer that

F =
√
U1J1, F =

√
U2J2. (X)

The area of a triangle is equal to the geometric mean of the areas the largest
circumscribed equilateral triangle and the smallest inscribed equilateral triangle.

3. We present now the proofs. If the angles assigned to the sides a, b, c are
denoted by α, β and γ and the sides of the trianglesD1 andD2 are labeled s1 and
s2, we find easily by applying the law of cosines that

s1 =
a2 + b2 − 2ab cos(γ + π

3
)

3

s2 =
a2 + b2 − 2ab cos(γ − π

3
)

3
.

We also have

2ab cos γ = a2 + b2 − c2

8Jahresbencht der D M. V. 45 (1935), Aufgabe Nr. 196.
9The corners of a circumtriangle are assigned to the corners of the original triangle in such a way

that they do not have corresponding corners on a triangle side. The assigned corners can now result in
the same or opposite sense of orientation.

10The original triangle is a circumscribed to this triangle. Then what is mentioned in Footnote 9)
applies
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ab sin γ = 2F

a2 + b2 + c2 = S

and plugging this into the previous expressions we get

s21 =
S + 4

√
3F

6

s22 =
S − 4

√
3F

6
.

In the same way we obtain

S1 =
S + 4

√
3F

2
F1 =

√
3S + 12F

24

S2 =
S − 4

√
3F

2
F2 =

√
3S − 12F

24
,

from which the relations (I) and (II) as well as (III) and (IV) can be deduced.
If f is the area of the triangle with edge lengths

√
a,
√
b,
√
c then

4f2 ≥
√
3F.

Using the well known formula

16F 2 = 2(a2b2 + b2c2 + c2a2)− (a4 + b4 + c4)

we find after a few computations

4(16f4 − 3F 2) = a2(a− b)(a− c) + b2(b− c)(b− a) + c2(c− a)(c− b).

Assuming a > b > c, the first and third terms on the right hand side are posi-
tive, the second is negative, but of smaller magnitude than the first, so the whole
expression is positive. It follows that

16f2 = S −Q

and the above inequality together with (IV) leads to (V).
If the condition of (VI) is fulfilled regarding the angles of the original triangle

D being smaller than 2π/3, then the common point of intersection T of the three
circumcircles of the equilateral triangles placed outwards lies in the interior of
D. It is the so-called Torricelli point, which minimizes the sum of the distances
to the three to the original corners. As radii of the circles mentioned above the
following distances are equal:

TA1 = CA1, TB1 = CB1, etc.

From this it follows that the sidesA1B1, etc. of the triangleD1 and the segments
TC, etc. are orthogonal and also halve them. Consequently the sum

m = TC + TB + TA,
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representing the minimum in question, is equal to twice the sum of the distances
of the point T from the three sides of the triangle D1, and as such is equal to
twice the height of D1. This leads straight to the formula (VI).

The sum of squares of the distances from a point to the sides of triangle D is
minimal for Lemoine’s point L. Its distances from the sides are proportional to
these. We can denote them by λa, λb, λc. The following equation obviously holds

λa2 + λb2 + λc2 = 2F,

so that the formula for the factor λ can be obtained from this

λ =
2F

S
,

and so for the minimum in question is

N = λ2S =
4F 2

S
=

F 2

√
3(F1 + F2)

,

where (III) and (IV) were also taken into account.
Drawing straight lines through the verticesA,B,C, parallel to the sidesB1C1,

C1A1, A1B1, an equilateral triangle arises, having the same orientation with D,
the area of which is 4 : F1, as can readily be seen from the evidence pertain-
ing to (VI); the restricting assumption regarding (VI) is no longer necessary.
This triangle is the largest circumscribed equilateral triangle as already shown
in E. Fasbender3 and can easily be confirmed as follows: The lines TA, TB,
TC are normal to the sides of the triangle under consideration, as was already
established earlier. If the three sides of the equilateral triangle rotated through
the same angle, an equilateral triangle with the same orientation arises, but for
that the sum of the three distances from T to the corresponding sides, becomes
smaller. Since the total sum of these distances for an interior point of an equilat-
eral triangle is equal to the height, the rotated triangle must be smaller.

For oppositely oriented triangles, the result given in (VIII) can be obtained in
an analogous manner.

To prove (IX) pass through the vertices A1B1C1 of D1 straight lines parallel
to BC, CA, AB. In this way one obtains a triangle D∗, that circumscribes D1

and is similar to D. Since the distances of the parallel sides of the triangles D
and D∗ after the original construction of D1 are proportional to the side lengths,
D and D∗ are in perspective and the center of similarity is the common Lemoine
point L.

We further note that the vertices of the triangle D1 are on the three mediatrix
of the original triangle D, so that D1 is the base triangle in D∗ belonging to the
circumcentre of D. As such is it the smallest equilateral equilateral intriangle of
D∗11. If J1 denotes the area of the smallest equilateral equilateral intriangle of
D, then the following proportion applies:√

J1 :
√
F1 = a : a∗,

where a and a∗ are the lengths of corresponding sides in the triangles D and D∗.

11Enzyklopadie der Math. Wiss. III AB 10, p. 1228.
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If λ = 2F
S

is the proportionality factor introduced in the proof of (VII), then
the distances of the triangle sides mentioned above are from common Lemoine
point L λa and λa∗. According to the original design, however

λa∗ = λa+
a

2
√
3
,

therefore we have

a : a∗ = 1 : (1 +
1

2
√
3λ

),

or after inserting the value of λ given above√
J1 :

√
F1 = 4

√
3F : (S + 4

√
3F ),

and using (III) √
J1 :

√
F1 = F : 2F1,

from which

J1 =
F 2

4F1

finishing the proof.
The case of oppositely oriented equilateral intriangles is handled in an analogue

manner.

4. The relation (I) also holds if the nondegenerate attached triangles are only
similar to each other and are positioned in such a way that at each corner of the
original triangle corresponding (and therefore equal) angles arrive. The circum-
circles of these triangles meet, depending on the attachment triangles with the
original triangle on the opposite or on the same side of the common base, in a
point T1 or T2

12 and their circumcenters form triangles D1 or D2, which are sim-
ilar to the constructed triangles, since the angles match accordingly. For example
for the vertexB in Fig. 1 we have ∠B1A1C1 =

1
2
∠CA1B, equal to the peripheral

angle over the chord BC. This shows that for the areas F , F1, F2 of D, D1, D2

the following relation is applicable

F1 − F2 = F.

Since the attachment triangles should not all degenerate and D2 is similar to
them, F2 can only vanish ifD2 is reduced to a point.D2 is then the common center
of the three circles that must therefore coincide with the circumcircle of triangle
D. In this case, the attached triangles that are set inwards must be congruent
and therefore coincide with D, hence D1 must be similar to D. In all other cases,
F2 > 0.

12Enzyklopadie der Math. Wiss. III AB 10, p. 1217.
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If the point T1 is reflected across the sides of D1, one obtains the vertices A,
B, C of D. By examining the corresponding sub-triangles, one sees that the area
J of the polygon AC1BA1CB1 equals 2F1. But on the other hand

J = F + λa2 + µb2 + νc2,

where the numbers λ, µ, ν depend only on the shape of the constructed triangles.
Therefore we have

2F1 = F + λa2 + µb2 + νc2.

Subtraction gives the equation we are looking for.
Special assumptions about the angles of the attachment triangles lead to the

sentences:
Constructing over two sides of a triangle facing outwards or inwards equilat-

eral triangles, the apex of one with the center of the other and the midpoint of
the third side of the triangle form a triangle having angles 30◦, 60◦, 90◦. The
difference in the areas of these triangles is equal to the area of the given triangle

Constructing over two sides of a triangle as base outwards or inwards right-
angled isosceles triangles, their vertices with the middle of the third side of the
triangle form a right-angled isosceles triangle. The difference in the areas of these
triangles is equal to the area of the given triangle.

It follows from this:
If two squares have a corner in common, then their centers form the opposite

corners of a square whose other opposite corners are the midpoints of segments
between corresponding corners of the given squares. The corresponding corners
are adjacent to the common corner, but with opposite orientation.

If F2 is 0 as above, then F1 = F and D1 becomes congruent to D. So if you
reflect the circumcenter of a triangle to the three sides, you get a congruent tri-
angle.

More generally, a point P is called the mirror point of a nondegenerate triangle
D if its mirror images with respect to the triangle sides a result in a triangle
similar to D. These mirror points can be in determined in the following way:

The triangle D1 is similar to D if and only if the top triangles are similar
to D. The point T1 is then the mirror point of D1, and a similar mapping that
transforms D1 into D transforms T1 into a mirror point of D. The same applies
to D2 and T2, except in the case that D2 reduces to one point.

To a certain side of a scalene triangle D one can put on a triangle similar to
D but not coincident with D in 11 ways. This gives you all the mirror points,
since the construction can also be reversed. Taking into account F1 − F2 = F
one finds:

A scalene triangle has 11 mirror points, one of which falls in the circumcenter
and supplies a triangle congruent in the same direction. The others yield 5 eq-
uisimilar and 5 dissimilar triangles; at least 2 of the former and 3 of the latter
are smaller than the given triangle. An isosceles triangle has 5 mirror points, at
least two of these, smaller ones, and at least one13yield a congruent triangle. In
an equilateral triangle, the center of gravity is the only mirror point.

In an analogous way, the points P can be determined, whose mirror images
with respect to the given sides of a triangle, form one triangle with another prede-
termined shape. You get 12, or 6 or 2 such points, the more the resulting triangles

13For b = c and b : a =
√

3±
√
7 one obtains three triangles congruent to D.
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become unequal. At least half of these are isosceles or equilateral triangles have
a smaller area than the given one.

The mutual position of the points P is in connection with the base triangles,
which are similar to the mirror image triangles, were already examined in 14

5. In the general case considered in Section 4 the following applies:
The triangles D1 and D2 have the same orthocenter.
To show this, we may use the following theorem:
If a triangle changes similarly such that one corner stays fixed and a second

corner runs on a straight line, then the third corner also runs on a straight line.
The triangle lies in a Gaussian number plane, its corners are determined by

the complex numbers z1, z2, z3. If z1 = 0 is the fixed corner, then z3 = const. z2.
If z2 changes linearly, the same applies to z3.

Due to the shape and arrangement of the attached triangles to D, the shape
of the triangle CB1A is determined. If the side BC of the triangle D is fixed and
A is moved on a straight line g, then B1 moves on a line. Since the triangle D1

changes similarly and A1 remains fixed, the orthocenter H1 of D1 also remains
on a straight line g1. If g is chosen perpendicular to BC, then g1 is perpendicular
to BC, because when A goes to infinity on g, the small angle between BC and
C1B1 becomes arbitrarily small. If H1 coincides with A1 then H1 remains fixed.

Now let Amove continuously on g from the initial position to the mirror image
A with respect to BC and then by reflection brought back to the initial position.
Then D1 goes over D2 and H1 becomes the orthocenter H2 of D2.

The points H1 and H2 are therefore at the same distance on the same side of
g and also of the other heights of D, so they have to coincide.

In particular, if the vertices of D fall in a straight line, then we haveH1 = H2,
belonging to the same line. This gives the following result:

If three circles go through a point and the three other intersection points lie on
a straight line, then the orthocenter of the triangle made by the circle centers also
lies on this straight line.

The midpoints of the segmentsA1A2,B1B2 andC1C2 bisect the sidesBC,CA
and AB. So if you put the same masses in A, B, C and then distribute them half
from B and C to A1 and A2, etc., then the center of gravity is not changed.
The center of gravity of the triangle D is therefore the midpoint of the segment
between the centroids of D1 and D2.

Because we have H1 = H2 the following result follows:
If the triangles D1 and D2 are equilateral, then their centroids coincide with

the the centroid of D.
This theorem15 also follows directly if one considers the triangles located in

the Gaussian number plane. The corners of D are represented by the complex
numbers z1, z2, z3 and represent D1 or D2 by y1, y2, y3. Then

y1 =
1

2
(z1 + z2)±

i

2
√
3
(z3 − z2), and the similar relations.

It follows that
1

3
(y1 + y2 + y3) =

1

3
(z1 + z2 + z3).

14Enzyklopadie III AB 10, p. 1229.
15Which can be found in J. Neuberg, Bibliographie du triangle et du tétraèdre p 60; Mathésis 37

(1923), p. 452.
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(Received on 22 June 1938.)

Translated into English by Beniamin Bogosel in June 2022. Corrections and
suggestions of improvement are welcome.
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