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OPTIMAL PARTITIONING 2. MINIMAL PERIMETER PARTITIONS ON THE SPHERE

Problem: Find a partition of a domain D Problem: Find partitions of the sphere Numerical approach: We construct a uni-
which optimizes a certain quantity. Usually, into N regions of equal areas, which mini- form triangulation of the sphere, and use the
the number of components of the partition mize the total perimeter. rigidity and stiffness matrices given by the
is fixed, but there are problems where this Interest: Despite of the fact that the prob-  P1 finite elements associated to this triangi-
number is unknown. lem is easy to state, theoretical results are lation in order to compute F.(u;) for every

Examples: The hexagonal bee hive struc- known only for N € {2, 3,4,12}. component of the partition. Then we preform
ture has the least cost in terms of the length Previous works: Cox and Fikkema did a gradient descent algorithm.
of walls. This is a basic example of an opti- numerical computations for N < 32, using Advantages: 1. The starting point is ran-
mal partitioning problem. the software Evolver. dom; no initial assumption is made on the

Our method: We approximate the spheri-  topological structure of the partition.
cal perimeter with the functional 2. The method is really fast. It takes less
than 5 minutes to compute numerically the
0 1 2 2 . .
Fo(u) =c¢ - Vou|” + - /82 u”(1—u)”. optimal partition for N = 32.

Difficulties: It is difficult to represent the
sets of a partition in a general way. Any at-
tempt in parametrizing the boundaries leads
to troubles when dealing with the behavior
of triple points.

Density representation: Instead of
searching to parametrize the boundaries,
we could relax the problem in the following
way: we consider a family of functions with
values in |0, 1] having their sum equal to 1.

.

3. SPECTRAL MINIMAL PARTITIONS ON THE SPHERE

Numerical results for N € {7,10,12, 32}

1. ANISOTROPY

.The sh.ortest. path frgm point A to point Problem: Find partitions of the sphere e Consider the harmonic functions
B is a straight line, but if between A and B into NV regions which minimize the sum of oi(x) =1/|x —y;
there is a steep hill, then it might be shorter | | their Laplace-Beltrami eigenvalues.
to go around. The anisotropic perimeter Interest: Little is known for these optimal e Search for a solution in the form u =
quantifies this aspect: a direction may be partitions for N > 3. For N = 3 Bishop con- a191+...+a,¢,. Note that for harmonic
more costly than another. jectured that the optimal partition consists of functions ¢ we have
The isoperimetric problem says that 3 lens of angle 27/3. 5 .
the disk minimizes the perim(?ter at f.ixed Previous works: FElliott and Ranner A, = 6’¢ -5 qﬁ
area. If mgtead of th? class.1cal perime= 1 | performed numerical computations us- " "
ter we consider an anisotropic perimeter ing finite elements on surfaces for N & : . .
which favorizes horizontal and vertical di- {3,4,5,6,7,8,16, 32} Numerlcal appljoach. We COHSlC.lel‘ () at
rections, then the shape which minimizes Our method: We compute the eigenvalue the vertices of a uniform triangulation of the
this anisotropic perimeter at fixed area is a of w C S? by solving the penalized problem sphere, and (y;) on each normal correspond-
square. ing to (x;). We compute the eigenvalues us-
The anisotropic perimeter can be approx- —A,u+ pu = duon S?, ing the procedure presented above. We im-
imated using the following functional, pose the partition condition that the sum of
where ;1 >> 1 in the complement of w. all density functions is equal to one.
Per,(u) = ¢ / o(Vu)? + L / u2(1 — u)?, We discretize the problem using a method Advantages: The method of fundamental
D € Jp based on fundamental solutions: tolutions offers great computation accuracy.
o | We were able to perform numerical compu-
1nsp1re?d by the Modlca—M(?rtola theorem.. e Choose (z;) a family of pointson S and  tations for all N € {3,4,5, ..., 23,24, 32}. Visit
Using this representation, we can find (y;) a family of centers outside S=. my website (link below) to see all the results.

numerical optimal partitions into equal area
cells for various anisotropies ¢:
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Numerical results (left to right): N = 4: regular tetrahedron partition, N = 12: regular pen-
tagons tesselation, N = 32: density method and refined method. For N = 32 we find the Cjg
fullerene structure (like a soccer ball: 12 regular pentagons and 20 equal hexagons)

MORE DETAILS PLUS OTHER TOPICS

Numerical results: The first three pic-
tures p(x) = |z1| + |2/, in the last picture, a
three directional anisotropy was considered.

http://www.lama.univ—-savoie.fr/~bogosel/




