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1. Description of the Problem

Consider the Dirichlet-Laplace eigenvalue problem:{
−∆u = λu in Ω,

u = 0 on ∂Ω.
0 < λ1(Ω) ≤ λ2(Ω) ≤ · · · ≤ λk(Ω) · · · +∞. (1)

The classical Faber-Krahn inequality states that under a vol-
ume constraint the first eigenvalue is minimized when Ω is a ball.

Pólya and Szegö have conjectured a polygonal version of this
inequality [1, page 158]. Precisely, let denote by Pn the family of
n-gons in R2 and for every n ≥ 3 consider the problem

min
P∈Pn,|P |=π

λ1(P ). (2)

Pólya-Szegö Conjecture (1951). The unique solution to problem
(2) is the regular polygon with n sides and area π.

The conjecture holds true for n = 3 and n = 4. A proof can be
found, for instance, in [3] as straightforward applications of the
Steiner symmetrization principle. However, Steiner symmetriza-
tion techniques do not work for n ≥ 5 since the number of ver-
tices could possibly increase. In [2] a new approach is proposed
which works in the case of triangles, establishing that equilateral
triangles are the only critical points for the first eigenvalue.

It is quite easy to prove the existence of an optimal n-gon (with
angles different from π, see for instance [3, Chapter 3]). How-
ever, it is not even known that this polygon has to be convex!
Meanwhile, many numerical experiments have been performed
for small values of n, suggesting the validity of the conjecture.

Objectives
� Prove that local minimality of the regular polygon can be

reduced to a single certified numerical computation.
� For each n ≥ 5, the complete proof of the conjecture can

formally be reduced to a finite number of numerical com-
putations.

2. First and Second order shape derivatives

The shape derivatives of a simple eigenvalue of (1) are well
known when Ω is smooth. It is well established that a simple
eigenvalue is shape differentiable even when Ω is not smooth, but
the boundary integral formula λ′(Ω)(V ) = −

∫
∂Ω(∂nu)2V · n is

only valid if the corresponding eigenfunction u belongs toH2(Ω).
This is true when Ω is convex, but it is not clear how to find a sim-
ilar formula when Ω is not smooth.

In order to circumvent such problems, inspired by [4], we com-
pute the distributed volumic formulas for the shape derivatives.
Writing the shape derivatives as volume integrals only requires
Lipschitz regularity and therefore these formulas are valid in the
case of polygons.

First, let us recall the notion of material derivative. For θ ∈
W 1,∞ denote u̇(θ) the Frechet derivative of the solution of the
eigenvalue problem on (Id+θ)(Ω) transported back to Ω. It is
classical that u̇(θ) ∈ H1

0(Ω) verifies:∫
Ω

∇u̇(θ) · ∇v − λ(Ω)

∫
ω

u̇(θ)v =−
∫

Ω

(div θ Id−Dθ −DθT )∇u · ∇v

+ λ′(Ω)(θ)

∫
Ω

uv + λ(Ω)

∫
Ω

uv div θ.

with the normalization condition
∫

Ω 2uu̇(θ) + u2 div θ dx = 0.
Recall the following tensor calculus aspects:

� a⊗ b is the second order tensor of two vectors (a⊗ b)ij = aibj
� a� b = 1

2(a⊗ b + b⊗ a) is the symmetric outer product.
� a · b is the usual scalar product
� S : T =

∑n
i,j=1 SijTij is the matrix dot product.

� (a⊗ b)c = (c · b)a and S : (a⊗ b) = a · Sb.
Let Ω ⊂ Rd be a bounded Lipschitz domain and θ, ξ ∈

W 1,∞(Rd,Rd). Let λ be a simple eigenvalue of the Dirichlet
Laplacian and u an associated L2-normalized eigenfunction.

Theorem: First shape derivative
The distributed shape derivative of λ is given by

λ′(Ω)(θ) =

∫
Ω
Sλ1 : Dθ dx

with Sλ1 = (|∇u|2 − λ(Ω)u2) Id−2∇u ⊗∇u. If, in addition,
u ∈ H2(Ω), the corresponding boundary expression is

λ′(Ω)(θ) = −
∫
∂Ω
|∇u|2θ · n dσ.

Theorem: Second shape derivative
The second order distributed Fréchet derivative is given by
λ′′(Ω)(θ, ξ) =

∫
ΩK

λ(θ, ξ) with

Kλ(θ, ξ) =− 2∇u̇(θ) · ∇u̇(ξ) + 2λ(Ω)u̇(θ)u̇(ξ)

+ Sλ1 : (Dθ div ξ + Dξ div θ)

+
(
−|∇u|2 + λu2

)
(div ξ div θ + DθT : Dξ)

+ 2(DθDξ + DξDθ + DξDθT )∇u · ∇u
−
[
λ′(Ω)(θ) div ξ + λ′(Ω)(ξ) div θ

]
u2.

where u̇(θ) and u̇(ξ) are the material derivatives in directions
θ, ξ, respectively.

The previous result is valid for all Lipschitz domains Ω and
Lipschitz vector fields ξ, η. Denote the vertices of the polygon by
ai ∈ R2, i = 0, ..., n − 1. For each vertex consider the vector
perturbation θi ∈ R2, i = 0, ..., n − 1. Consider a triangulation
T of Ω such that the edges of the polygon are complete edges of
some triangles in this triangulation (like in [4]). Define the glob-
ally Lipschitz functions ϕi for 0 ≤ i ≤ n − 1 that are piecewise
affine on each triangle of T . Several choices are possible as in the
figure below. Then, we build a global perturbation of R2 given by
θ =

∑n−1
i=0 θiϕi ∈ W

1,∞(R2).
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With this in mind we quickly find formulas for the gradient of λ
with respect to the vertices.

Theorem: Gradient
The gradient of a simple Dirichlet-Laplace eigenvalue when Ω
is a polygon with coordinates x is given by

∇λ(x) =

(∫
Ω
Sλ1∇ϕi

)
i=0,...,n−1

.

If u ∈ H2(Ω) then ∇λ(x) =
(
−
∫
∂Ω |∇u|

2ϕin
)
i=0,...,n−1

,

where n is the outer unit normal vector.

Before writing the Hessian matrix we decompose the mate-
rial derivative equation. Following the notation in [4], we intro-
duce the functions Ui ∈ H1

0(Ω,R2), i = 0, ..., n − 1 such that
u̇(θ) =

∑n−1
i=0 θi · Ui. We obtain that ∀v ∈ H1

0(Ω)∫
Ω

(DUi∇v − λ(Ω)Uiv) dx =

∫
Ω

−(∇ϕi ⊗∇u)∇v + 2(∇u�∇v)∇ϕi dx

+

∫
Ω

Sλ1∇ϕi
∫

Ω

uv dx + λ(Ω)

∫
Ω

uv∇ϕi dx. (3)

with normalization
∫

Ω 2uUi + u2∇ϕi dx = 0.
Plugging these into the second distributed shape derivative for-

mula gives the expression of the Hessian matrix for a simple
eigenvalue λ. We do not write the formula here, since it is huge.
However, when Ω is a regular polygon and the triangulation is
symmetric we obtain a much simplified formula.

Theorem: Hessian for regular polygon
In the case where Ω is a regular n-gon and the triangulation
T defining ϕi is symmetric the Hessian matrix of λ(Ω)|Ω| =
A(x)λ(x) in terms of the coordinates of the polygon has the
2× 2 blocks Mλ

ij, 0 ≤ i, j ≤ n− 1 given by

Mλ
ij = |Ω|

∫
Ω

(−2DUiDU
T
j + 2λ(Ω)UiU

T
j )

− λ(Ω)

∫
Ω

[∇ϕi ⊗∇ϕj −∇ϕj ⊗∇ϕi]

+ 2|Ω|
∫

Ω

(∇ϕi · ∇ϕj)(∇u⊗∇u).

One may note that the normalization condition for Ui does not
influence the final formula so we might just pick the simpler or-
thogonality condition

∫
ΩUiu = 0.

In the following ∗ denotes quantities associated to the regular
polygon. We prove that the Hessian matrix varies continuously in
a quantitative way with respect to perturbations of the vertices.

Theorem: Geometric stability of the Hessian
There exist C, q > 0 such that for every polygon P ∈ Pn
satsifying |aia∗i | ≤ ε ≤ ε0, i = 1, . . . , n we have

‖Mλ
ij − (Mλ

ij)
∗‖∞ ≤ Cεq.

Therefore, proving that the Hessian matrix for the regular poly-
gon has non-negative eigenvalues is enough to conclude that reg-
ular polygons are local minima.

3. Computing the eigenvalues of the Hessian

The Hessian matrix is explicit in terms of u and Ui, but in
this form it does not give information about its eigenvalues. It is
possible to change the basis so that the Hessian becomes block
circulant: Hλ = PTMλP where P = (Pij)1≤i,j≤n is a 2 × 2

block matrix with Pjj =

(
cos(j − 1)θ − sin(j − 1)θ
sin(j − 1)θ cos(j − 1)θ

)
. In this

case it is classical that the eigenvalues and eigenvectors of Hλ
can be obtained by looking at some particular 2× 2 matrices.

Denote with M0,M1, ...,Mn−1 the blocks of the first line in
Mλ and θ = 2π/n. Then for ρk = exp(ikθ) a root of unity of
order n we have

Bρk = M0 + M1(ρkRθ) + ... + Mn−1(ρkRθ)
n−1,

where Rτ =

(
cos τ − sin τ
sin τ cos τ

)
. The spectrum of Hλ is the union

of the spectra of the matrices Bρk, k = 0, ..., n − 1. Denote

a(u, v) =
∫

Ω(∇u · ∇v − λ(Ω)uv) and Pn the regular polygon
with radius 1. Then we obtain the following:

Theorem: Eigenvalues of the Hessian

For 0 ≤ k ≤ n− 1 we have Bρk =

(
αk iγk
−iγk βk

)
with

αk =
2n(1− cos(kθ))

sin θ

∫
T0

(∂xu)2 − 2|Pn|a(U 1
0 ,

n−1∑
j=0

cos(jkθ)(cos(jθ)U 1
j + sin(jθ)U 2

j ))

βk =
2n(1− cos(kθ))

sin θ

∫
T0

(∂yu)2 − 2|Pn|a(U 2
0 ,

n−1∑
j=0

cos(jkθ)(− sin(jθ)U 1
j + cos(jθ)U 2

j ))

γk = −2|Pn|a(U 1
0 ,

n−1∑
j=0

sin(jkθ)(− sin(jθ)U 1
j + cos(jθ)U 2

j ))

= 2|Pn|a(U 2
0 ,

n−1∑
j=0

sin(jkθ)(cos(jθ)U 1
j + sin(jθ)U 2

j ))

and the eigenvalues of Bρk are given by

µ2k = 0.5(αk + βk −
√

(αk − βk)2 + 4γ2
k), µ2k+1 = 0.5(αk + βk +

√
(αk − βk)2 + 4γ2

k).

Some remarks:
� on a symmetric mesh with the symmetric choice of ϕj, the

eigenvalues for the Hessian matrix of λ(x)A(x) can be explic-
itly expressed in terms of u1, U

1
0 , U

2
0 .

� when k = 0 we have Bρk = 0
� when k = 1 we have α1 = β1 = γ1 (something similar holds

for k = n− 1)
� we explicitly show that vectors corresponding to translations,

rotations and scalings are eigenvectors of the Hessian matrix
Mλ for the zero eigenvalue.

� it is enough to prove that all other 2n−4 eigenvalues are strictly
positive in order to conclude local minimality.

4. Numerical Results

Although formulas are explicit, we were not able to prove theo-
retically the positivity of the eigenvalues of Mλ. It is nonetheless
possible to compute these eigenvalues numerically and to asses
their positivity. We use FreeFEM with P1 finite elements.
� Explicit error bounds exist for approximations of λ1 and u1 in

therms of the mesh size h.
� We provide explicit a priori error bounds for solutions of (3).

This is extremely delicate since the right hand side is not in L2,
which means that Ui is not in H2(Ω).

� We obtain explicit error bounds for the eigenvalues of Mλ of
order O(h1−2γ) for every γ ∈ (0, 1/2).

� Numerical computations (with up to 4 × 108 d.o.f) allow us
to conclude local minimality of the regular polygon for n ∈
{5, 6, 7, 8}. Simulations with up to 200 processors are made on
the Cholesky server at IP Paris.

� We do not take into account roundoff errors that come from
working in floating point precision. However, it is generally
agreed that these errors are smaller than the discretization
errors.

Symmetric mesh U 1
0 U 2

0

5. Towards a complete proof of the conjecture

Theorem: bound on diameter
Let n ≥ 3. There exists a value Dn > 0 such that if P ∈ Pn,
|P | = π and diam(P ) > Dn then P is not optimal for (2).

� The local minimality and the stability of the Hessian imply that
no other local minimum exists close enough to the regular poly-
gon.

� The region between the regular polygon and the ”large diam-
eter” polygons can be explored using a finite number of vali-
dated numerical simulations.

In this way, the proof of the conjecture is reduced to a finite num-
ber of validated numerical computations.
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