MAA251 — Numerical Optimization — Session 2
Ecole Polytechnique

Practical Session #2

Instructions: The codes should be written in Python. The use of notebooks is encouraged
and you may start from the given examples.

Exercise 1: Curve fitting methods

1. Play with the code I1lustration Newton.ipynb available on Moodle and understand
all its components. In particular:

a) Observe how the algorithm behaves when you change the initialization.

b) Add new functions of your choice in order to test the necessity of all conditions involved
in the quadratic convergence result.

c) Starting from this code, implement the False Position or Secant method. Verify
the order of convergence and the dependence on the initialization.

2. (Challenge) We saw that basic line-search methods like the bisection method are very
robust: they will always approximate the minimum of a unimodal function, but their rate of
convergence is linear. Newton’s method, on the other hand converges quadratically provided
we have access to second derivatives, the minimizer is non-degenerate and we start close enough
to the optimum.

Modify the given code implementing Newton’s method so that it will converge regardless of
the starting point, following the indications below:

e at each iteration consider two candidates for the new position: the one given by the
bisection method (the midpoint of the current search interval) and the one given by
Newton’s method.

e decide what is the new interval bracketing the minimum and pass to the next iteration

For a valid solution you should check the following aspects:

a) Your algorithm should converge even in cases where Newton’s method alone does not
work.

b) Observe the convergence rate: you should notice that in the beginning the convergence
is linear due to the eventual use of bisection steps, while towards the end the rate of
convergence becomes the same as for the Newton method.

Exercise 2: Gradient descent with line-search in 1D
1. Write a code implementing the gradient descent with fixed step in 1D. Apply it for
various test functions and observe the convergence rate. Observe also the behavior of the
algorithm with respect to the initial condition and the size of the step.
Indication: If you are not sure how to start, just take the Goldstein-Price code and replace
the line-search part by your choice of the fixed descent step t.
2. Implement the gradient descent with line-search based on Armijo’s rule. You may start
from the Notebook related to the Goldstein-Price line-search given on Moodle.
3. (Challenge) Implement the Wolfe line-search starting from the code given for the
Goldstein-Price line-search.
4. Practical questions:
e Test the behavior of the algorithm for various functions and for various choices of the
parameters my, ms € (0, 1).
e Check that for the function f(x) = 22 choosing m; > 0.5 greatly increases the number of
iterations because the optimal step for a quadratic function cannot be chosen.



Exercise 3: Find the closest point to a curve

Suppose v : [0,27] — R? is a closed curve in the plane and A = (a1, as) is a given point
(you may denote () = (z(0),y(0))). The objective of this exercise is to write an algorithm
which allows you to find the minimal distance AMjy, where My is the point corresponding to
().

1. (Optimality condition) Suppose that A is not a point on . Prove that if 7 is of class C*
and M, is the point which realizes the minimal distance AM, then AM, is a normal vector to
the curve 7.

2. Note the minimization of AM, or AMZ gives the same minimizer. If y(0) = (z(6),y(0))
and A has coordinates (a,b) give a formula for AMZ and for the derivative 4 (AMZ).

3. Implement a numerical algorithm which can search for the point realizing the minimal
distance using one of the methods in the previous two exercises. Verify numerically that the
minimizer verifies the optimality conditions.

Note that you can use an algorithm implemented in previous exercises and just
change the objective function.

You may try the following cases:

e the ellipse given by the parametrization v(0) = (2 cos @, sin @) for various points A in the

plane.

e a curve given in radial coordinates by the following parametrization

v(0) = ((1 4+ 0.3 cos(36)) cos b, (1 + 0.3 cos(30)) sin ).

and various points A in the plane.
Answers to theoretical questions:
1. The minimal distance is minimized at the same place where its square is minimized. The
function to be minimized is, thus

0 AM; = (2(0) — a)® + (y(0) — a)*.
At the minimum the derivative of this function is zero, which means that
2(2(6) — @) (6) + 2(y(0) — a2)y'(6) = 0.
This can also be interpreted as the fact that the following scalar product is zero:
ANy - (2'(0),5/(0)) = 0.

Since (2'(0),y/(0)) is a tangent vector to 7 at 6 it follows that AMj is a normal vector to the
curve 7. 2. We already saw that the derivative of AMZ is

2(x(0) — a1)a'(0) + 2(y(0) — a2)y'(0).

3. Use one of the gradient descent codes implemented in the previous exercise.



