@ Quasi-Newton Methods
@ Conjugate Gradient Method

By B R i T

@ Quasi-Newton Methods
@ Conjugate Gradient Method

By B T

Context and Goals

o gradient descent algorithms have linear convergent rate: cost O(N)
@ too slow for ill conditioned problems
@ Newton's method: quadratic convergence

e initialize close to solution
o cost O(N3) per iteration (worst case)

Find an algorithm converging faster than GD without increasing the
computational task!

Beniamin BOGOSEL Computational Maths 2 3/41

A bit of history

[Nocedal, Wright, Numerical Optimization 06], Chapters 6-7

* in the 50s W.C. Davidon used "coodrdinate descent” method (GD on
coordinates)

* the computer would always crash before the simulation was finished

* Davidon decided to find a way of accelerating the optimization process: he
found one of the most creative ideas in nonlinear optimization

* Fletcher and Powell demonstrated that this algorithm was faster and more
reliable than existing methods at the time

* paradoxically, Davidon's paper was not accepted for publication. It remained a
technical report for more than thirty years until it appeared in SIAM Journal on
Optimization in 1991!

Beniamin BOGOSEL Computational Maths 2 4/41

Motivation

Recall the Variable Metric Method and replace A,-_1 by S;:

Algorithm 1 (Generic Variable Metric method)

Choose the starting point xp
Iteration :

e compute f(x;), VFf(x;) and eventually D*f(x;)
@ choose a symmetric positive-definite matrix S;: compute the new direction
d,' — —Sin(X,')
@ perform a line-search from x; in the direction d; giving a new iterate
Xiy1 = Xj + tidi = x; — t,-S,-Vf(x,-).

* in the modified Newton method S; is computed as follows: find the Hessian
D?f(x;), modify it to make it "well positive definite”, then invert it or solve
5,‘d,' = Vf(X,‘)

* in quasi-Newton method we try to skip all of this and compute S; recursively
with one objective: S; — (D?*f(x;))™* — 0

x in fact, it is enough to have (S; — (D?f(x;))~1)(xi+1 — x;) — 0.

Beniamin BOGOSEL Computational Maths 2 5/41

Variable Metric method: quadratic case

* minimize f(x) = Sx7 Ax — b"x with Steepest Descent line-search
x denote E(x;) = f(x;) — min f: error in terms of objective function
* Xit1 = X; — tope SiVF(x;) is equivalent to a change of coordinates ¢ = 5,-1/2
* the step i in the VM method is just a Steepest-Descent step for the matrix

5’_1/2AS’_1/2. Therefore we have the estimate

B < (o5 1)2 E(x)

X

Q+1

where @ is the condition number of 5,-1/2AS,.1/2

« if S is close to D2f(x;)~! = A~L then S;/2AS!/? is close to the identity
matrix so Q is close to 1.

* Finally, if Q converges to 1, we eventually get that E(x;11)/E(x;) — 0, i.e.
super-linear convergence

Beniamin BOGOSEL Computational Maths 2

6/41

Basic rules for updating S;

* Taylor expansion formula tells us that
Vf(xii1) — VF(x) = D*f(x;)(xis1 — ;)
* Therefore, it is reasonable to request that
Si+1(VF(xiy1) — VI(x)) = Xip1 — %
called the secant relation (make parallel with the 1D case)

* With the notations g; = Vf(x;), pi = Xi+1 — Xi, i = gi+1 — & we have
Sit19i = pi,

called the quasi-Newton equation

* this leaves us with infinitely many possibilities... another goal is that
Siv1— S;is as simple as possible!

* initialization? one may simply choose Sy = Id, multiple of identity, diagonal
matrix, etc.

Beniamin BOGOSEL Computational Maths 2

7/41

Small rank updates

* idea: find S;41 = S; + B; where B; has low rank
* Rank 1 updates: B; = a,-v,-v,-T - one may find B; such that the quasi-Newton
relation holds

5,'_;,_1 =5+ oz,-z,-z,T
* the quasi-Newton relation p; = S;11q; implies

z = wi(p;i — 5i)
* in the end we get

1
(= SayTq P Sallei— Siqi]”

* not possible to guarantee that S;.1 is positive definite if S; is

Sit1 =S5 +

Beniamin BOGOSEL Computational Maths 2 8/41

Rank 2 updates: DFP

* Davidon-Fletcher-Powell: historically, the first "good” quasi-Newton method
* use rank 2 updates: guarantee the positive-definiteness of S;1 under
reasonable hypotheses

Proposition 1

Let S be a positive definite symmetric matrix and p and q be two vectors such
that pTq > 0. Then the matrix

1
S'=S+—<—pp" -
p’q q"Sq
is symmetric positive definite and satisfies S'q = p.

* Proof: just compute S’q and xS’x and do a bit of linear algebra.

x How to get this idea? Just choose S;y; = S; + auu” + BuwvT (rank 2 update)
* then choose u = p; and v = S;q;

Beniamin BOGOSEL Computational Maths 2 9/41

DFP method

* DFP update:

1 1
Sit1 = Si+ —— -pip] — 7q75.q_5/q,'q,-T5i

1 1

* the condition q,-Tp,- > 0 is equivalent to
(Vf(X,'+1) - Vf(X,)) : (Xi+1 - Xi) >0,

which is true if f is strictly convex: reasonable assumption near a minimum...

* when using Wolfe line-search we can guarantee that q,-Tp,- > 0.
* for the quadratic case DFP becomes the conjugate gradient method
* it turns out DFP is not the best method out there...

@ it does not "self-correct” when S; gets far from the inverse Hessian

Beniamin BOGOSEL Computational Maths 2

10/41

Duality: quasi-Newton relation

* any quasi-Newton update can generate another one:
e Siy1 = Si+ Bi(Si, pi, qi) such that S;,1q; = p;
@ then g; = 5,.111p,- where S,-jrll = (Si+ B(Si, pi,qi) 7t
@ switching the roles of p; and g; we get a different update, called the dual
update
* how to get the dual of DFP: replace S; with 5,-*1 and interchange p; and g;

1 1
sl—-gs14 gl — —— g7 lpplsl
i+1 i ,Tp, qiq; P,-TS,-_IP/' i PiPj 9;

* a direct computation or Sherman-Morrison's formula gives:
piq; Si + Siqip] (1 N q,-TS/q/) pip]

p/ ai plai) pai

Sitv1=S5i —

Beniamin BOGOSEL Computational Maths 2 11/41

The BFGS update

* BFGS: Broyden, Fletcher, Goldfarb, Shanno

S5 piq; Si ;_L Siqip] N <1 N q,-TTS,-q;> p,-Tp,-T
p; qi P ai /J P qi

* widely used in most of the codes implemented today
* since BFGS is the dual of DFP, and a matrix is positive-definite if and only if
its inverse is positive-definite, the BFGS update maintains positive-definiteness if
p; gi > 0 (same hypothesis as for DFP to work...)
[Nocedal, Wright, Numerical Optimization 06], Chapters 6-7
* Local super-linear convergence: If an algorithm using BFGS with Wolfe's
line-search converges to x* where f is strongly convex with Lipschitz Hessian
then the convergence rate is super-linear
* BFGS has effective self-correcting properties

Beniamin BOGOSEL Computational Maths 2 12/41

BFGS: alternative definition

Sit1 solves
min [|S — S|
subject to S = ST, Sq; = p;.

* Al = [WH2AWY2 ||, ||ClIE = 30 3.
* The weight matrix W satisfies Wp; = g;
* any other choice of norm would give another quasi-Newton method.

Despite intense research no method better than BFGS was found!)

Beniamin BOGOSEL Computational Maths 2 13/41

Extreme cases

Dimension 1:
* the quasi-Newton relation is just S;y1 = pi and we get
i
Xj — Xi—1
f/(X,') — fI(X,',l)
which is the false position (or secant) method

f'(x;)

Xi+1 = Xi —

Large dimension:

* same disadvantage as Newton methods - a n X n matrix may be too large to
store in memory
* it is possible to store only the update vectors and compute matrix - vector
products by doing only scalar - products

(uvT)x = u(vTx) = (v x)u
* limited memory-BFGS (LBFGS): use only the last m vectors p;, g; in order to

compute S;11 - good behavior in practice despite being an approximation of
BFGS

Beniamin BOGOSEL Computational Maths 2

14/41

Computational cost per iteration

* after the function value, gradient and Hessian are computed (this is
non-negligible in some applications)

e GD: O(N)

o Newton: O(N3) in worst case (solving a linear system) - it all depends on
the structure of the Hessian

e BFGS, DFT: O(N?) - matrix vector products

e LBFGS: O(mN) where m is the fixed number of gradients to remember

Beniamin BOGOSEL Computational Maths 2 15/41

Practical example: the N-dimensional Rosenbrock

N—1
f(x) = Z[lOO(XiJrl —x?)? 4 (1 —x)?]
i=1
with global minimum at x* = (1,1, ...,1).

* ill conditioning: the optimization process wants to achieve x;;1 &~ x? rather
than minimizing (x; — 1)? and go towards the global minimum!

Comparison: Rosenbrock N=20

38

1012

10-16

10-20

10-28

@ 20 00nin aunams o w0 6l meo

XXX X

°

1000 2000 3000 4000 5000

Beniamin BOGOSEL Computational Maths 2 16/41

Practical example: the N-dimensional Rosenbrock

N—1
fx) = Z[lOO(XiJrl —x2)? + (1 - x)?
i=1
with global minimum at x* = (1,1, ...,1).

* ill conditioning: the optimization process wants to achieve x;;1 &~ x? rather
than minimizing (x; — 1)? and go towards the global minimum!

Comparison: Rosenbrock N=20

104
10° m
107
X "\.‘ %
102 * - %
) %
107 x K %
£ %
10716 B
1020 "\
x Newton 3
1024 x DFP x Y \i X
« BFGS [%
10-28 :
< LBFGS 3. %
0 50 100 150 200 250 300

Beniamin BOGOSEL Computational Maths 2 16/41

Practical example: the N-dimensional Rosenbrock

N-1
f(x) = Z[lOO(XiJrl —x7) +(1-x)7]

with global minimum at x* = (1,1, ...,1).
* ill conditioning: the optimization process wants to achieve x;;1 &~ x? rather
than minimizing (x; — 1)? and go towards the global minimum!

X]
1077
X
10-12
1017 x
1022
X

1077 !
x

0 1000 2000 3000 4000 5000

Comparison: Rosenbrock N=100

——

Beniamin BOGOSEL Computational Maths 2 16/41

Practical example: the N-dimensional Rosenbrock

N—-1
f(x) = Z[lOO(Xm = x7)? + (1= xi)’]

with global minimum at x* = (1,1, ...,1).
* ill conditioning: the optimization process wants to achieve x;;1 &~ x? rather

than minimizing (x; — 1)? and go towards the global minimum!

Comparison: Rosenbrock N=100

10-22 x Newton H
x DFP i \
10- « BFGS H %
« LBFGS x : X
0 100 200 300 400 500 600

Computational Maths 2 16/41

Beniamin BOGOSEL

Conclusion: quasi-Newton methods

@ equivalent of the Secant method in higher dimensions
@ achieve super-linear convergence without using the Hessian

o for extremely large n BFGS may be costly from a memory point of view: if
possible use L-BFGS instead

@ BFGS and LBFGS are often available in standard optimization libraries:
Example scipy.optimize.minimize

Beniamin BOGOSEL Computational Maths 2 17/41

@ Quasi-Newton Methods
@ Conjugate Gradient Method

By B T ¢

Motivation

* if A is symmetric, positive-definite then solving the system Ax = b is
equivalent to minimizing the quadratic function

1
f:X'—)EXTAX—b’X

* the gradient of this quadratic function is Vf(x) = Ax — b

x direct method: process details about the matrix A (factorization) and then
solve the system: complexity is between O(n?) and O(n®).

* iterative algorithms produce an approximation of the solution, which might be
good enough for very large n after a few iterations

* for example: the gradient algorithm with Steepest-Descent will quickly
converge to the optimum, but we can do better

Number of iterations. = 10

I A

I

-0.5

1T

-1.0
10 -05 0.0 05 1.0 15 20

Beniamin BOGOSEL Computational Maths 2 19/41

Conjugate directions

* A given symmetric positive-definite matrix A defines a scalar product
(x,y) =xT Ay

* Two (non-zero) directions d; and d, are called conjugate with respect to A if
they are orthogonal w.r.t. the above scalar product:

di and d5 are conjugate <= d1Ad> =0
* we may also call two directions which are conjugate w.r.t. A as being
A-orthogonal
* why is this useful? suppose di, ..., dx are mutually A-orthogonal and we have
the decomposition

k
d=Y ad;
j=1

Then, using the orthogonality property, we can find the coefficients «a; explicitly:
B d" Ad _(d,d)

- dTAd; (di,d;)

* Consequence: If di, ..., dx are mutually orthogonal then they are linearly
independent! (for a proof, use the above formula to see that d = 0 = «; = 0)

dTAd = a;d” Ad; = «;

Beniamin BOGOSEL Computational Maths 2 20/41

Why is this concept useful?

Proposition 2 (Solve a system using Conjugate Directions)

Let A be a symmetric positive-definite matrix and di, ..., d, a (complete) system
of n non-zero A-orthogonal vectors. Then the solution x* to the system Ax = b

is given by the formula
. = b'd
=D iTAG dTAG

j=1 J

* An equivalent formulation:

n n 1
A7lp = —dd" | b
Z dTAd d = ; dTAd; 7

which gives us the explicit inverse of A

n
1
ATl = did;
Z dTAd;
j=1 J
* All this is good when we know a complete family of A-orthogonal directions!

Beniamin BOGOSEL Computational Maths 2 21/41

Conjugate Directions: quadratic case

Algorithm 2 (Conjugate Directions method)

Let A be a n X n symmetric positive-definite matrix, b a vector and
f(x) = 2xTAx — bT x the quad. form associated to A and b.

Let dy, ..,d,_1 be a system of A-orthogonal vectors and xy a starting point.
Then, with the notation g; = Vf(x;) = Ax; — b, the iterative process
diTgi =1
dT Ad;’ B
converges to the unique minimizer x* of f in n steps.

Xit1 = Xi + ¥idi, Vi = — n

* The step +; is optimal in the direction d;: define q(t) = f(x + td) then
q(t)=Vf(x+td)-d=d-VFf(x)+td" Ad

* Proof: just look at x, and see that it gives exactly the formula for x*.

* Important idea: dyA(xx — xo) = 0 for any k >0

* Again: all this is good when we know a complete family of A-orthogonal

directions!

Beniamin BoGOSEL Computational Maths 2 22/41

Properties of the Conjugate Directions Method

x define for each / > 1 the linear space B;_; = Span{dy, ..., di—1}

* if we define the affine subspaces M; = xg + B;_1 then
{x}=MycMyC..CM,=R"

* the Conjugate Directions method generate the minimizers of f in each of the

affine spaces M;

Proposition 3

For every 1 < | < n the vector x; is the minimizer of f on the affine subspace
M; = xo + B;_1. In particular, as shown previously, x; minimizes f on the line
{X,',l +tdi_1:te R}

Proof: x Compute the gradient g; = Vf(x;) = Ax; — b and note that g; is
orthogonal to dp, ..., d;_1.

x Then obtain that (Vf(x;),x — x;) = 0 for x € xo + Bj_1.

* f is strictly convex so Euler's inequality tells us that x; is indeed the minimizer
of fin Xo + B,'_l.

Beniamin BOGOSEL Computational Maths 2 23/41

Build a basis of conjugated directions

* recall the Gram-Schmidt procedure
* define the A-projection of v on u:

proju(v) = <U, U> - UTAUU

Algorithm 3 (Gram-Schmidt)

0. Take a basis (v;) of R": e.g. the canonical basis.
1. u =wv

2. up = vy — proj, (v2)

3. u3 = v3 — proj,, (vs) — proj,, (v3)

n. up = v, — proj, (vp) — ... — proj, (va)

In the end normalize the vectors: d; = ———u;
\/ uiTAu,-

* in this form the process is not numerically stable: due to rounding errors the

vectors u, may not be exactly orthogonal...

Beniamin BOGOSEL Computational Maths 2

24/41

Conjugate Gradient Method

* we can compute the family of A-orthogonal directions during the optimization
algorithm

Algorithm 4 (Conjugate Gradient)

Choose arbitrary initialization point xo and set do = —go = —Vf(x) = b — Axp
Loopon: i=0,....,.n—1

e if Vf(x;) = 0 then stop.

d’ g
® Xiy1 = X; + 7id; with v; = 7d7l'Agd-
o Compute new gradient giy1 = Vf(xi+1) = Ax;11 — b
. . . g’.—’_;_lAd,-
o Compute new direction d;11 = —gj11 + B;d; with 5; = 1T Ad

* as before ; is the optimal step in the direction d;
* the parameter f3; is chosen such that d/,;Ad; = 0

* the new direction d;1 is given by the projection of the anti-gradient direction
—gi+1 on the previous direction

Beniamin BOGOSEL Computational Maths 2 25/41

Main properties of CG

Proposition 4 (CG is a Conjugate Direction method)

If the algorithm does not terminate at step i then:
o the gradients gy, ..., gi—1 at xp, ..., Xj—1 are non-zero and
Span{go, &1, .-, &i—1} = Span{go, Ago, .-, A" 'go}
@ The directions dy, ...,d;_1 are non-zero and
Span{dy, di,...,di_1} = Span{go, Ago, ..., A" 'go}
@ The directions dy, ..., di_1 are A orthogonal
o Alternative formulas for y; and ;:
_&&
dT Ad;

-
_ &i118i+1

Vi and ;i = —=
8 8i

* A sequence of the type gy, Ago, A%go, ... is called a Krylov sequence

Beniamin BOGOSEL Computational Maths 2

26/41

Consequences and convergence

* X; is the minimizer of f in the affine subspace

xo + Span{do, ..., di_1} = xo + Span{go, Ago, ..., A" 'go}
* X; is the minimizer of f in the affine subspace generated by x; and polynomials
of A of degree at most i — 1 times gy (denote this polynomial space by P;_1)

x0 + {p(A)go : Z piz

* error in terms of the objective function: E(x) = f(x) —minf = 3(x—x")TA(x — x*)

Proposition 5 (Error for CG)

E(x) = min %(xo — x*)A(Id —Ap(A))2(x0 — x*)

PEPi—1

* Proof: write x; = xo + p(A)go and recall that Vf(x;) = A(x; — x*)

Beniamin BOGOSEL Computational Maths 2 27/41

Error in terms of the spectrum of A

Let X be the spectrum of A. Then

E(x)<E A
(xi) < E(xo) rgg*ggp()

where P} is the set of polynomials p of degree at most i such that p(0) = 1.

Another estimate is

1
) < — w2
Elps) = Zbe =20l ol e)

* Proof: use an orthonormal basis made of eigenvectors of A
* denote by @ the condition number of A. Then there exists a polynomial
q € P; such that

(M2 <4
Té’%q()* <

()

Beniamin BOGOSEL Computational Maths 2

28/41

Error estimate in terms of the condition number

* for the Conjugate Gradient algorithm we have

2N
E(xw) < 4 (jgj) E(o),

where @ is the condition number of A.
* compare this with the error estimate for the Steepest-Descent

E(aw) < <g+1)m E(x)

* in order to reduce the initial error by a factor of ¢ one needs to do O(Q) steps

with Steepest Descent compared to O(y/Q) steps with CG. This is a big

difference!

* CG is supposed to converge in n iterations, however rounding errors may

prevent the convergence!

* moreover, if A has k < n distinct eigenvalues then CG converges in k

iterations!

* Often, for n large, the process is stopped before reaching n iterations, when

the error estimate is small enough

Beniamin BOGOSEL Computational Maths 2

29/41

Example: Hilbert matrices

A= (1/(/ +j— 1))1§i,j§ny ill conditioned

* below you can see a comparison between GD with optimal step and CG. The
residual |Ax — b| is plotted at every iteration

* the residual decreases slowly for GD: the algorithm tends to go multiple times
in the same direction! CG optimizes once and for all in the current direction.

x small residual does not mean that x is close to x*: Ax — b = A(x — x*)!

GD vs CG: Hilbert matrix N=4 Q=1.6e+04

GD

074 « CG
1074
1077
10710
10713
10716

[25 50 75 00 125 150 175 200

Beniamin BOGOSEL Computational Maths 2

30/41

Example: Hilbert matrices

A= (1/(/ +j— 1))1§i,j§ny ill conditioned

* below you can see a comparison between GD with optimal step and CG. The
residual |Ax — b| is plotted at every iteration

* the residual decreases slowly for GD: the algorithm tends to go multiple times
in the same direction! CG optimizes once and for all in the current direction.

x small residual does not mean that x is close to x*: Ax — b = A(x — x*)!

GD vs CG: Hilbert matrix N=6 Q=1.5e+07

10t o
10-14 * « CG
1073
105
1077 A
1077
10711 4
10713 4
10715 4

[25 50 75 00 125 150 175 200

Beniamin BOGOSEL Computational Maths 2

30/41

Example: Hilbert matrices

A= (1/(/ +j— 1))1§i,j§ny ill conditioned

* below you can see a comparison between GD with optimal step and CG. The
residual |Ax — b| is plotted at every iteration

* the residual decreases slowly for GD: the algorithm tends to go multiple times
in the same direction! CG optimizes once and for all in the current direction.

x small residual does not mean that x is close to x*: Ax — b = A(x — x*)!

GD vs CG: Hilbert matrix N=8 Q=1.5e+10

GD

H
5
2
x X

107104 %

x

X

10712 4)&;
X

10714 4 *

10716 L— T T T T T T T
0 25 50 75 100 125 150 175 200

Beniamin BOGOSEL Computational Maths 2

30/41

Example: Hilbert matrices

A= (1/(/ +j— 1))1§i,j§ny ill conditioned

* below you can see a comparison between GD with optimal step and CG. The
residual |Ax — b| is plotted at every iteration

* the residual decreases slowly for GD: the algorithm tends to go multiple times
in the same direction! CG optimizes once and for all in the current direction.

x small residual does not mean that x is close to x*: Ax — b = A(x — x*)!

GD vs CG: Hilbert matrix N=10 Q=1.6e+13

10t
GD
.
1071 4 « CG
P J
1073
10°°
1077
.-
1079 .
L1
.
10711 ope
10713 4 ‘
10715_
0 25 50 75 100 125 150 175 200

Beniamin BOGOSEL Computational Maths 2

30/41

Important application: approximate solution of PDEs

o Consider Laplace’s equation
. —Au = f inD
1
Find u € Hy(D) such that { — 0 ondD
where f € L?(D) is a given source.

@ It is possible to associate to this a variational formulation:

Find u € V such that Vv € V we have a(u, v) = {(v) J

where

o The Hilbert space V is a Sobolev space Hg(D)
e a(-,-) is a bilinear form on V given by a(u,v) = [, Vu - Vvdx
o £(-) is a linear form on V given by {(v) = [, fvdx

@ Lax-Milgram's theorem assures us that such a problem has a solution on V.

Beniamin BOGOSEL Computational Maths 2 31/41

Finite element method

@ The finite element method proposes to search for an approximation uy in a
finite dimension subspace V, C V.

@ the variational formulation is replaced by:

Find uj, € V}, such that Vv, € V}, we have a(up, vi) = £(vy))

@ Advantage : Vj, being of finite dimension, we can choose a basis
B = {¢;}!| and the variational formulation becomes a linear system
At = b with
A= (alpi,¢j)), b= (lei))
where U are the coordinates of uj, in the basis B.
@ The choice of the basis is important: one objective is to have a system
given by a sparse matrix

Beniamin BOGOSEL Computational Maths 2 32/41

Construct a finite element space

which consists of a partitions

@ The domain D is discretized using a mesh 7,

in triangles in 2D or tetrahedra in 3D.

@ The parameter h which indicates the convergence of the method is typically

related to the size of the mesh elements.

w2y
N

KRS
%

TORSR
Al
A Av»‘ 4l

S
A 4

\/ <5

ATATS b4

2
JAVAVAVAI, 2

AV A AVAVAVAVAY.7:

AVAVAVAVAY:

Avavaviy,

TERTLRRS
O TTAVAANY

33/41

Computational Maths 2

Beniamin BOGOSEL

Construct a finite element space (2)

A basis {1, ..., pn, } of finite element functions is introduced on the mesh 7
Example

o N is the number of vertices ay, ..., ay, of the mesh

@ Foreach i =1,..., Ny, ¢; is affine on each triangle T € T, and
vi(aj) =1 et pi(a;) = 0 pour i # j

Beniamin BOGOSEL Computational Maths 2 34/41

Formulation of a matrix system

Decompose the solution uj in the basis of finite elements

Np,
up =Y Ui
i=1
and the variational problem becomes a linear system of size Ny x N
KU=f
where

o U= : | isthe vector of coefficients
uNh
e K is the rigidity matrix given by Kj = a(j, ¢))
o F is the vector F = (¢(¢i))i=1,....N,-
* The matrix K will be symmetric and positive-definite so we are in the good
framework where CG works!
* when Nj, is large (a few tens of thousands of elements) direct methods will fail

to work (computation time, memory limitations)
* CG will work well even for N, > 10°

Beniamin BOGOSEL Computational Maths 2 35/41

Some results

S S A
e A A
RO RO
Ry
SR A !

=
¥,
SO
v,
o

RO
o
A
Rl
TN

SRPE AR
PORKDERR

SRERRRAS,
PPRRRPRKRN

SN G Sy
A SR R S
IANRINES i) L
AVl i

2

¥
B eaa
RISKEE AR
VERRESS
Y

A SO
SIS
oo

TS NN SRS

e
Pt

RO,

0

ViV

ey,

A
KA

s
0N

=

5
s

SESETSS,

e
X

P
K
s

s,

:
SR : S

%
g
Ry
0%

X%
Lk
5

SRR A R PRRRPRRP KR o
BN DANRENNINNNNN AAAAAAAN DD

A
R RRRNZ R SR KPO O OERK

s

VAVAYapy
e

o
o,

A
Ty
A :%» Ko
Wi V

a/
LR
VAYaTLY
5

)e'

aval

o

]
KEER
'i»

POORRNT

AVAVAD
X
oy
K
N

KL

ENATAVAVAY
POy

o

5
&
A
¥,
%
a
vt
v

S
U

e

Beniamin BOGOSEL Computational Maths 2 36/41

CG for general functions

Algorithm 5 (Fletcher-Reeves CG on R”)

Choose a starting point xy. Set cycle counter k = 1.
Cycle k: Initialization of the cycle: Given xo compute gy = Vf(x0),do = —go
Inner Loop: fori=0,...,.n—1

o if gi = 0 terminate, otherwise set x;1 as the minimizer of f(x; + td};)
o compute giy1 = VF(xi+1)

-
__ 8i118i+1

o set dii1 = —giy1 + Bid; with B; = g

When the loop is finished replace xo with x, and restart.

V.

* note that in the inner loop we have a Steepest Descent line-search: this is not
applicable in general. A line-search procedure should be used instead!
* It can be proved that in the non-degenerate case the convergence is quadratic
in the number of cycles i.e.

‘Xk+1 —X*| < C|Xk _X*|2

where x¥ is the sequence of starting points for cycles

Beniamin BOGOSEL Computational Maths 2 37/41

Comparison with previous methods

* again on the Rosenbrock function for N = 100
* in general nonlinear-CG converges faster than GD but not necessarily faster
than quasi-Newton methods

Comparison: Rosenbrock N=100

1024 ¢
102
X
10-¢
107104 %
10714 E %
%
10-18 4
10722 Xs
L3
0 200 400 600 800

Beniamin BOGOSEL Computational Maths 2 38/41

Conclusion on Conjugate Gradient method

@ when a complete system of A-orthogonal directions is known everything is
explicit

@ it can be made into an iterative algorithm with a convergence ratio way
better than Steepest Descent

@ it converges in n iterations (theoretically). In practice, for large n, we
usually stop the process once the error estimate

E(xy) < 4 (fg:)m E(x)

is satisfying.
@ cost of a step in CG:
O(n) + cost of a matrix-vector multiplication d — Ad.
This is particularly efficient when A is sparse (has few non-zero elements)

@ Disadvantage: sensitivity to the condition number!

Beniamin BOGOSEL Computational Maths 2 39/41

Conclusions: unconstrained optimization in ND

@ Gradient Descent algorithms: sensitive to conditioning!

o Newton methods: fast convergence under right hypotheses. Major practical
inconveniences:

e compute Hessian matrix and (possibly) store it
o doesn’t necessarily decrease the function value
o solve a linear system at every iteration

@ variable metric methods: compute an approximation of the inverse Hessian

o BFGS: rank 2 updates, standard in available implementations
e even better for large n: L-BFGS - limit memory by using only information
from the previous m iterations

e Conjugate Gradient methods: less sensitive to conditioning than Steepest
Descent

@ Newton-Gauss: non-linear least squares

o Nedler-Mead: gradient free method

Beniamin BOGOSEL Computational Maths 2 40/41

Practical discussion

* get used to the structure of algorithms which are already implemented: in the
practical session you will play with tools from scipy.optimize

* keep in mind to minimize the number of function evaluations in your codes:
not all functions to be optimized are computed in a cheap way

@ when the value of a function or its gradient are used multiple times store
them in some variables

@ in some computations involving physical simulations the gradient can often
be computed using existing information from the solution given by the
model: there is no point computing it multiple times

Beniamin BOGOSEL Computational Maths 2 41/41

	Optimization in higher dimensions
	Quasi-Newton Methods
	Conjugate Gradient Method

