
Optimization in higher dimensions

Quasi-Newton Methods
Conjugate Gradient Method

Beniamin Bogosel Computational Maths 2 1/41

Optimization in higher dimensions

Quasi-Newton Methods
Conjugate Gradient Method

Beniamin Bogosel Computational Maths 2 2/41

Context and Goals

gradient descent algorithms have linear convergent rate: cost O(N)

too slow for ill conditioned problems

Newton’s method: quadratic convergence

initialize close to solution
cost O(N3) per iteration (worst case)

Goal

Find an algorithm converging faster than GD without increasing the
computational task!

Beniamin Bogosel Computational Maths 2 3/41

A bit of history

[Nocedal, Wright, Numerical Optimization 06], Chapters 6-7
⋆ in the 50s W.C. Davidon used ”coodrdinate descent” method (GD on
coordinates)
⋆ the computer would always crash before the simulation was finished
⋆ Davidon decided to find a way of accelerating the optimization process: he
found one of the most creative ideas in nonlinear optimization
⋆ Fletcher and Powell demonstrated that this algorithm was faster and more
reliable than existing methods at the time
⋆ paradoxically, Davidon’s paper was not accepted for publication. It remained a
technical report for more than thirty years until it appeared in SIAM Journal on
Optimization in 1991!

Beniamin Bogosel Computational Maths 2 4/41

Motivation

Recall the Variable Metric Method and replace A−1
i by Si :

Algorithm 1 (Generic Variable Metric method)

Choose the starting point x0
Iteration i :

compute f (xi),∇f (xi) and eventually D2f (xi)

choose a symmetric positive-definite matrix Si : compute the new direction

di = −Si∇f (xi)

perform a line-search from xi in the direction di giving a new iterate

xi+1 = xi + tidi = xi − tiSi∇f (xi).

⋆ in the modified Newton method Si is computed as follows: find the Hessian
D2f (xi), modify it to make it ”well positive definite”, then invert it or solve
Sidi = ∇f (xi)
⋆ in quasi-Newton method we try to skip all of this and compute Si recursively
with one objective: Si − (D2f (xi))

−1 → 0
⋆ in fact, it is enough to have (Si − (D2f (xi))

−1)(xi+1 − xi) → 0.

Beniamin Bogosel Computational Maths 2 5/41

Variable Metric method: quadratic case

⋆ minimize f (x) = 1
2x

TAx − bT x with Steepest Descent line-search
⋆ denote E (xi) = f (xi)−min f : error in terms of objective function

⋆ xi+1 = xi − toptSi∇f (xi) is equivalent to a change of coordinates ξ = S
1/2
i x

⋆ the step i in the VM method is just a Steepest-Descent step for the matrix

S
1/2
i AS

1/2
i . Therefore we have the estimate

E (xi+1) ≤
(
Q − 1

Q + 1

)2

E (xi)

where Q is the condition number of S
1/2
i AS

1/2
i

⋆ if Si is close to D2f (xi)
−1 = A−1 then S

1/2
i AS

1/2
i is close to the identity

matrix so Q is close to 1.
⋆ Finally, if Q converges to 1, we eventually get that E (xi+1)/E (xi) → 0, i.e.
super-linear convergence

Beniamin Bogosel Computational Maths 2 6/41

Basic rules for updating Si

⋆ Taylor expansion formula tells us that

∇f (xi+1)−∇f (xi) ≈ D2f (xi)(xi+1 − xi)

⋆ Therefore, it is reasonable to request that

Si+1(∇f (xi+1)−∇f (xi)) = xi+1 − xi
called the secant relation (make parallel with the 1D case)

⋆ With the notations gi = ∇f (xi), pi = xi+1 − xi , qi = gi+1 − gi we have

Si+1qi = pi ,

called the quasi-Newton equation

⋆ this leaves us with infinitely many possibilities... another goal is that

Si+1 − Si is as simple as possible!

⋆ initialization? one may simply choose S0 = Id, multiple of identity, diagonal
matrix, etc.

Beniamin Bogosel Computational Maths 2 7/41

Small rank updates

⋆ idea: find Si+1 = Si + Bi where Bi has low rank
⋆ Rank 1 updates: Bi = αiviv

T
i - one may find Bi such that the quasi-Newton

relation holds

Si+1 = Si + αiziz
T
i

⋆ the quasi-Newton relation pi = Si+1qi implies

zi = ωi (pi − Sqi)

⋆ in the end we get

Si+1 = Si +
1

(pi − Siqi)Tqi
[pi − Siqi][pi − Siqi]

T

⋆ not possible to guarantee that Si+1 is positive definite if Si is

Beniamin Bogosel Computational Maths 2 8/41

Rank 2 updates: DFP

⋆ Davidon-Fletcher-Powell: historically, the first ”good” quasi-Newton method
⋆ use rank 2 updates: guarantee the positive-definiteness of Si+1 under
reasonable hypotheses

Proposition 1

Let S be a positive definite symmetric matrix and p and q be two vectors such
that pTq > 0. Then the matrix

S ′ = S +
1

pTq
ppT − 1

qTSq
SqqTS

is symmetric positive definite and satisfies S ′q = p.

⋆ Proof: just compute S ′q and xS ′x and do a bit of linear algebra.

⋆ How to get this idea? Just choose Si+1 = Si + αuuT + βvvT (rank 2 update)
⋆ then choose u = pi and v = Siqi

Beniamin Bogosel Computational Maths 2 9/41

DFP method

⋆ DFP update:

Si+1 = Si +
1

pTi qi
pip

T
i − 1

qTi Siqi
Siqiq

T
i Si

⋆ the condition qTi pi > 0 is equivalent to

(∇f (xi+1)−∇f (xi)) · (xi+1 − xi) > 0,

which is true if f is strictly convex: reasonable assumption near a minimum...
⋆ when using Wolfe line-search we can guarantee that qTi pi > 0.
⋆ for the quadratic case DFP becomes the conjugate gradient method
⋆ it turns out DFP is not the best method out there...

it does not ”self-correct” when Si gets far from the inverse Hessian

Beniamin Bogosel Computational Maths 2 10/41

Duality: quasi-Newton relation

⋆ any quasi-Newton update can generate another one:

Si+1 = Si + Bi (Si , pi , qi) such that Si+1qi = pi

then qi = S−1
i+1pi where S−1

i+1 = (Si + B(Si , pi , qi))
−1

switching the roles of pi and qi we get a different update, called the dual
update

⋆ how to get the dual of DFP: replace Si with S−1
i and interchange pi and qi

S−1
i+1 = S−1

i +
1

qTi pi
qiq

T
i − 1

pTi S
−1
i pi

S−1
i pip

T
i S

−1
i

⋆ a direct computation or Sherman-Morrison’s formula gives:

Si+1 = Si −
piq

T
i Si + Siqip

T
i

pTi qi
+

(
1 +

qTi Siqi
pTi qi

)
pip

T
i

pTi qi

Beniamin Bogosel Computational Maths 2 11/41

The BFGS update

⋆ BFGS: Broyden, Fletcher, Goldfarb, Shanno

Si+1 = Si −
piq

T
i Si + Siqip

T
i

pTi qi
+

(
1 +

qTi Siqi
pTi qi

)
pip

T
i

pTi qi
⋆ widely used in most of the codes implemented today
⋆ since BFGS is the dual of DFP, and a matrix is positive-definite if and only if
its inverse is positive-definite, the BFGS update maintains positive-definiteness if
pTi qi > 0 (same hypothesis as for DFP to work...)
[Nocedal, Wright, Numerical Optimization 06], Chapters 6-7
⋆ Local super-linear convergence: If an algorithm using BFGS with Wolfe’s
line-search converges to x∗ where f is strongly convex with Lipschitz Hessian
then the convergence rate is super-linear
⋆ BFGS has effective self-correcting properties

Beniamin Bogosel Computational Maths 2 12/41

BFGS: alternative definition

Si+1 solves

min ∥S − Si∥
subject to S = ST ,Sqi = pi .

⋆ ∥A∥ = ∥W 1/2AW 1/2∥F , ∥C∥2F =
∑

c2ij .
⋆ The weight matrix W satisfies Wpi = qi
⋆ any other choice of norm would give another quasi-Newton method.

Despite intense research no method better than BFGS was found!

Beniamin Bogosel Computational Maths 2 13/41

Extreme cases

Dimension 1:

⋆ the quasi-Newton relation is just Si+1 =
pi
qi

and we get

xi+1 = xi −
xi − xi−1

f ′(xi)− f ′(xi−1)
f ′(xi)

which is the false position (or secant) method

Large dimension:

⋆ same disadvantage as Newton methods - a n × n matrix may be too large to
store in memory
⋆ it is possible to store only the update vectors and compute matrix - vector
products by doing only scalar - products

(uvT)x = u(vT x) = (vT x)u

⋆ limited memory-BFGS (LBFGS): use only the last m vectors pi , qi in order to
compute Si+1 - good behavior in practice despite being an approximation of
BFGS

Beniamin Bogosel Computational Maths 2 14/41

Computational cost per iteration

⋆ after the function value, gradient and Hessian are computed (this is
non-negligible in some applications)

GD: O(N)

Newton: O(N3) in worst case (solving a linear system) - it all depends on
the structure of the Hessian

BFGS, DFT: O(N2) - matrix vector products

LBFGS: O(mN) where m is the fixed number of gradients to remember

Beniamin Bogosel Computational Maths 2 15/41

Practical example: the N-dimensional Rosenbrock

f (x) =
N−1∑
i=1

[100(xi+1 − x2i)
2 + (1− xi)

2]

with global minimum at x∗ = (1, 1, ..., 1).
⋆ ill conditioning: the optimization process wants to achieve xi+1 ≈ x2i rather
than minimizing (xi − 1)2 and go towards the global minimum!

Beniamin Bogosel Computational Maths 2 16/41

Practical example: the N-dimensional Rosenbrock

f (x) =
N−1∑
i=1

[100(xi+1 − x2i)
2 + (1− xi)

2]

with global minimum at x∗ = (1, 1, ..., 1).
⋆ ill conditioning: the optimization process wants to achieve xi+1 ≈ x2i rather
than minimizing (xi − 1)2 and go towards the global minimum!

Beniamin Bogosel Computational Maths 2 16/41

Practical example: the N-dimensional Rosenbrock

f (x) =
N−1∑
i=1

[100(xi+1 − x2i)
2 + (1− xi)

2]

with global minimum at x∗ = (1, 1, ..., 1).
⋆ ill conditioning: the optimization process wants to achieve xi+1 ≈ x2i rather
than minimizing (xi − 1)2 and go towards the global minimum!

Beniamin Bogosel Computational Maths 2 16/41

Practical example: the N-dimensional Rosenbrock

f (x) =
N−1∑
i=1

[100(xi+1 − x2i)
2 + (1− xi)

2]

with global minimum at x∗ = (1, 1, ..., 1).
⋆ ill conditioning: the optimization process wants to achieve xi+1 ≈ x2i rather
than minimizing (xi − 1)2 and go towards the global minimum!

Beniamin Bogosel Computational Maths 2 16/41

Conclusion: quasi-Newton methods

equivalent of the Secant method in higher dimensions

achieve super-linear convergence without using the Hessian

for extremely large n BFGS may be costly from a memory point of view: if
possible use L-BFGS instead

BFGS and LBFGS are often available in standard optimization libraries:
Example scipy.optimize.minimize

Beniamin Bogosel Computational Maths 2 17/41

Optimization in higher dimensions

Quasi-Newton Methods
Conjugate Gradient Method

Beniamin Bogosel Computational Maths 2 18/41

Motivation
⋆ if A is symmetric, positive-definite then solving the system Ax = b is
equivalent to minimizing the quadratic function

f : x 7→ 1

2
xTAx − b · x

⋆ the gradient of this quadratic function is ∇f (x) = Ax − b
⋆ direct method: process details about the matrix A (factorization) and then
solve the system: complexity is between O(n2) and O(n3).
⋆ iterative algorithms produce an approximation of the solution, which might be
good enough for very large n after a few iterations
⋆ for example: the gradient algorithm with Steepest-Descent will quickly
converge to the optimum, but we can do better

Beniamin Bogosel Computational Maths 2 19/41

Conjugate directions

⋆ A given symmetric positive-definite matrix A defines a scalar product

⟨x , y⟩ = xTAy

⋆ Two (non-zero) directions d1 and d2 are called conjugate with respect to A if
they are orthogonal w.r.t. the above scalar product:

d1 and d2 are conjugate ⇐⇒ d1Ad2 = 0

⋆ we may also call two directions which are conjugate w.r.t. A as being
A-orthogonal
⋆ why is this useful? suppose d1, ..., dk are mutually A-orthogonal and we have
the decomposition

d =
k∑

j=1

αjdj

Then, using the orthogonality property, we can find the coefficients αi explicitly:

dT
i Ad = αid

T
i Adi ⇒ αi =

dT
i Ad

dT
i Adi

=
⟨d , di ⟩
⟨di , di ⟩

⋆ Consequence: If d1, ..., dk are mutually orthogonal then they are linearly
independent! (for a proof, use the above formula to see that d = 0 ⇒ αi = 0)

Beniamin Bogosel Computational Maths 2 20/41

Why is this concept useful?

Proposition 2 (Solve a system using Conjugate Directions)

Let A be a symmetric positive-definite matrix and d1, ..., dn a (complete) system
of n non-zero A-orthogonal vectors. Then the solution x∗ to the system Ax = b
is given by the formula

x∗ =
n∑

j=1

bTdj
dT
j Adj

dj

⋆ An equivalent formulation:

x∗ = A−1b =
n∑

j=1

bTdj
dT
j Adj

dj =

 n∑
j=1

1

dT
j Adj

djd
T
j

 b

which gives us the explicit inverse of A

A−1 =
n∑

j=1

1

dT
j Adj

djd
T
j

⋆ All this is good when we know a complete family of A-orthogonal directions!

Beniamin Bogosel Computational Maths 2 21/41

Conjugate Directions: quadratic case

Algorithm 2 (Conjugate Directions method)

Let A be a n × n symmetric positive-definite matrix, b a vector and
f (x) = 1

2x
TAx − bT x the quad. form associated to A and b.

Let d0, .., dn−1 be a system of A-orthogonal vectors and x0 a starting point.
Then, with the notation gi = ∇f (xi) = Axi − b, the iterative process

xi+1 = xi + γidi , γi = − dT
i gi

dT
i Adi

, i = 1, ..., n

converges to the unique minimizer x∗ of f in n steps.

⋆ The step γi is optimal in the direction di : define q(t) = f (x + td) then

q′(t) = ∇f (x + td) · d = d · ∇f (x) + tdTAd

⋆ Proof: just look at xn and see that it gives exactly the formula for x∗.
⋆ Important idea: dkA(xk − x0) = 0 for any k ≥ 0
⋆ Again: all this is good when we know a complete family of A-orthogonal
directions!

Beniamin Bogosel Computational Maths 2 22/41

Properties of the Conjugate Directions Method

⋆ define for each i ≥ 1 the linear space Bi−1 = Span{d0, ..., di−1}
⋆ if we define the affine subspaces Mi = x0 + Bi−1 then

{x0} = M0 ⊂ M1 ⊂ ... ⊂ Mn = Rn

⋆ the Conjugate Directions method generate the minimizers of f in each of the
affine spaces Mi

Proposition 3

For every 1 ≤ i ≤ n the vector xi is the minimizer of f on the affine subspace
Mi = x0 + Bi−1. In particular, as shown previously, xi minimizes f on the line
{xi−1 + tdi−1 : t ∈ R}.

Proof: ⋆ Compute the gradient gi = ∇f (xi) = Axi − b and note that gi is
orthogonal to d0, ..., di−1.
⋆ Then obtain that ⟨∇f (xi), x − xi ⟩ = 0 for x ∈ x0 + Bi−1.
⋆ f is strictly convex so Euler’s inequality tells us that xi is indeed the minimizer
of f in x0 + Bi−1.

Beniamin Bogosel Computational Maths 2 23/41

Build a basis of conjugated directions

⋆ recall the Gram-Schmidt procedure
⋆ define the A-projection of v on u:

proju(v) =
⟨u, v⟩
⟨u, u⟩

u =
uTAv

uTAu
u

Algorithm 3 (Gram-Schmidt)

0. Take a basis (vi) of Rn: e.g. the canonical basis.
1. u1 = v1
2. u2 = v2 − proju1(v2)
3. u3 = v3 − proju1(v3)− proju2(v3)
...
n. un = vn − proju1(vn)− ...− projun−1

(vn)

In the end normalize the vectors: di =
1√

uT
i Aui

ui

⋆ in this form the process is not numerically stable: due to rounding errors the
vectors uk may not be exactly orthogonal...

Beniamin Bogosel Computational Maths 2 24/41

Conjugate Gradient Method

⋆ we can compute the family of A-orthogonal directions during the optimization
algorithm

Algorithm 4 (Conjugate Gradient)

Choose arbitrary initialization point x0 and set d0 = −g0 = −∇f (x0) = b − Ax0
Loop on: i = 0, ..., n − 1

if ∇f (xi) = 0 then stop.

xi+1 = xi + γidi with γi = − dT
i gi

dT
i Adi

Compute new gradient gi+1 = ∇f (xi+1) = Axi+1 − b

Compute new direction di+1 = −gi+1 + βidi with βi =
gT
i+1Adi

dT
i Adi

⋆ as before γi is the optimal step in the direction di
⋆ the parameter βi is chosen such that dT

i+1Adi = 0
⋆ the new direction di+1 is given by the projection of the anti-gradient direction
−gi+1 on the previous direction

Beniamin Bogosel Computational Maths 2 25/41

Main properties of CG

Proposition 4 (CG is a Conjugate Direction method)

If the algorithm does not terminate at step i then:

the gradients g0, ..., gi−1 at x0, ..., xi−1 are non-zero and
Span{g0, g1, ..., gi−1} = Span{g0,Ag0, ...,Ai−1g0}
The directions d0, ..., di−1 are non-zero and
Span{d0, d1, ..., di−1} = Span{g0,Ag0, ...,Ai−1g0}
The directions d0, ..., di−1 are A orthogonal

Alternative formulas for γi and βi :

γi =
gT
i gi

dT
i Adi

and βi =
gT
i+1gi+1

gT
i gi

.

⋆ A sequence of the type g0,Ag0,A
2g0, ... is called a Krylov sequence

Beniamin Bogosel Computational Maths 2 26/41

Consequences and convergence

⋆ xi is the minimizer of f in the affine subspace

x0 + Span{d0, ..., di−1} = x0 + Span{g0,Ag0, ...,Ai−1g0}
⋆ xi is the minimizer of f in the affine subspace generated by x0 and polynomials
of A of degree at most i − 1 times g0 (denote this polynomial space by Pi−1)

x0 + {p(A)g0 : p(z) =
i−1∑
i=0

piz
i}

⋆ error in terms of the objective function: E(x) = f (x)−min f = 1
2
(x − x∗)TA(x − x∗)

Proposition 5 (Error for CG)

E (xi) = min
p∈Pi−1

1

2
(x0 − x∗)A(Id−Ap(A))2(x0 − x∗)

⋆ Proof: write xi = x0 + p(A)g0 and recall that ∇f (xi) = A(xi − x∗)

Beniamin Bogosel Computational Maths 2 27/41

Error in terms of the spectrum of A

Corollary

Let Σ be the spectrum of A. Then

E (xi) ≤ E (x0) min
p∈P∗

i

max
λ∈Σ

p2(λ),

where P∗
i is the set of polynomials p of degree at most i such that p(0) = 1.

Another estimate is

E (xi) ≤
1

2
|x∗ − x0|2 min

p∈P∗
i

max
λ∈Σ

λp2(λ),

⋆ Proof: use an orthonormal basis made of eigenvectors of A
⋆ denote by Q the condition number of A. Then there exists a polynomial
q ∈ P∗

s such that

max
λ∈Σ

qs(λ)
2 ≤ 4

(√
Q − 1√
Q + 1

)2s

Beniamin Bogosel Computational Maths 2 28/41

Error estimate in terms of the condition number

⋆ for the Conjugate Gradient algorithm we have

E (xN) ≤ 4

(√
Q − 1√
Q + 1

)2N

E (x0),

where Q is the condition number of A.
⋆ compare this with the error estimate for the Steepest-Descent

E (xN) ≤
(
Q − 1

Q + 1

)2N

E (x0)

⋆ in order to reduce the initial error by a factor of ε one needs to do O(Q) steps
with Steepest Descent compared to O(

√
Q) steps with CG. This is a big

difference!
⋆ CG is supposed to converge in n iterations, however rounding errors may
prevent the convergence!
⋆ moreover, if A has k ≤ n distinct eigenvalues then CG converges in k
iterations!
⋆ Often, for n large, the process is stopped before reaching n iterations, when
the error estimate is small enough

Beniamin Bogosel Computational Maths 2 29/41

Example: Hilbert matrices
A = (1/(i + j − 1))1≤i,j≤n, ill conditioned
⋆ below you can see a comparison between GD with optimal step and CG. The
residual |Ax − b| is plotted at every iteration
⋆ the residual decreases slowly for GD: the algorithm tends to go multiple times
in the same direction! CG optimizes once and for all in the current direction.
⋆ small residual does not mean that x is close to x∗: Ax − b = A(x − x∗)!

Beniamin Bogosel Computational Maths 2 30/41

Example: Hilbert matrices
A = (1/(i + j − 1))1≤i,j≤n, ill conditioned
⋆ below you can see a comparison between GD with optimal step and CG. The
residual |Ax − b| is plotted at every iteration
⋆ the residual decreases slowly for GD: the algorithm tends to go multiple times
in the same direction! CG optimizes once and for all in the current direction.
⋆ small residual does not mean that x is close to x∗: Ax − b = A(x − x∗)!

Beniamin Bogosel Computational Maths 2 30/41

Example: Hilbert matrices
A = (1/(i + j − 1))1≤i,j≤n, ill conditioned
⋆ below you can see a comparison between GD with optimal step and CG. The
residual |Ax − b| is plotted at every iteration
⋆ the residual decreases slowly for GD: the algorithm tends to go multiple times
in the same direction! CG optimizes once and for all in the current direction.
⋆ small residual does not mean that x is close to x∗: Ax − b = A(x − x∗)!

Beniamin Bogosel Computational Maths 2 30/41

Example: Hilbert matrices
A = (1/(i + j − 1))1≤i,j≤n, ill conditioned
⋆ below you can see a comparison between GD with optimal step and CG. The
residual |Ax − b| is plotted at every iteration
⋆ the residual decreases slowly for GD: the algorithm tends to go multiple times
in the same direction! CG optimizes once and for all in the current direction.
⋆ small residual does not mean that x is close to x∗: Ax − b = A(x − x∗)!

Beniamin Bogosel Computational Maths 2 30/41

Important application: approximate solution of PDEs

Consider Laplace’s equation

Find u ∈ H1
0 (D) such that

{
−∆u = f in D

u = 0 on ∂D

where f ∈ L2(D) is a given source.

It is possible to associate to this a variational formulation:

Find u ∈ V such that ∀v ∈ V we have a(u, v) = ℓ(v)

where

The Hilbert space V is a Sobolev space H1
0 (D)

a(·, ·) is a bilinear form on V given by a(u, v) =
∫
D
∇u · ∇vdx

ℓ(·) is a linear form on V given by ℓ(v) =
∫
D
fvdx

Lax-Milgram’s theorem assures us that such a problem has a solution on V .

Beniamin Bogosel Computational Maths 2 31/41

Finite element method

The finite element method proposes to search for an approximation uh in a
finite dimension subspace Vh ⊂ V .

the variational formulation is replaced by:

Find uh ∈ Vh such that ∀vh ∈ Vh we have a(uh, vh) = ℓ(vh)

Advantage : Vh being of finite dimension, we can choose a basis
B = {φi}Ni=1 and the variational formulation becomes a linear system
Aū = b with

A = (a(φi , φj)), b = (ℓ(φi))

where ū are the coordinates of uh in the basis B.
The choice of the basis is important: one objective is to have a system
given by a sparse matrix

Beniamin Bogosel Computational Maths 2 32/41

Construct a finite element space

The domain D is discretized using a mesh Th which consists of a partitions
in triangles in 2D or tetrahedra in 3D.

The parameter h which indicates the convergence of the method is typically
related to the size of the mesh elements.

Beniamin Bogosel Computational Maths 2 33/41

Construct a finite element space (2)

A basis {φ1, ..., φNh} of finite element functions is introduced on the mesh Th

Example

Nh is the number of vertices a1, ..., aNh
of the mesh

For each i = 1, ...,Nh, φi is affine on each triangle T ∈ Th and

φi (aj) = 1 et φi (aj) = 0 pour i ̸= j

Beniamin Bogosel Computational Maths 2 34/41

Formulation of a matrix system

Decompose the solution uh in the basis of finite elements

uh =

Nh∑
i=1

ujφi

and the variational problem becomes a linear system of size Nh × Nh

KU = f

where

U =

 u1
...

uNh

 is the vector of coefficients

K is the rigidity matrix given by Kij = a(φi , φj)

F is the vector F = (ℓ(φi))i=1,...,Nh
.

⋆ The matrix K will be symmetric and positive-definite so we are in the good
framework where CG works!
⋆ when Nh is large (a few tens of thousands of elements) direct methods will fail
to work (computation time, memory limitations)
⋆ CG will work well even for Nh > 105

Beniamin Bogosel Computational Maths 2 35/41

Some results

Beniamin Bogosel Computational Maths 2 36/41

CG for general functions

Algorithm 5 (Fletcher-Reeves CG on Rn)

Choose a starting point x0. Set cycle counter k = 1.
Cycle k: Initialization of the cycle: Given x0 compute g0 = ∇f (x0), d0 = −g0
Inner Loop: for i = 0, ..., n − 1

if gi = 0 terminate, otherwise set xi+1 as the minimizer of f (xi + tdi)

compute gi+1 = ∇f (xi+1)

set di+1 = −gi+1 + βidi with βi =
gT
i+1gi+1

gT
i gi

When the loop is finished replace x0 with xn and restart.

⋆ note that in the inner loop we have a Steepest Descent line-search: this is not
applicable in general. A line-search procedure should be used instead!
⋆ It can be proved that in the non-degenerate case the convergence is quadratic
in the number of cycles i.e.

|xk+1 − x∗| ≤ C |xk − x∗|2

where xk is the sequence of starting points for cycles

Beniamin Bogosel Computational Maths 2 37/41

Comparison with previous methods

⋆ again on the Rosenbrock function for N = 100
⋆ in general nonlinear-CG converges faster than GD but not necessarily faster
than quasi-Newton methods

Beniamin Bogosel Computational Maths 2 38/41

Conclusion on Conjugate Gradient method

when a complete system of A-orthogonal directions is known everything is
explicit

it can be made into an iterative algorithm with a convergence ratio way
better than Steepest Descent

it converges in n iterations (theoretically). In practice, for large n, we
usually stop the process once the error estimate

E (xN) ≤ 4

(√
Q − 1√
Q + 1

)2N

E (x0)

is satisfying.

cost of a step in CG:

O(n) + cost of a matrix-vector multiplication d → Ad .

This is particularly efficient when A is sparse (has few non-zero elements)

Disadvantage: sensitivity to the condition number!

Beniamin Bogosel Computational Maths 2 39/41

Conclusions: unconstrained optimization in ND

Gradient Descent algorithms: sensitive to conditioning!

Newton methods: fast convergence under right hypotheses. Major practical
inconveniences:

compute Hessian matrix and (possibly) store it
doesn’t necessarily decrease the function value
solve a linear system at every iteration

variable metric methods: compute an approximation of the inverse Hessian

BFGS: rank 2 updates, standard in available implementations
even better for large n: L-BFGS - limit memory by using only information
from the previous m iterations

Conjugate Gradient methods: less sensitive to conditioning than Steepest
Descent

Newton-Gauss: non-linear least squares

Nedler-Mead: gradient free method

Beniamin Bogosel Computational Maths 2 40/41

Practical discussion

⋆ get used to the structure of algorithms which are already implemented: in the
practical session you will play with tools from scipy.optimize

⋆ keep in mind to minimize the number of function evaluations in your codes:
not all functions to be optimized are computed in a cheap way

when the value of a function or its gradient are used multiple times store
them in some variables

in some computations involving physical simulations the gradient can often
be computed using existing information from the solution given by the
model: there is no point computing it multiple times

Beniamin Bogosel Computational Maths 2 41/41

	Optimization in higher dimensions
	Quasi-Newton Methods
	Conjugate Gradient Method

