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Higher dimensions

⋆ we consider functions f defined on K = O where O ⊂ Rn is open, smooth
and connected.
⋆ the objective is to solve problems of the form

min
x∈K

f (x)

⋆ most of the theoretical aspects regarding existence and uniqueness of
minimizers are similar to the one dimensional case: however, all partial
derivatives need to be taken into account, and the notions of gradient and
Hessian are essential
⋆ once a descent direction is found, we come back to one-dimensional
algorithms when looking along this direction in order to decrease f
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Partial derivatives

⋆ for simplicity, some results are stated for f : Rn → R, but they apply to f
defined on more restricted ”nice” domains
⋆ as usual, we denote by ei , i = 1, ..., n the canonical basis of Rn

ei = (..., 0, 1, 0, ...) only component i is non-zero equal to 1

Definition 1 (Partial derivatives, gradient, Hessian)

Consider a function f : Rn → R. The partial derivative with respect to xi is
∂f

∂xi
(x) = lim

t→0

f (x + tei )− f (x)

t

In practice, ∂f
∂xi

is computed by differentiating f w.r.t xi , supposing that the
other coordinates are constant.
The gradient vector contains all partial derivatives: ∇f (x) = ( ∂f

∂xi
(x))i=1,...,n.

The Hessian matrix contains all combinations of two successive partial

derivatives: D2f (x) = ( ∂2f
∂xi∂xj

)i,j=1,...,n.

⋆ note that f is of class C 2 then D2f (x) is a symmetric matrix (result known as
Schwarz’s theorem)
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Basic examples

1. f (x) = ∥x∥2 = x21 + ...+ x2n

∇f (x) = 2x , D2f (x) = 2 Id

where Id is the identity matrix.
2. f (x) = 1

2x
TAx − bT x

∇f (x) = Ax − b, D2f (x) = A
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Directional and Fréchet derivatives

Definition 2 (Directional (Gateaux) derivative)

f : Rn → R is differentiable at x in direction d if the one dimensional function
t 7→ f (x + td) is differentiable at t = 0.

Definition 3 (Fréchet derivative)

f : Rn → R is Fréchet differentiable at x if there exists a bounded linear
mapping L : Rn → R such that for h ∈ Rn with |h| small enough we have

f (x + h) = f (x) + Lh + o(h)

⋆ the application L is denoted by f ′(x). When f is C 1 we simply have
f ′(x)(h) = ∇f (x) · h.
⋆ in general Fréchet differentiability implies the existence of directional
derivatives, but the converse is false
⋆ if the partial derivatives exist and are continuous then the function is Fréchet
differentiable
⋆ for more subtle differences and implications consult a real analysis course: e.g.
[Differential Calculus, by Henri Cartan]
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Taylor expansion in higher dimensions

Consider f : Rn → R. Then
if f is of class C 1

f (x + h) = f (x) + f ′(x)(h) + o(|h|) as |h| → 0

f (x + h) = f (x) +∇f (x) · h + o(|h|) as |h| → 0

if f is of class C 2

f (x + h) = f (x) + f ′(x)(h) +
1

2!
f ′′(x)(h, h) + o(|h|2) as |h| → 0

f (x + h) = f (x) +∇f (x) · h +
1

2
hTD2f (x)h + o(|h|2) as |h| → 0

⋆ again it is possible to write the remainder in Lagrange form
⋆ recall that the second derivative (in the sense of Fréchet) of a function is a
bilinear form. Why? For each differentiation you need to choose a direction...

compute first f ′(x)(h1) and then (f ′(x)(h1))
′(h2) −→ f ′′(x)(h1, h2)
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Existence of solutions

In the same way as in dimension one we have the following

Proposition 4

⋆ If f is continuous it attains its extremal values on compact sets.
⋆ If f : Rn → R is continuous and ”infinite at infinity” i.e.

|f (x)| → ∞ as |x | → ∞
then f admits minimizers on Rn.
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Positive (definite) matrices

Definition 5

A matrix A ∈Mn(R) is called:
positive definite if for every vector x ∈ Rn \ {0}

xTAx > 0

positive semi-definite if for every vector x ∈ Rn

xTAx ≥ 0

⋆ these notions are often useful when dealing with optimization problems
⋆ when A is also symmetric, it is possible to give a characterization of the above
definition in terms of the eigenvalues of A:

A is positive definite if all its eigenvalues are positive

A is positive semi-definite if all its eigenvalues are non-negative

⋆ recall that symmetric matrices are diagonalizable and there exists an
orthonormal basis made of eigenvectors
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Basic optimality conditions

Proposition 6

Let f : Rn → R be a C 1 function. If x∗ is a local minimum (maximum) of f
then ∇f (x∗) = 0. Moreover, if f is of class C 2 then the Hessian matrix
D2f (x∗) is positive (negative) semi-definite.

Conversely, if f is of class C 2, ∇f (x∗) = 0 and D2f is positive semi-definite in a
neighborhood of x∗ then x∗ is a local minimum of f .
As a consequence, if f is of class C 2, ∇f (x∗) = 0 and D2f (x∗) is positive
definite then x∗ is a local minimum of f .

⋆ The proof comes immediately from the Taylor expansion formulas.
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Euler inequalities

⋆ what happens when we minimize on a closed convex set K ⊂ Rd?

Proposition 7

Let K be a convex set and x∗ be a minimum of f on K. Suppose that J is
differentiable at x∗. Then for every x ∈ K we have

∇f (x∗) · (x − x∗) ≥ 0.

⋆ Proof: just write the directional derivative at x∗ in the direction x − x∗.
⋆ compare with the 1D case!
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Convex functions again...

⋆ In higher dimensions convex functions give the same advantages regarding the
existence, unicity and convergence of algorithms as in dimension one.

Definition 8 (Convex functions)

A function f : Rn → R is said to be convex if for every x , y ∈ Rn and for every
t ∈ (0, 1) we have

f (tx + (1− t)y) ≤ tf (x) + (1− t)f (y)

⋆ for strict convexity the inequality is strict.
Equivalent definitions: f is convex iff

f is below any affine section

f is above its tangent planes

any 1D ”slice” is a convex 1D function
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Useful characterizations

Proposition 9

Let f : Rn → R be a C 1 function. The following statements are equivalent:

1 f is convex

2 f (y) ≥ f (x) +∇f (x) · (y − x), ∀x , y ∈ Rn

3 (∇f (x)−∇f (y)) · (x − y) ≥ 0, ∀x , y ∈ Rn

Proof: Exercise!

Proposition 10

Let f : R→ R be a C 2 function. Then f is convex if and only if the Hessian
matrix D2f is positive semi-definite everywhere.

⋆ we say that f is α-convex for some α > 0 if the Hessian matrix has
eigenvalues ≥ α > 0.
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Optimality conditions

⋆ for convex functions, the usual necessary optimality conditions are also
sufficient

Proposition 11

⋆ Let f : Rn → R be a convex function and x∗ be a point such that
∇f (x∗) = 0. Then x∗ is a global minimum of f .

⋆ Let f : K → R be a convex function defined on a convex subset K of Rn.
Then if x∗ ∈ K verifies

∇f (x∗) · (x − x∗) ≥ 0

for every x ∈ K then x∗ is a global minimum of f on K.

Proof: f (x) ≥ f (x∗) +∇f (x∗) · (x − x∗), ∀x ∈ K
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Optimization without Calculus

[Charles L. Byrne, A first Course in Optimization]
[Niven, I. Maxima and Minima Without Calculus]

⋆ sometimes, solutions can be found without the need of calculus or algorithms
Basic ingredients.

x2 ≥ 0: the most basic inequality

AM-GM:

xi ≥ 0⇒ x1 + ...+ xn
n

≥ (x1...xn)
1/n

Generalized AM-GM (or just convexity of the − log function):

xi > 0, ai ≥ 0,
n∑

i=1

ai = 1 =⇒ xa11 ...xann ≤ a1x1 + ...+ anxn

Cauchy-Schwarz: ai , bi ∈ R(
n∑

i=1

aibi

)2

≤

(
n∑

i=1

a2i

)(
n∑

i=1

b2i

)
or |a · b| ≤ |a||b|
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Examples

1 minimize f (x , y) =
12

x
+

18

y
+ xy on (0,∞)2

2 maximize f (x , y) = xy(72− 3x − 4y)

3 minimize f (x , y) = 4x +
x

y2
+

4y

x
on (0,∞)2

4 maximize f (x , y , z) = 2x + 3y + 6z when x2 + y2 + z2 = 1

5 maximize f (x , y , z) = 2x + 3y + 6z when xp + yp + zp = 1, p > 1.
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Example 1

⋆ minimize f (x , y) =
12

x
+

18

y
+ xy on (0,∞)2

Since we are dealing with positive numbers apply AM-GM:

12

x
+

18

y
+ xy ≥ 3 ·

(
12

x

18

y
xy

)1/3

= 3 · 6 = 18.

⋆ Therefore the lower bound of the above expression is 18
⋆ it is attained when 12

x = 18
y = xy leading to x = 2, y = 3.

⋆ the same technique can be applied for Examples 2 and 3
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Example 4

⋆ maximize f (x , y , z) = 2x + 3y + 6z when x2 + y2 + z2 = 1
Here it is possible to use Cauchy-Schwarz:

(2x + 3y + 6z)2 ≤ (22 + 32 + 62)(x2 + y2 + z2) = 49

with equality of (x , y , z) and (2, 3, 6) are colinear.

⋆ recognize cases when the solution can be found explicitly.
⋆ provide examples on which to test numerical algorithms!
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Basic idea

Suppose that f is C 1 (at least). Then the Taylor expansion says

f (x + h) = f (x) +∇f (x) · h + o(|h|), |h| → 0
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Basic idea

Suppose that f is C 1 (at least). Then the Taylor expansion says

f (x + h) ≈ f (x) +∇f (x) · h
With this in mind, the following definition is natural

Definition 12 (Descent direction)

A direction d ∈ Rn is called a descent direction for f at x if ∇f (x) · d < 0

This gives the following natural result

Proposition 13

If d is a descent direction for f at x, then going from x along d with a small
step increment decreases the value of f .
Equivalently, if q(t) = f (x + td) then q′(0) < 0.

Indeed, by the chain rule, q′(0) = ∇f (x) · d < 0.
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Gradient descent algorithm

⋆ the direction which gives (asymptotically) the steepest descent is the opposite
of the gradient
Indeed, if |d | = |∇f | then by the Cauchy-Schwarz inequality

|d · ∇f | ≤ |d ||∇f | = |∇f |2

Therefore

d · ∇f ≥ −|∇f |2

and the minimum is attained for d = −∇f

Algorithm 1 (Generic gradient descent)

Initialization: Choose a starting point x0 and set i = 0
Step i :

compute f (xi ) and ∇f (xi )
choose a step size t and set

xi+1 = xi − t∇f (xi )
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Simplest algorithm: fixed step

⋆ fix the descent step t = t0, the tolerance ε > 0 and run the algorithm

Algorithm 2 (GD with fixed step)

Initialization: Choose a starting point x0 and set i = 0
Step i :

compute f (xi ) and ∇f (xi )
set

xi+1 = xi − t0∇f (xi )
check convergence

|∇f (xi )| < ε (the gradient is too small)
|xi+1 − xi | < ε (the position of the optimum does not change much)
|f (xi+1)− f (xi )| < ε (the objective function does not change much)

⋆ the algorithm is stopped in one of the following situations

convergence is reached

maximum number of iterations/function evaluations is reached

⋆ the choice of t0 is essential
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Quadratic case

⋆ simple example in where the solution is known
⋆ easy to visualize in 2D

f (x) =
1

2
xTAx − b · x

with A symmetric positive definite
⋆ recall that A is positive semi-definite if Ax · x ≥ 0 for every x
⋆ recall that A is positive definite if Ax · x ≥ 0 and Ax · x = 0⇒ x = 0.
Compute the gradient: two options

write down the formulas in terms of x = (x1, ..., xN) and compute the
partial derivatives (a bit long)

write f (x +h) for h small and identify the derivative from there as the linear
part of the decomposition, proving that what remains is o(h) as |h| → 0

⋆ in the end ∇f (x) = Ax − b
⋆ note that minimizing f amounts to solving the system Ax = b
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Concrete quadratic example

A =

(
1 0.4
0.4 2

)
, b = (1, 1), x0 = (−0.5, 0)

Step size t = 0.1: the algorithm converges
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Concrete quadratic example

A =

(
1 0.4
0.4 2

)
, b = (1, 1), x0 = (−0.5, 0)

Step size t = 0.001: no convergence before reaching max number of iterations...
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For which steps we have convergence?

⋆ In the quadratic case the GD algorithm is

xk+1 = xk − t(Axk − b)

⋆ subtracting the solution x∗ and using Ax∗ = b we get

(xk+1 − x∗) = (I − tA)(xk − x∗) = (I − tA)k(x0 − x∗).

⋆ it is well known that Bk → 0 if and only if ρ(B) < 1, where

ρ(B) = max
i=1,...,n

λi (B) is the spectral radius of B.

⋆ the GD algorithm converges if and only if max
i=1,...,n

|1− tλi (A)| < 1

⋆ a simple computation shows that GD converges if and only if t ∈ (0, 2/λn(A))

Beniamin Bogosel Computational Maths 2 25/70



The best convergence ratio

⋆ the ratio of convergence is ρ(I − tA)
Question: Minimize this ratio for t ∈ (0, 2/λn)
⋆ minimize the maximum of |1− tλi |, i = 1, ..., n

⋆ a brief graphical argument shows that

ρ(I − tA) = max{|1− tλ1|, |1− tλn|}
⋆ the spectral radius is minimized when t = 2/(λ1 + λn).
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Steepest Descent

⋆ In an ideal world, one would like to minimize q(t) = f (xi − t∇f (xi ))

Algorithm 3 (GD with Steepest Descent)

Initialization: Choose a starting point x0 and set i = 0
Step i :

compute f (xi ) and ∇f (xi )
choose the step size topt which minimizes the (one-dimensional) function
q(t) = f (xi − t∇f (xi )) and set

xi+1 = xi − topt∇f (xi )

⋆ note that the second step is an optimization problem in itself: if this cannot
be solved explicitly, this algorithm is not too efficient.

Beniamin Bogosel Computational Maths 2 27/70



Back to the quadratic function

⋆ f (x) = 1
2x

TAx − b · x , ∇f (x) = Ax − b
⋆ in the following denote gi = ∇f (xi )
⋆ q(t) = f (xi − tgi ) is a quadratic function of t
⋆ q′(t) = ∇f (xi − tgi ) · (−gi ) = −gT

i (Axi − b) + tgT
i Agi

⋆ a simple computation yields

q′(t) = 0 =⇒ topt =
gT
i gi

gT
i Agi

⋆ in particular the gradient at the next point xi − toptgi is orthogonal to the
actual gradient gi
⋆ note that the knowledge of the optimal descent step is strictly related to the
objective function
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What happens in practice

Proposition 14

When using the Gradient Descent algorithm with optimal descent step, any two
consecutive descent directions are orthogonal.
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Orthogonality of consecutive descent directions

Two ideas of proof:
1. q′(t) = 0⇐⇒ ∇f (xi − t∇f (xi )) · ∇f (xi ) = 0

2. Let di = ∇f (xi ) be the ith gradient descent direction. If di · di+1 ̸= 0 then
the previous step was not optimal!

di · di+1 > 0: then −di is still a descent direction

di · di+1 < 0: then di is still a descent direction

⋆ this brings us to one important idea

Other descent directions

The opposite of the gradient is not the only descent direction! For example,
every symmetric positive definite matrix A generates a descent direction

d = −A∇f (x).

but more on this fact later on in the course...
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Accelerate convergence: variable step

⋆ modify the step at each iteration, making sure that the obj. function decreases
⋆ trivial line-search algorithm

Algorithm 4 (GD with variable step)

Initialization: Choose a starting point x0, starting step t = t0, maximum step
tM , η+ > 1, η− < 1 and set i = 0
Step i :

compute f (xi ) and ∇f (xi )
set a temporary new point

xtemp = xi − t∇f (xi )
If f (xi+1) < f (xi )

Accept the iteration: xi+1 = xtemp

increase the step size: t = min{t · η+, tM}
Else

Refuse the iteration
decrease the step size: t = t · η−

check convergence (additionally you may check if t is too small)
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Back to the quadratic example

Step size t = 0.5, tM = 10, η+ = 1.1, η− = 0.8, ε = 10−6: the algorithm
converges faster

⋆ a simple trick accelerates the convergence
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GD with Armijo line-search

Algorithm 5 (GD with Armijo line-search)

Initialization: Choose a starting point x0, an initial step t = t0, η > 1,
m1 ∈ (0, 0.5) and set i = 0
Step i :

compute f (xi ) and ∇f (xi )
line-search: q(t) = f (xi − t∇f (xi )), set t = t0

while: m1q
′(0) < (q(t)− q(0))/t do t ← t/η

set

xi+1 = xi − t∇f (xi )

⋆ the above algorithm is similar to the GD with adaptive step, but is somewhat
stronger since it imposes a quantified descent condition
⋆ note that q′(0) < 0 so in the end

q(t)− q(0)

t
≤ m1q

′(0) < 0

which guarantees that q(t) < q(0)
⋆ as in the lectures regarding the 1D case it is also possible to formulate GD
algorithms with Goldstein-Price or Wolfe line-search routines
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Convergence of the GD algorithm

Proposition 15

For a given C 1 function f denote by Γf the set of its critical points

Γf = {x ∈ Rn : ∇f (x) = 0}
and suppose that f admits minimizers on Rn. Furthermore, suppose that the set
S = {x ∈ Rn : f (x) ≤ f (x0)} is bounded.
The trajectory (xn) of a GD algorithm with Steepest-Descent (Armijo,

Goldstein-Price, ...) line-search possesses limiting points and any such limiting
point belongs to the set of critical points Γf .

Proof idea for Steepest Descent:
⋆ we have min f ≤ f (xk+1) ≤ f (xk). Therefore (xk) ⊂ S
⋆ suppose that ∇f (xk) does not converge to zero and arrive at a contradiction
⋆ this kind of argument could be made rigorous using a point to set definition of
the optimization algorithm also in the case where line-search is used
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Limiting points of GD

Consider the ODE
d

dt
x(t) = −∇f (x(t)): the trajectory dictated by the gradient

⋆ Note that the gradient descent is just a discretization for this ODE!
⋆ ∇f (x(t)) = ∇f (x(t))−∇f (x∗) ≈ D2f (x∗)(x(t)− x∗)

−∇f (x(t)) · (x∗ − x(t)) ≈ (x(t)− x∗)TD2f (x∗)(x(t)− x∗).

We have the following situations:

A D2f (x∗) is positive definite: then x∗ can be a limiting point for GD as it is
a local minimum

B D2f (x∗) is negative definite: then the trajectory x(t) will never get close to
x∗ provided it does not start there.

C D2f (x∗) is indefinite: then x∗ is a saddle point of f . In order to reach x∗

you need to start in a particular set S of dimension less than n: practically,
this is extremely unlikely.
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Example: Saddle point

f (x , y) = (x2 − 1)2(y2 + 1) + 0.2y2

⋆ f ≥ 0 and f attains its minimum for (±1, 0)

⋆ (0, 0) is a saddle point: ∇f (0, 0) = (0, 0), D2f (0, 0) =

(
−4 0
0 2.4

)
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Behavior of GD with different initializations

⋆ Initializing on the ”ridge” that passes through the saddle point: x0 = (0, 1.5)

⋆ the algorithm converges to the saddle point
⋆ the gradient information ”does not see” that there are regions where the value
of f is lower
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Behavior of GD with different initializations (2)
⋆ A slightly perturbed initialization: x0 = (10−6, 1.5)

⋆ the algorithm converges to a local minimum and avoids the saddle point
⋆ Remember: avoid initializations that may be biased with respect to the
function f (e.g. x0 = 0, etc...). You may use a random number generator to
add some random noise to your initial condition. Also, repeat simulation with
multiple initializations in order to avoid saddle points and local minima
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Convergence of GD for quadratic functionals

⋆ Consider f (x) = 1
2x

TAx − bT x with A symmetric positive-definite and denote
by 0 < λmin < λmax the smallest and largest of its eigenvalues
⋆ the gradient is ∇f (x) = Ax − b and x∗ verifies Ax∗ = b
⋆ inaccuracy in terms of the objective:

E (x) = f (x)− f (x∗) =
1

2
(x − x∗)TA(x − x∗) =

1

2
∥x − x∗∥2A

⋆ denoting gi = Axi − b (the gradient at iteration i) we previously found that
the optimal step for the Steepest descent is

ti =
gi · gi
gT
i Agi

, which gives xi+1 = xi −
gi · gi
gT
i Agi

gi

⋆ explicit computation gives

E (xi+1) =

(
1− (gi · gi )2

[gT
i Agi ][gT

i A−1gi ]

)
E (xi )

Lemma: (Kantorovich) if Q is the condition number of a positive definite and
symmetric matrix A (ratio largest/smallest eigenvalues) then

(x · x)2

[xTAx ][xTA−1x ]
≥ 4Q

(1 + Q)2
.
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GD with steepest descent

⋆ Consider the norm given by A: ∥x∥2A = xTAx .

Proposition 16 (Convergence ratio: Steepest Descent, quadratic case)

The Steepest Descent algorithm applied to a strongly convex quadratic form f
with condition number Q converges linearly with the convergence ratio at most

1− 4Q

(1 + Q)2
=

(
Q − 1

Q + 1

)2

.

More precisely, we have

f (xN)−min f ≤
(
Q − 1

Q + 1

)2N

[f (x0)−min f ].

Another interpretation is:

∥xN − x∗∥A ≤
(
Q − 1

Q + 1

)N

∥x0 − x∗∥A.

⋆ note that if Q is large then the convergence is slow: this is observed in practice
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Convergence rate: α-convex case

Proposition 17

Suppose f : Rn → R is α-convex, i.e.

f (y) ≥ f (x) +∇f (x) · (y − x) +
α

2
|x − y |2

for some α > 0. Moreover, suppose that ∇f is Lipschitz, i.e. there exists a
constant L > 0 such that

|∇f (x)−∇f (y)| ≤ L|x − y |.
Then, if t0 is small enough, then the Gradient Descent algorithm with fixed step
t = t0 converges linearly to the global optimum.

Proof: As in the one dimensional case, simply define the fixed-point application

Ft(x) = x − t∇f (x),
which is a contraction for t small enough.
⋆ therefore, the recurrence xn+1 = Ft(xn) converges to the fixed point x∗ which
verifies ∇f (x∗) = 0 and is thus the global minimum.
⋆ the hypotheses could be somewhat relaxed, but the theoretical proof gets
more involved
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Interpretation

⋆ it is possible to prove that

|Ft(x)−Ft(y)| ≤ (1− 2αt + L2t2)1/2|x − y |
⋆ for t ∈ (0, 2α/L2) we have (1− 2αt + L2t2) ∈ (0, 1) so Ft is a contraction
⋆ in particular |xn+1 − x∗| ≤ (1− 2αt + L2t2)1/2|xn − x∗|
⋆ for t = α/L2 the contraction factor is (1− α2/L2)1/2

⋆ the eigenvalues of D2f (x) are in [α, L] so the condition number verifies

1 ≤ Q =
λmax

λmin
≤ L

α
.

⋆ the convergence is linear, but the ratio of convergence is (roughly) dictated by
the condition number of the Hessian D2f (x) at x∗

Important observation

Note that in the convergence estimates for the Gradient descent the condition
number Q is important for evaluating the speed of convergence!
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Optimal convergence speed

Proposition 18

Suppose f : Rn → R is α-convex, i.e.

f (y) ≥ f (x) +∇f (x) · (y − x) +
α

2
|x − y |2

for some α > 0. Moreover, suppose that ∇f is Lipschitz, i.e. there exists a
constant L > 0 such that

|∇f (x)−∇f (y)| ≤ L|x − y |.
Then, then the Gradient Descent algorithm with fixed step t converges linearly
to the optimum for all initalizations x0 if and only if t ∈ (0, 2/L).
Moreover, the optimal convergence speed is attained for the step
topt = 2/(L+ α) and the optimal convergence ratio γopt verifies

γopt =
1− α/L

1 + α/L
, ∥xn+1 − x∗∥ ≤ γopt∥xn − x∗∥.

⋆ the proof uses the Taylor remainder theorem with exact remainder
⋆ see the course MAP435 by G. Allaire!
⋆ the optimal convergence speed is still bad if the condition number L/α is big.
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Quadratic ill-conditioned problem

f (x) = xTAx , A =

(
0.1 0
0 2000

)
, x0 = (−0.5, 1.5),Q = 20000

Geometry and Initialization:
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Quadratic ill-conditioned problem

f (x) = xTAx , A =

(
0.1 0
0 2000

)
, x0 = (−0.5, 1.5),Q = 20000

Fixed step, 1000 iterations: algorithm seems to converge
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Quadratic ill-conditioned problem
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Quadratic ill-conditioned problem

f (x) = xTAx , A =

(
0.1 0
0 2000

)
, x0 = (−0.5, 1.5),Q = 20000

Fixed step, 105 iterations:
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Quadratic ill-conditioned problem

f (x) = xTAx , A =

(
0.1 0
0 2000

)
, x0 = (−0.5, 1.5),Q = 20000

Optimal step: good, but not applicable to general functions
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Quadratic ill-conditioned problem

f (x) = xTAx , A =

(
0.1 0
0 2000

)
, x0 = (−0.5, 1.5),Q = 20000

Rescale using the Hessian: look at the function in the right coordinates
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Conclusions for GD

the GD algorithms usually converge to local minimizers under very weak
hypothesis

in the strongly convex case we can prove that the rate of convergence is
linear

the speed of convergence is dictated by the condition number of f : in cases
where this condition number is large, the GD algorithm may fail to
converge rapidly enough

when the problem is ill-conditioned GD algorithms look at the optimization
path in the wrong coordinates: the key to accelerating the convergence is
to modify the geometry by rescaling some directions with respect to others!

source of ill conditioning in practice: components of the gradients are orders
of magnitude apart, different units of measure for different variables, etc.
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Before going further: constraints

⋆ often the minimization is subject to some constraints

min
x∈K

f (x)

where K is defined via some analytic relations or inequalities
⋆ the theory of Lagrange multipliers is presented further on in the course, but
there is a simple way to handle basic constraints: projection
⋆ suppose that K is closed and convex. Then for every y ∈ Rn the projection
PKy is well defined and solves the problem

PK (y)← min
x∈K
|x − y |

Algorithm 6 (Projected GD)

Consider K a closed and convex set in Rn and let x0 ∈ K be an initial point.
The solution of the problem

min
x∈K

f (x)

may be approximated using the iterative algorithm

xi+1 = PK (xi − t∇f (xi ))
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Convergence

Proposition 19 (Convergence of Projected GD)

Suppose that f is α-convex, differentiable and f ′ is L-Lipschitz. Then if the step
t verifies t ∈ (0, 2α/L2) then the GD algorithm with fixed step and projection
on K converges to the unique solution.

Proof: The same as for the GD algorithm using the fact that the projection is a
weak-contraction

|PKx − PKy | ≤ |x − y |
⋆ Projected GD may seem good, but is of limited practical use: the main
difficulty is how to compute PK which is in itself an optimization problem
⋆ particular cases which are easy:

K =
∏n

i=1[ai , bi ]: PK is just the truncation operator on each coordinate

K = B(c , r) is a ball in Rd : PK (x) = c + r(x − c)/|x − c |
K = {x :

∑n
i=1 vixi = c}: affine hyperplanes - projection can be computed

analytically
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Projection on affine constraints

Suppose K = {x : Ax = b} where A is an m × n matrix of rank m and b ∈ Rm.
We are interested in solving

PK (y) = argminx∈K |x − y |2

Existence, uniqueness: x 7→ |x − y |2 is ”∞ at infinity” and strictly convex,
K is convex

Euler inequality: ⟨∇x |x∗ − y |2, v⟩ ≥ 0 for every v ∈ kerA

x∗ − y ∈ (kerA)⊥ = ImAT (Exercise!)

x∗ = y + ATλ (λ ∈ Rm contains the Lagrange multipliers)

Ax = b ⇒ b = Ax∗ = Ay + AATλ so finally λ = (AAT )−1(b − Ay)

In the end, use λ to find x∗:

x∗ = y + AT (AAT )−1(b − Ay).
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Constraints: second method

⋆ we can eliminate the constraints by including them into the function to be
minimized

min
C(x)=0

f (x) becomes min
x∈Rn

f (x) +
1

ε
|C (x)|2 (ε > 0)

⋆ we obtain an optimization problem without constraints for which classical
algorithms can be applied

Proposition 20 (Constraints via Penalization)

Consider the problem (P) defined by min
C(x)=0

f (x), where C is a continuous

function C : Rn → Rp defining the constraints. Suppose that f is convex,
continuous and ∞ at infinity.
Define now for ε > 0 the problems (Pε) by min

x∈Rn
f (x) + 1

ε |C (x)|2. The problems

(Pε) admit minimizers denoted by xε. Then every limit point of xε as ε→ 0
converges to a solution of (P).

Proof: Exercise!
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Conclusion: constraints

for simple constraints: projected gradient algorithm works fine

it is possible to eliminate the constraints using a penalization

simple to implement in practice if f and C are smooth
theoretical convergence is valid for ε → 0: in practice we never get to 0...
as ε grows, the constraint term 1

ε
|C(x)|2 may dominate in (Pε) so we no

longer advance in a direction which minimizes (P)
in practice we often start with ε large and solve the problem multiple times,
diminishing ε and starting from the previous solution.

we will come back later to the optimality conditions related to constraints
related to the Lagrange multipliers
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Optimization in higher dimensions

Theoretical aspects
Gradient descent methods
Newton’s method
Other methods
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Towards Newton’s method

⋆ the anti-gradient direction d = −∇f (x): the best asymptotic descent direction
⋆ that does not mean it is the best choice in all applications!
⋆ other descent directions exist: any direction such that d · ∇f (x) < 0 is a
descent direction.
Examples:

d = − ∂f
∂xi

(x)ei

d = −D∇f (x), where D is a diagonal matrix with positive entries

d = −A∇f (x) (or −A−1∇f (x)) where A is a positive-definite matrix

Why these work?

f (x + td) = f (x) + t∇f (x) · d + o(t) = f (x)− t(∇f (x))TA∇f (x)︸ ︷︷ ︸
≥0

+ o(t)
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Recall Wolfe’s condition

⋆ m1,m2 ∈ (0, 1) are chosen constants
⋆ d is a descent direction at x : d · ∇f (x) < 0, q(t) = f (x + td)
⋆ recall that q′(0) = ∇f (x) · d < 0

a) q(t)−q(0)
t ≤ m1q

′(0) and q′(t) ≥ m2q
′(0) (then we have a good t)

b) q(t)−q(0)
t > m1q

′(0) (then t is too big)

c) q(t)−q(0)
t ≤ m1q

′(0) and q′(t) < m2q
′(0) (then t is too small)

⋆ Interpretation of q′(t) ≥ m2q
′(0): the slope should be ”less negative” at the

next point
⋆ If xi+1 = xi + tidi with ti verifying the above then:

∇f (xk+1) · dk ≥ m2∇f (xk) · dk .
⋆ define θk as the angle between dk and −∇f (xk):

cos θk =
−∇f (xk) · dk
|∇f (xk)||dk |

.
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Zoutendijk condition

Theorem 21

Consider the iteration xi+1 = xi + tidi where di · ∇f (xi ) < 0 and ti verifies the
Wolfe conditions. Suppose that f is of class C 1 on Rn and is bounded from
below. Assume also that ∇f is L-Lipschitz, i.e.

|∇f (x)−∇f (y)| ≤ L|x − y |, for all x , y ∈ Rn.

Then ∑
k≥0

cos2 θk |∇f (xk)|2 <∞.

⋆ the proof is rather straightforward (in the Notes)
⋆ Immediate consequence: if di = −∇f (xi ) then θi = 0 and |∇f (xi )| → 0.
⋆ if the descent direction is chosen such that θk is bounded away from 90◦, i.e.
cos θk ≥ δ > 0 then |∇fk | → 0.
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The basic Newton Method

⋆ as in the 1D case, look at the second order Taylor expansion

f (x + h) = f (x) +∇f (x) · h +
1

2
hTD2f (x)h + o(|h|2)
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The basic Newton Method

⋆ as in the 1D case, look at the second order Taylor expansion

f (x + h) ≈ f (x) +∇f (x) · h +
1

2
hTD2f (x)h

⋆ then minimize the quadratic function in order to find the new iterate

min
h

(
f (x) +∇f (x) · h +

1

2
hTD2f (x)h

)
D2f (x)h +∇f (x) = 0 =⇒ h = −[D2f (x)]−1∇f (x)

Algorithm 7 (Newton’s method)

Given a starting point x0 run the recurrence

xi+1 = xi − [D2f (xi )]
−1∇f (xi ).
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Remarks

Inconvenients:

the method is not necessarily well-defined: is D2f (xi ) invertible at xi?

the Taylor expansion is local: are we sure that [D2f (xi )]
−1∇f (xi ) is small?

is the value of the function decreasing: f (xi+1) < f (xi )?

is d = [D2f (xi )]
−1∇f (xi ) a descent direction? Yes, if D2f (xi ) is

positive-definite!

note that [D2f (xi )]
−1∇f (xi ) implies the resolution of a linear system

(recall that for large matrices we NEVER compute inverses!) - this might
be costly if the number of variables is large

Advantage: when the method converges, the convergence is quadratic!

Theorem 22 (Quadratic convergence: Newton method)

If x∗ is a non-degenerate minimizer for the function f : Rn → R, i.e. D2f (x∗) is
positive definite, and the starting point x0 is close enough to the optimum x∗

then Newton’s algorithm converges quadratically to x∗.
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Newton-Rhapson Method

⋆ another point of view: solve nonlinear systems
g1(x1, ..., xn) = 0

...
. . .

...
gn(x1, ..., xn) = 0

⋆ denote g(x) = (g1(x), ..., gn(x)) and Dg(x) = (∂gi∂xj
) (the Jacobian matrix)

⋆ the Newton iteration

xn+1 = xn − (Dg(xn))
−1g(x)

converges to a zero x∗ of g quadratically provided that x0 is close to x∗ and
Dg(x∗) is non-degenerate.

⋆ note that the Newton method corresponds to the Newton-Rhapson method
applied for finding the zeros of g = ∇f

Beniamin Bogosel Computational Maths 2 57/70



Fixing Newton’s method

1. Use a line-search procedure. If D2f (x) is positive definite then the Newton
direction d = −(D2f (x))−1∇f (x) is a descent direction.

Proposition 23 (Newton with line-search)

Let f be a C 2 function and α-convex function. Let x0 be such that the level set
S = {x : f (x) ≤ f (x0)} is bounded. Then the Newton method with Wolfe
line-search converges to the unique global minimizer of f .

Proof: A lower bound for cos θk can be found in terms of the eigenvalues of
D2f (x). The sequence of iterates converges to a critical point. Convergence is
not quadratic if the step t is smaller than 1!

2. Variable metric methods. Any positive definite matrix A defines a new
metric. There are choices of A for which convergence towards the minimum
may be faster.
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Discussion

⋆ gradient descent direction as the minimizer of a quadratic function

f (x + d) ≈ f (x) + dT∇f (x) + 1

2
dTd

⋆ the quadratic approximation is minimized by

d∗ = −∇f (x)
Remarks:
⋆ Note that the gradient method is the same as the Newton method when the
Hessian D2f (x) is the identity matrix.
⋆ This is bad, especially if the Hessian matrix is ill conditioned
⋆ The current gradient does not necessarily point towards the minimizer
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Discussion: change the metric

⋆ change the metric: change the coordinate system around x
⋆ let A be a symmetric positive-definite matrix

f (x + d) ≈ f (x) + dT∇f (x) + 1

2
dTAd

⋆ the quadratic approximation is minimized by

d = −A−1∇f (x)
⋆ how to choose A?
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What metric to choose?

⋆ For f (x) = 1
2x

TAx − bT x change the variable to ξ = A1/2x

⋆ Recall that A1/2 = P−1
√
DP where A = P−1DP is a diagonalization of A.

⋆ Then denote g(ξ) = f (x) = f (A−1/2ξ) = 1
2ξ

T ξ − bTA−1/2ξ and note that
this function is well conditioned
⋆ Write the GD algorithm for ξ 7→ f (A−1/2ξ):

ξn+1 = ξn − t∇g(ξn)
ξn+1 = ξn − tA−1/2∇f (A−1/2ξn)

Then multiplying by A−1/2 we get

xn+1 = xn − tA−1∇f (xn).

⋆ Choosing the descent direction −A−1∇f (x) is equivalent to performing a GD
step in the new metric (coordinate system)!

Practical remark: the optimal metric given by A1/2 is not known! Finding it
may require more computational effort than the optimization problem

⋆ in practice the metric A is changed iteratively (see the next course)
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General algorithm

incorporating all previous algorithms...

Algorithm 8 (Generic Variable Metric method)

Choose the starting point x0
Iteration i :

compute f (xi ),∇f (xi ) and eventually D2f (xi )

choose a symmetric positive-definite matrix Ai : compute the new direction

di = −A−1
i ∇f (xi )

perform a line-search from xi in the direction di giving a new iterate

xi+1 = xi + tidi = xi − tiA
−1
i ∇f (xi ).

⋆ Ai = Id gives the Gradient Descent method
⋆ Ai = D2f (xi ) gives the Newton method with line search (only when D2f (xi ) is
positive-definite)
⋆ such an algorithm will converge to a critical point provided the set
{f (x) ≤ f (x0)} is bounded. The key point is that line-search guarantees
descent: f (xi+1) < f (xi ) when not at a critical point
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Modified Newton method

Idea: Choose Ai based on D2f (xi ) by eventually changing the Hessian matrix
to make it positive definite

1 Choose a threshold δ > 0 and compute the spectral decomposition

D2f (xi ) = UiDiU
T
i .

If a diagonal value of Di is smaller than δ then replace it with δ.
−→ Large arithmetic cost: 2n3 to 4n3 arithmetic operations

2 Levenberg-Marquardt modification: Ai = D2f (xi ) + εId . Choose ε such
that Ai is positive definite by using a bisection scheme.

Test the positive-definiteness using the Cholesky Factorization: Ai = LDLT

- arithmetic cost: n3/6

3 Use a modified Cholesky factorization so that the resulting diagonal matrix
has entries bigger than δ > 0.

⋆ all these techniques are too costly for large n
⋆ we lose quadratic convergence as soon as Ai ̸= D2f (xi ) or the corresponding
line-search step is smaller than 1
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Conclusion: Newton’s method

quadratic convergence when we start close to a non-degenerate minimizer

in order to guarantee convergence in general a line-search procedure should
be used

if D2f (xi ) is not positive-definite then multiple ways exist to ”correct the
algorithm” but they are all costly: O(n3)

a linear system should be solved at each iteration

the cost becomes too big if n is very large

even the RAM memory usage is too heavy for large n: O(n2) when the
Hessian is full
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Optimization in higher dimensions

Theoretical aspects
Gradient descent methods
Newton’s method
Other methods
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Gauss-Newton Method

⋆ non-linear least squares: assume m ≥ n

f (x) =
m∑
j=1

rj(x)
2

⋆ define the Jacobian matrix

J(x) =


∂r1
∂x1

· · · ∂r1
∂xn

...
. . .

...
∂rm
∂x1

· · · ∂rm
∂xn


⋆ note that ∇f (x) = 2(J(x))T r where r = (r1, ..., rm)
⋆ Hessian computation: D2f (x) = 2J(x)T J(x) + something small...
⋆ choose to approximate the Hessian by 2J(x)T J(x) which is positive definite
when J is of maximal rank
⋆ Therefore we get the Gauss-Newton method

xi+1 = xi − γi (J(xi )
T J(xi ))

−1JT (xi )r(xi )

where either γi = 1 or a line-search is performed
⋆ as before one must check if −(J(xi )T J(xi ))−1JT (xi )r(xi ) is a descent direction
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Example 1

⋆ the Rosenbrock function: f (x) = 100(y − x2)2 + (1− x)2 =⇒
r1 = 10(y − x)2, r2 = (1− x)

⋆ J(x) =

(
−20x 10
−1 0

)
⋆ true Hessian vs Gauss-Newton approx:

H(x) =

(
1200x2 − 400y + 2 −400x

−400x 200

)
2JT J =

(
800x2 + 2 −400x
−400x 200

)
⋆ Numerically this converges very fast, using only gradient information
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Example 2: Triangulations

Suppose you know the coordinates (xi , yi ) of three antennas and the distances di
of a cellphone to these antennas, find the coordinates (x0, y0) of the cellphone.

⋆ least squares formulation:

f (x , y) =
3∑

i=1

r2i , ri (x , y) = di −
√

(x − xi )2 + (y − yi )2.

⋆ Gauss-Newton generally converges faster than GD here
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Further examples

⋆ Other important applications: least squares are often used when fitting models
to data

f (x) =
m∑
i=1

ri (x)
2 =

m∑
i=1

(y(si , x)− yi )
2

where y(s, x) is a non-linear function

Practical session:
⋆ find parameters of a population model: exponential model, logistic model
⋆ find parameters for a temperature model: T (t) = A sin(wt + ϕ) + C
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Nelder-Mead method

⋆ gradient free

Algorithm 9 (Nelder-Mead method)

Current test points x1, ..., xn+1 ∈ Rn

1 Order: relabel points such that f (x1) ≤ ... ≤ f (xn+1)

2 Compute centroid x0 of points x1, ..., xn

3 Reflection: compute xr = x0 + α(x0 − xn+1) with α > 0. If
f (x1) ≤ f (xr ) < f (xn) then replace xn+1 by xr and go to Step 1

4 Expansion: if f (xr ) < f (x1) compute xe = x0 + γ(xr − x0) with γ > 1.
If f (xe) < f (xr ) replace xn+1 by xe and go to Step 1
Else replace xn+1 by xr and go to Step 1

5 Contraction: If f (xr ) ≥ f (xn) then compute xc = x0 + ρ(xn+1 − x0) with
ρ ∈ (0, 0.5]. If f (xc) < f (xn+1) then replace xn+1 by xc and go to Step 1

6 Shrink: Replace all points except x1 by xi = x1 + σ(xi − x1). Go to Step 1

⋆ Standard parameters: α = 1, γ = 2, ρ = 1/2, σ = 1/2.
⋆ Termination criterion: Simplex too small, variation of f small, etc.
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