@ Theoretical aspects

@ Gradient descent methods
@ Newton's method

@ Other methods

Beniamin BOGOSEL

T

Higher dimensions

* we consider functions f defined on K = O where O C R" is open, smooth
and connected.
* the objective is to solve problems of the form

min f(x)
* most of the theoretical aspects regarding existence and uniqueness of
minimizers are similar to the one dimensional case: however, all partial
derivatives need to be taken into account, and the notions of gradient and
Hessian are essential
* once a descent direction is found, we come back to one-dimensional
algorithms when looking along this direction in order to decrease f

Beniamin BOGOSEL Computational Maths 2

2/70

@ Theoretical aspects

@ Gradient descent methods
@ Newton's method

@ Other methods

Beniamin BOGOSEL

R L s

Partial derivatives

* for simplicity, some results are stated for f : R” — R, but they apply to f
defined on more restricted " nice” domains
* as usual, we denote by e,/ = 1,..., n the canonical basis of R"

e =(..,0,1,0,...) only component i is non-zero equal to 1

Definition 1 (Partial derivatives, gradient, Hessian)

Consider a function f : R” — R. The partial derivative with respect to x; is
g(x) i f(x + tej) — f(x)
ox; t—0 t
In practice, g—; is computed by differentiating f w.r.t x;, supposing that the
other coordinates are constant.
The gradient vector contains all partial derivatives: V£ (x) = (g—)fl_(x)),-zlw,,,.

The Hessian matrix contains all combinations of two successive partial
2

derivatives: D?f(x) = (%)i,j:l,...,n-

v

* note that f is of class C? then D?f(x) is a symmetric matrix (result known as
Schwarz's theorem)

Beniamin BOGOSEL Computational Maths 2

4/70

Basic examples

L f(x)=|x]|? =2 + ... + x2

Vf(x) =2x, D*f(x)=2Id
where Id is the identity matrix.
2. f(x) = %XTAX —bTx
Vf(x) = Ax — b, D*f(x)=A

Beniamin BOGOSEL Computational Maths 2

5/70

Directional and Fréchet derivatives

Definition 2 (Directional (Gateaux) derivative)

f : R" — R is differentiable at x in direction d if the one dimensional function
t — f(x + td) is differentiable at t = 0.

Definition 3 (Fréchet derivative)

f :R"” — R is Fréchet differentiable at x if there exists a bounded linear
mapping L : R" — R such that for h € R” with |h| small enough we have

F(x + h) = £(x) + Lh+ o(h)

* the application L is denoted by f’(x). When f is C! we simply have

f'(x)(h) = Vf(x) - h.

* in general Fréchet differentiability implies the existence of directional
derivatives, but the converse is false

* if the partial derivatives exist and are continuous then the function is Fréchet
differentiable

* for more subtle differences and implications consult a real analysis course: e.g.
[Differential Calculus, by Henri Cartan]

Beniamin BOGOSEL Computational Maths 2 6/70

Taylor expansion in higher dimensions

Consider f : R” — R. Then
e if fis of class C!
f(x+ h) = f(x)+ f'(x)(h) + o(|h]) as || — 0
f(x+h)="rf(x)+ VF(x)-h+o(lh]) as |h| = 0
e if fis of class C?

Fx+) = Fx) + F()(B) + o /() (b, h) + o [P as [h] = 0

1
f(x+h) = f(x) + VF(x)-h+ 5hTD2f(x)h + o(|h?) as |h| — 0

* again it is possible to write the remainder in Lagrange form
* recall that the second derivative (in the sense of Fréchet) of a function is a
bilinear form. Why? For each differentiation you need to choose a direction...

compute first f'(x)(h1) and then (f'(x)(h1)) (h2) — " (x)(h1, h2)

Beniamin BOGOSEL Computational Maths 2 7/70

Existence of solutions

In the same way as in dimension one we have the following

Proposition 4

* If f is continuous it attains its extremal values on compact sets.
* If f : R" — R is continuous and "infinite at infinity” i.e.

|f(x)] = o0 as |x| = oo
then f admits minimizers on R".

Beniamin BOGOSEL Computational Maths 2 8/70

Positive (definite) matrices

Definition 5
A matrix A € M,(R) is called:
o positive definite if for every vector x € R" \ {0}
xTAx >0

@ positive semi-definite if for every vector x € R”
xT Ax >0

* these notions are often useful when dealing with optimization problems
* when A is also symmetric, it is possible to give a characterization of the above
definition in terms of the eigenvalues of A:

@ A is positive definite if all its eigenvalues are positive
@ A is positive semi-definite if all its eigenvalues are non-negative

* recall that symmetric matrices are diagonalizable and there exists an
orthonormal basis made of eigenvectors

Beniamin BOGOSEL Computational Maths 2

9/70

Basic optimality conditions

Proposition 6

Let f : R™ — R be a C! function. If x* is a local minimum (maximum) of f
then Vf(x*) = 0. Moreover, if f is of class C* then the Hessian matrix
D?f(x*) is positive (negative) semi-definite.

Conversely, if f is of class C?, Vf(x*) = 0 and D*f is positive semi-definite in a

neighborhood of x* then x* is a local minimum of f.
As a consequence, if f is of class C?, Vf(x*) = 0 and D*f(x*) is positive
definite then x* is a local minimum of f.

* The proof comes immediately from the Taylor expansion formulas.

Beniamin BOGOSEL Computational Maths 2

10/70

Euler inequalities

% what happens when we minimize on a closed convex set K C R9?

Proposition 7

Let K be a convex set and x* be a minimum of f on K. Suppose that J is
differentiable at x*. Then for every x € K we have

Vi(x*)-(x—x*) > 0.

* Proof: just write the directional derivative at x* in the direction x — x*.
* compare with the 1D case!

Beniamin BOGOSEL Computational Maths 2 11/70

Convex functions again...

* In higher dimensions convex functions give the same advantages regarding the
existence, unicity and convergence of algorithms as in dimension one.

Definition 8 (Convex functions)

A function f : R” — R is said to be convex if for every x,y € R" and for every
t € (0,1) we have

f(tx 4+ (1 — t)y) < tF(x) 4+ (1 — t)f(y)

* for strict convexity the inequality is strict.
Equivalent definitions: f is convex iff

o f is below any affine section
e f is above its tangent planes

@ any 1D "slice” is a convex 1D function

Beniamin BOGOSEL Computational Maths 2 12/70

Useful characterizations

Proposition 9

Let f : R" — R be a C! function. The following statements are equivalent:
f is convex
f(y) > f(x) + VFf(x) - (y — x), Vx,y € R"
(VE(x) = V£(y)) - (x—y) 20, Vx,y € R"

Proof: Exercise!

Proposition 10

Let f : R — R be a C? function. Then f is convex if and only if the Hessian
matrix D*f is positive semi-definite everywhere.

* we say that f is a-convex for some v > 0 if the Hessian matrix has
eigenvalues > o > 0.

Beniamin BOGOSEL Computational Maths 2 13/70

Optimality conditions

* for convex functions, the usual necessary optimality conditions are also
sufficient

Proposition 11

* Let f : R" — R be a convex function and x* be a point such that
Vif(x*) =0. Then x* is a global minimum of f.

* Let f : K — R be a convex function defined on a convex subset K of R".
Then if x* € K verifies

Vi(x*)-(x—x*)>0
for every x € K then x* is a global minimum of f on K.

Proof: f(x) > f(x*) + VFf(x*) - (x — x*), ¥x € K

Beniamin BOGOSEL Computational Maths 2 14/70

Optimization without Calculus

[Charles L. Byrne, A first Course in Optimization]
[Niven, I. Maxima and Minima Without Calculus|

* sometimes, solutions can be found without the need of calculus or algorithms
Basic ingredients.

@ x2 > 0: the most basic inequality

o AM-GM:

X1+ ...+ X
X,'20:>¥
n

> (xl...x,,)l/n
@ Generalized AM-GM (or just convexity of the — log function):
n
x; > 0,a; > 0723,- =1= x{"..x;" < a1x1 + ... + apxy

i=1
e Cauchy-Schwarz: a;, b; € R

n 2 n n
(Za,-b,-) < (Za,?> <Zb,-2> or |a-b| < [a||b]
i=1 i=1 i=1

Beniamin BOGOSEL Computational Maths 2 15/70

Examples

minimize f(x,y) = % + % + xy on (0, 00)?

maximize f(x,y) = xy(72 — 3x — 4y)

minimize f(x,y) = 4x + % + 47}/ on (0,00)?

maximize f(x,y,z) = 2x + 3y + 6z when x> + y2 + 22 =1
maximize f(x,y,z) =2x + 3y + 6z when xP + yP +z°P =1, p > 1.

Beniamin BOGOSEL Computational Maths 2 16/70

Example 1

12 1
* minimize f(x,y) = — + 18 + xy on (0, 00)?
X

Since we are dealing with positive numbers apply AM-GM:
1/3
12 18 1218
++xy23~<xy> =3-6=18.
y Xy

* Therefore the lower bound of the above expression is 18
* it is attained when 12 = % = xy leading to x =2,y = 3.
* the same technique can be applied for Examples 2 and 3

Beniamin BOGOSEL Computational Maths 2 17/70

Example 4

* maximize f(x,y,z) = 2x + 3y + 6z when x> + y? + 72 =1
Here it is possible to use Cauchy-Schwarz:

(2x +3y +62)2 < (22432 +6%) (x> + y? + 2%) = 49
with equality of (x,y,z) and (2,3,6) are colinear.

* recognize cases when the solution can be found explicitly.
* provide examples on which to test numerical algorithms!

Beniamin BOGOSEL Computational Maths 2 18/70

@ Theoretical aspects

@ Gradient descent methods
@ Newton's method

@ Other methods

Beniamin BOGOSEL

R

Basic idea

Suppose that f is C! (at least). Then the Taylor expansion says
f(x+ h) = f(x)+ VF(x)-h+o(|h]),|h] =0

Beniamin BOGOSEL Computational Maths 2 20/70

Basic idea

Suppose that f is C! (at least). Then the Taylor expansion says
f(x+h) = f(x)+ VF(x)-h
With this in mind, the following definition is natural

Definition 12 (Descent direction)

A direction d € R” is called a descent direction for f at x if Vf(x)-d <0

This gives the following natural result

Proposition 13

If d is a descent direction for f at x, then going from x along d with a small
step increment decreases the value of f.
Equivalently, if q(t) = f(x + td) then ¢'(0) < 0.

Indeed, by the chain rule, ¢’(0) = Vf(x)-d < 0.

Beniamin BOGOSEL Computational Maths 2 20/70

Gradient descent algorithm

* the direction which gives (asymptotically) the steepest descent is the opposite
of the gradient
Indeed, if |d| = |V] then by the Cauchy-Schwarz inequality
|d - V| <|d||VFf] = |VF[
Therefore
d-Vf>—|VFf|?
and the minimum is attained for d = —Vf

Algorithm 1 (Generic gradient descent)

Initialization: Choose a starting point xo and set i = 0
Step i:

o compute f(x;) and Vf(x;)
@ choose a step size t and set
Xit1 = Xj — tVf(X,')

Beniamin BOGOSEL Computational Maths 2 21/70

Simplest algorithm: fixed step

* fix the descent step t = tp, the tolerance £ > 0 and run the algorithm

Algorithm 2 (GD with fixed step)
Initialization: Choose a starting point xq and set i = 0
Step i:
e compute f(x;) and Vf(x;)
@ set
Xit1 = Xi — t()Vf(X,')
@ check convergence

o |Vf(x)| < € (the gradient is too small)
o |xit1 — xi| < & (the position of the optimum does not change much)
o |f(xi+1) — f(x;)| < € (the objective function does not change much)

* the algorithm is stopped in one of the following situations
@ convergence is reached
@ maximum number of iterations/function evaluations is reached

* the choice of ty is essential

Beniamin BOGOSEL Computational Maths 2

22/70

Quadratic case

* simple example in where the solution is known
* easy to visualize in 2D

1
f(x) = EXTAX —b-x
with A symmetric positive definite

* recall that A is positive semi-definite if Ax - x > 0 for every x
* recall that A is positive definite if Ax-x >0and Ax-x=0=x=0.
Compute the gradient: two options

o write down the formulas in terms of x = (xg, ..., xy) and compute the
partial derivatives (a bit long)

e write f(x+ h) for h small and identify the derivative from there as the linear
part of the decomposition, proving that what remains is o(h) as |h| — 0

* in the end Vf(x) = Ax — b
* note that minimizing f amounts to solving the system Ax = b

Beniamin BOGOSEL Computational Maths 2 23/70

Concrete quadratic example

1 04
A:<0_4 2>,b:(1,1),x0:(—0.5,0)

Step size t = 0.1: the algorithm converges

Number of iterations. = 66

2.0 I
/\ » 36
1.5 1
3.0
1.0+ 2.4
0.5 1 :’ 1.8
—r 1.2
0.0 .
T 0.6
—0.5 A1]
—r 0.0
-1.0 T T T T T —--0.6

‘210 -05 00 0.5 1.0 1.5 2.0

Beniamin BOGOSEL Computational Maths 2 24/70

Concrete quadratic example

1 04

A:< >,b:(1,1),x0:(—0.5,0)

04 2

Step size t = 0.001: no convergence before reaching max number of iterations...

2.0

15

0.5

0.0

-1.0

Beniamin BOGOSEL

nb iter. = 2001

1.0

10 05 00 05 10 15 20

r4.0

r3.2

r2.4

r1.6

r 0.8

r 0.0

- -0.8

Computational Maths 2 24/70

For which steps we have convergence?

* In the quadratic case the GD algorithm is
Xk+1 = xk — t(Axk — b)
* subtracting the solution x* and using Ax* = b we get
(xks1 — x*) = (I = tA) (xi — x*) = (I — tA)K(xo — x*).
* it is well known that BX — 0 if and only if p(B) < 1, where
p(B) = max \;(B) is the spectral radius of B.

=L...n

* the GD algorithm converges if and only if _max |1 —tX\(A) <1
* a simple computation shows that GD converg’esj if and only if t € (0,2/A,(A))

Beniamin BOGOSEL Computational Maths 2 25/70

The best convergence ratio

* the ratio of convergence is p(/ — tA)
Question: Minimize this ratio for t € (0,2/A,)
* minimize the maximum of |1 —tX\;|, i=1,...,n

10

0.8

0.6

0.4

02— I1=pN|
= |1 = pdo|
— |1 — p\
0.0 | s
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

* a brief graphical argument shows that
p(l — tA) = max{|1 — tA1],|1 — tAn|}
* the spectral radius is minimized when t = 2/(A1 + Ap).

Beniamin BOGOSEL Computational Maths 2 26/70

Steepest Descent

* In an ideal world, one would like to minimize q(t) = f(x; — tV£(x;))

Algorithm 3 (GD with Steepest Descent)

Initialization: Choose a starting point xg and set i = 0
Step i:
e compute f(x;) and Vf(x;)
@ choose the step size tope which minimizes the (one-dimensional) function
q(t) = f(x; — tVIf(x;)) and set
Xit1 = Xj — foptVf(X,')

* note that the second step is an optimization problem in itself: if this cannot
be solved explicitly, this algorithm is not too efficient.

Beniamin BOGOSEL Computational Maths 2 27/70

Back to the quadratic function

* f(x) = ixTAx —b-x, Vf(x) = Ax—b

% in the following denote g; = V£ (x;)

* q(t) = f(x; — tg;) is a quadratic function of ¢

xq'(t) =Vf(x —tg) (—&) = —g' (Ax; — b) + tg;]” Ag

* a simple computation yields

&' &

g,-TAg,-

* in particular the gradient at the next point x; — top:g; is orthogonal to the
actual gradient g;

* note that the knowledge of the optimal descent step is strictly related to the
objective function

q/(t) = O = topt =

Beniamin BOGOSEL Computational Maths 2 28/70

What happens in practice

Number of iterations. = 10

2.0 T 4.0
1.04 :7 2.4
0.5 :, 1.6

0.8

0.0

K T T T T T —- 0.8
-1.0 -0.5 0.0 0.5 1.0 1.5 2.0

Proposition 14

When using the Gradient Descent algorithm with optimal descent step, any two
consecutive descent directions are orthogonal.

Beniamin BOGOSEL Computational Maths 2 29/70

Orthogonality of consecutive descent directions

Two ideas of proof:
1. ¢'(t) =0 <= VI (x — tVFf(x)) - VFf(x) =0
2. Let d; = Vf(x;) be the ith gradient descent direction. If d; - dj11 # 0 then
the previous step was not optimal!
@ d;-diy1 > 0: then —d; is still a descent direction
@ d; - diy1 < 0: then d; is still a descent direction

* this brings us to one important idea

Other descent directions

The opposite of the gradient is not the only descent direction! For example,
every symmetric positive definite matrix A generates a descent direction

d = —AVf(x).

but more on this fact later on in the course...

Beniamin BOGOSEL Computational Maths 2 30/70

Accelerate convergence: variable step

* modify the step at each iteration, making sure that the obj. function decreases
* trivial line-search algorithm

Algorithm 4 (GD with variable step)

Initialization: Choose a starting point xg, starting step t = tg, maximum step
tv, N+ >1,m— <1 andseti=0
Step i:
e compute f(x;) and V£ (x;)
@ set a temporary new point
Xtemp = Xi — tVf(X,')
o If f(X,'+1) < f(X,')
o Accept the iteration: X1 = Xtemp
o increase the step size: t = min{t -7, tm}
o Else

o Refuse the iteration
o decrease the step size: t =t -7_

@ check convergence (additionally you may check if t is too small)

Beniamin BOGOSEL Computational Maths 2 31/70

Back to the quadratic example

Step size t = 0.5, ty = 10,7, = 1.1,n_ = 0.8, = 107°: the algorithm
converges faster

Number of iterations. = 23

2.0 rT40
1.0 :» 2.4
05 : 16
0.0 : 0.8
05 : 0.0
10 . ; : -0.8

-1.0 -05 0.0 0.5 1.0 1.5 2.0

* a simple trick accelerates the convergence

Beniamin BOGOSEL Computational Maths 2 32/70

GD with Armijo line-search

Algorithm 5 (GD with Armijo line-search)

Initialization: Choose a starting point xo, an initial step t = ty, n > 1,
my € (0,0.5) and set i =0
Step i:

o compute f(x;) and Vf(x;)

o line-search: q(t) = f(x; — tVf(x;)), set t = ty

o while: m14’(0) < (q(t) — q(0))/t do t <« t/n

@ set

Xit1 = X; — tVF(x;)

v

* the above algorithm is similar to the GD with adaptive step, but is somewhat

stronger since it imposes a quantified descent condition

* note that ¢’(0) < 0 so in the end
q(t) — q(0)

t

which guarantees that g(t) < g(0)

* as in the lectures regarding the 1D case it is also possible to formulate GD

algorithms with Goldstein-Price or Wolfe line-search routines

<mq(0)<0

Beniamin BOGOSEL Computational Maths 2 33/70

Convergence of the GD algorithm

Proposition 15

For a given C! function f denote by I'¢ the set of its critical points
e ={x eR":Vf(x) =0}
and suppose that f admits minimizers on R". Furthermore, suppose that the set
S={xeR": f(x) < f(x)} is bounded.
The trajectory (x,) of a GD algorithm with Steepest-Descent (Armijo,
Goldstein-Price, ...) line-search possesses limiting points and any such limiting
point belongs to the set of critical points I¢.

Proof idea for Steepest Descent:

* we have minf < f(xyy1) < f(xk). Therefore (x¢) C S

* suppose that Vf(xx) does not converge to zero and arrive at a contradiction
* this kind of argument could be made rigorous using a point to set definition of
the optimization algorithm also in the case where line-search is used

Beniamin BOGOSEL Computational Maths 2 34/70

Limiting points of GD

d
Consider the ODE Ex(t) = —Vf(x(t)): the trajectory dictated by the gradient

* Note that the gradient descent is just a discretization for this ODE!
x VI(x(t)) = VF(x(t)) — VF(x) = D>f(x*)(x(t) — x*)

=VE(x(1)) - (x* = x(t) = (x(t) = x*) T D> (x")(x(t) — x*).

We have the following situations:

A D?*f(x*) is positive definite: then x* can be a limiting point for GD as it is
a local minimum

B D?f(x*) is negative definite: then the trajectory x(t) will never get close to
x* provided it does not start there.

C D?f(x*) is indefinite: then x* is a saddle point of f. In order to reach x*
you need to start in a particular set S of dimension less than n: practically,
this is extremely unlikely.

Beniamin BOGOSEL Computational Maths 2 35/70

Example: Saddle point

fx,y) = (x* = 1)*(y*+1) + 0.2y°

* f >0 and f attains its minimum for (£1,0)
x (0,0) is a saddle point: V£(0,0) = (0,0), D?f(0,0) = (

-15 .
-1.5 -1.0 -0.5 0.0

Beniamin BOGOSEL

0.5

Isovalues of f(x, y) and initial point Xinit

[TTTTTTTTTT

4.737

4.211

3.684

3.158

2.632

2.105

1.579

1.053

0.526

0.000

—4

Computational Maths 2

N W oa g

36/70

Behavior of GD with different initializations

* Initializing on the "ridge” that passes through the saddle point: xp = (0,1.5)

Number of iterations. = 49

r4.737

r4.211

3.684

3.158

2.632

2.105

1.579

1.053

0.526

0.000

* the algorithm converges to the saddle point
* the gradient information "does not see” that there are regions where the value
of f is lower

Beniamin BOGOSEL Computational Maths 2 37/70

Behavior of GD with different initializations (2)

* A slightly perturbed initialization: xo = (107°,1.5)

Number of iterations. = 67

r4.737

r4.211

3.684

3.158

2.632

2.105

1.579

1.053

0.526

0.000

* the algorithm converges to a local minimum and avoids the saddle point

* Remember: avoid initializations that may be biased with respect to the
function f (e.g. xo =0, etc...). You may use a random number generator to
add some random noise to your initial condition. Also, repeat simulation with
multiple initializations in order to avoid saddle points and local minima

Beniamin BOGOSEL Computational Maths 2

38/70

Convergence of GD for quadratic functionals

* Consider f(x) = xTAx — b”x with A symmetric positive-definite and denote
by 0 < Amin < Amax the smallest and largest of its eigenvalues

* the gradient is Vf(x) = Ax — b and x* verifies Ax* = b

* inaccuracy in terms of the objective:

E() = ()~ F(x*) = 2 (x — x)TAGx — x*) = 5[l = x°[

x denoting g; = Ax; — b (the gradient at iteration i) we previously found that
the optimal step for the Steepest descent is

t = & ;4g/ , which gives x;11 = x;j —

8i
g,'T 8i g,.TAgi

* explicit computation gives
(& - &)
Flin) = (1 [g,-TAg/][g,-TA‘lgf]> il
Lemma: (Kantorovich) if Q is the condition number of a positive definite and
symmetric matrix A (ratio largest/smallest eigenvalues) then
(x - x)? < 4Q
[xTAX][xTA-1x] = (1+ Q)?’

Beniamin BOGOSEL Computational Maths 2 39/70

GD with steepest descent

x Consider the norm given by A: |x[|3 = x" Ax.

Proposition 16 (Convergence ratio: Steepest Descent, quadratic case)

The Steepest Descent algorithm applied to a strongly convex quadratic form f
with condition number Q converges linearly with the convergence ratio at most

1= (1100)2 B (811)2-
F(xn) — min f < (g:)m [F(x0) — min f].

Another interpretation is:

* Qi]‘ N *
b=l < (§57) o=l

More precisely, we have

V.

* note that if @ is large then the convergence is slow: this is observed in practice

Beniamin BOGOSEL Computational Maths 2 40/70

Convergence rate: a-convex case

Proposition 17

Suppose f : R" — R is a-convex, i.e.
«a
f(y) 2 F(x) + V() - (y = x) + S = yP?
for some o« > 0. Moreover, suppose that Vf is Lipschitz, i.e. there exists a
constant L > 0 such that
[VE(x) = VI(y)l < Lix - yl.
Then, if ty is small enough, then the Gradient Descent algorithm with fixed step
t = ty converges linearly to the global optimum.

v

Proof: As in the one dimensional case, simply define the fixed-point application
Fi(x) = x — tVF(x),

which is a contraction for t small enough.

* therefore, the recurrence xp+1 = F(x,) converges to the fixed point x* which

verifies Vf(x*) = 0 and is thus the global minimum.

* the hypotheses could be somewhat relaxed, but the theoretical proof gets

more involved

Beniamin BOGOSEL Computational Maths 2 41/70

Interpretation

* it is possible to prove that
[Fe(x) = Fely)| < (1= 20t + L262)2]x — |
x for t € (0,2ar/L?) we have (1 — 2at + L?t?) € (0,1) so F; is a contraction
% in particular |x,11 — x*| < (1 — 2t + L2t2)'/?|x, — x*|
x for t = a/L? the contraction factor is (1 — o?/[?)'/?
* the eigenvalues of D?f(x) are in [«, L] so the condition number verifies

L
1<Q= @ < =
min «

* the convergence is linear, but the ratio of convergence is (roughly) dictated by

the condition number of the Hessian D?f(x) at x*

Important observation

Note that in the convergence estimates for the Gradient descent the condition
number @ is important for evaluating the speed of convergence!

Beniamin BOGOSEL Computational Maths 2 42/70

Optimal convergence speed

Proposition 18
Suppose f : R" — R is a-convex, i.e.
@
Fly) 2 f(x) + VF(x) - (y =x) + 5 lx = yI?
for some o > 0. Moreover, suppose that Vf is Lipschitz, i.e. there exists a
constant L > 0 such that
[VF(x) = VE(y)| < Lix =yl

Then, then the Gradient Descent algorithm with fixed step t converges linearly
to the optimum for all initalizations xq if and only if t € (0,2/L).
Moreover, the optimal convergence speed is attained for the step
topt = 2/(L + @) and the optimal convergence ratio ~op; verifies

1-—a/L

Yopt = o/l IXa11 — X" || < Yopt lIXn — x*]|.

* the proof uses the Taylor remainder theorem with exact remainder
* see the course MAP435 by G. Allaire!
* the optimal convergence speed is still bad if the condition number L/« is big.

Beniamin BOGOSEL Computational Maths 2 43/70

Quadratic ill-conditioned problem

01 0
o 2000) ,x0 = (—0.5,1.5), Q = 20000

Geometry and Initialization:

flx)=x"Ax, A= (

Isovalues of J(xp, x1) and initial point Xjn;¢

+ 4000
15 <
It 3200
1.0
I 2400
£ 051
I 1600
0.0 °
054 — 800
-1.0 ; : ; : : Lo
-1.0 -05 00 05 1.0 15 2.0

Xo

Beniamin BOGOSEL Computational Maths 2 44/70

Quadratic ill-conditioned problem

7 {01 0
f(x) = x' Ax, A_(O 2000
Fixed step, 1000 iterations: algorithm seems to converge

) ,x0 = (—0.5,1.5), Q = 20000

2000 A
1500 A
=

1000 A
500 A

04

0 200 400 600 800 1000
iteration: it

Beniamin BOGOSEL Computational Maths 2

44/70

Quadratic ill-conditioned problem

o /01 o0
f(x) = x"Ax, A—(O 2000

Fixed step, 1000 iterations:

) , %0 = (—0.5,1.5), Q = 20000

20 Number of iterations. = 1001

15

1.0
0.5 '
0.0 []

—-0.5

-1.0 T T T T T
-1.0 -0.5 0.0 0.5 1.0 1.5 2.0

Beniamin BOGOSEL Computational Maths 2 44/70

Quadratic ill-conditioned problem

0.1 0
0 2000
Fixed step, 10° iterations:

f(x)=x"Ax, A= () ,x0 = (—0.5,1.5), @ = 20000

Number of iterations. = 100001

2.0

15

1.0

0.5
L
0.0 1 []

—0.5

-1.0 T T T T T
-1.0 -0.5 0.0 0.5 1.0 1.5 2.0

Beniamin BOGOSEL Computational Maths 2 44/70

Quadratic ill-conditioned problem

01 0
o 2000) ,x0 = (—0.5,1.5), Q = 20000

Optimal step: good, but not applicable to general functions

flx)=x"Ax, A= (

Number of iterations. = 4

2.0 —
4000
1.5
I~ 3200
1.0
T 2400
0.5 4
T 1600
0.0 *—e
—0.5 —T 800
-1.0 T T T T T —-0
-1.0 -0.5 0.0 0.5 1.0 1.5 2.0
Beniamin BOGOSEL Computational Maths 2

44/70

Quadratic ill-conditioned problem

01 0
o 2000) X0 = (~0.5,1.5), @ = 20000

Rescale using the Hessian: look at the function in the right coordinates

flx)=x"Ax, A= (

Number of iterations. = 25

2.0 —
I 4000
1.5 L1
Q
® I 3200
1.0 hY ||
k T 2400
0.5 A \
T 1600
0.0
—0.5 — 800
-1.0 T T T T T —0
-1.0 -0.5 0.0 0.5 1.0 1.5 2.0
Beniamin BOGOSEL Computational Maths 2

44/70

Conclusions for GD

@ the GD algorithms usually converge to local minimizers under very weak
hypothesis

@ in the strongly convex case we can prove that the rate of convergence is
linear

@ the speed of convergence is dictated by the condition number of f: in cases
where this condition number is large, the GD algorithm may fail to
converge rapidly enough

@ when the problem is ill-conditioned GD algorithms look at the optimization
path in the wrong coordinates: the key to accelerating the convergence is
to modify the geometry by rescaling some directions with respect to others!

@ source of ill conditioning in practice: components of the gradients are orders
of magnitude apart, different units of measure for different variables, etc.

Beniamin BOGOSEL Computational Maths 2 45/70

Before going further: constraints

* often the minimization is subject to some constraints

min f(x)

where K is defined via some analytic relations or inequalities

* the theory of Lagrange multipliers is presented further on in the course, but
there is a simple way to handle basic constraints: projection

* suppose that K is closed and convex. Then for every y € R” the projection
Pky is well defined and solves the problem

P in|x —
K(y)<—;n€';glx yl

Algorithm 6 (Projected GD)

Consider K a closed and convex set in R" and let xo € K be an initial point.
The solution of the problem

inf
TR)

may be approximated using the iterative algorithm
Xi+1 = PK(X,' — tVf(X,'))

Beniamin BOGOSEL Computational Maths 2 46/70

Convergence

Proposition 19 (Convergence of Projected GD)

Suppose that f is a-convex, differentiable and f’ is L-Lipschitz. Then if the step
t verifies t € (0,2a/L?) then the GD algorithm with fixed step and projection
on K converges to the unique solution.

Proof: The same as for the GD algorithm using the fact that the projection is a
weak-contraction
|Prx — Py| < [x —y|

* Projected GD may seem good, but is of limited practical use: the main
difficulty is how to compute Pk which is in itself an optimization problem
* particular cases which are easy:

o K =T][/_,[ai, bi]: Px is just the truncation operator on each coordinate

e K =B(c,r)isaballin RY: Px(x)=c+r(x—c)/|x—c|

o K={x:> ", vix;=c}: affine hyperplanes - projection can be computed

analytically

Beniamin BOGOSEL Computational Maths 2 47/70

Projection on affine constraints

Suppose K = {x : Ax = b} where Ais an m x n matrix of rank m and b € R™.
We are interested in solving

Pi(y) = argmin,ei |x — y?

e Existence, uniqueness: x — |x — y|? is " 0o at infinity" and strictly convex,
K is convex

Euler inequality: (V,|x* — y|?,v) > 0 for every v € ker A
x* —y € (ker A)t = ImAT (Exercise!)
x* =y +ATXA () € R™ contains the Lagrange multipliers)
Ax = b= b= Ax* = Ay + AAT X so finally A = (AAT)~1(b— Ay)
In the end, use \ to find x*:
x* =y + AT(AAT) (b — Ay).

® 6 6 o o

Beniamin BOGOSEL Computational Maths 2 48/70

Constraints: second method

* we can eliminate the constraints by including them into the function to be
minimized

1
min f(x) becomes min f(x) + =|C(x)|? 0
c(xiio (x) becomes xe]IRDn (x) 5| CF (== 0)

* we obtain an optimization problem without constraints for which classical
algorithms can be applied

Proposition 20 (Constraints via Penalization)

Consider the problem (P) defined by Cr(n;no f(x), where C is a continuous

function C : R" — RP defining the constraints. Suppose that f is convex,

continuous and oo at infinity.

Define now for ¢ > 0 the problems (P.) by min f(x) + L|C(x)[?. The problems
xeR"

(P:) admit minimizers denoted by x.. Then every limit point of x. ase — 0
converges to a solution of (P).

Proof: Exercise!

Beniamin BoGOSEL Computational Maths 2 49/70

Conclusion: constraints

o for simple constraints: projected gradient algorithm works fine
@ it is possible to eliminate the constraints using a penalization

e simple to implement in practice if f and C are smooth

theoretical convergence is valid for ¢ — 0: in practice we never get to 0...

e as ¢ grows, the constraint term 1|C(x)|> may dominate in (P:) so we no
longer advance in a direction which minimizes (P)

e in practice we often start with ¢ large and solve the problem multiple times,
diminishing € and starting from the previous solution.

@ we will come back later to the optimality conditions related to constraints
related to the Lagrange multipliers

Beniamin BOGOSEL Computational Maths 2 50/70

@ Theoretical aspects

@ Gradient descent methods
@ Newton's method

@ Other methods

By B T =

Towards Newton's method

* the anti-gradient direction d = —Vf(x): the best asymptotic descent direction
* that does not mean it is the best choice in all applications!

* other descent directions exist: any direction such that d - Vf(x) <0 is a
descent direction.

Examples:
— _of .
o d=—7-(x)e
e d = —DVf(x), where D is a diagonal matrix with positive entries

o d = —AVf(x) (or —A~1Vf(x)) where A is a positive-definite matrix
Why these work?
f(x + td) = f(x) + tVF(x) - d + o(t) = f(x) — t(VF(x))TAVF(x) + o(t)

—_————
>0

Beniamin BOGOSEL Computational Maths 2 52/70

Recall Wolfe's condition

* my, my € (0,1) are chosen constants
* d is a descent direction at x: d - Vf(x) <0, q(t) = f(x + td)
* recall that ¢’(0) = Vf(x)-d <0

a) a(t)—4(0) ~ m1q'(0) and ¢'(t) > mpq’(0) (then we have a good t)

b) 40=90O) - m ¢/(0) (then t is too big)
) 1=90) < m ¢/(0) and ¢'(t) < mxq’(0) (then t is too small)
* Interpretation of ¢'(t) > maq’(0): the slope should be "less negative” at the

next point
* If X311 = x; + t;d; with t; verifying the above then:

Vf(Xk_H) . dk Z m2Vf(Xk) . dk.
* define 0 as the angle between di and —Vf(xk):
*Vf(Xk) . dk

O = =t K
Ok = I (e e

Beniamin BOGOSEL Computational Maths 2 53/70

Zoutendijk condition

Consider the iteration x;11 = x; + t;d; where d; - Vf(x;) < 0 and t; verifies the
Wolfe conditions. Suppose that f is of class C1 on R" and is bounded from
below. Assume also that Vf is L-Lipschitz, i.e.
|[Vf(x)—Vi(y)| < Llx—yl| forall x,y € R".
Then
Z cos? 6k|Vf(xk)|2 < 00.
k>0

x the proof is rather straightforward (in the Notes)

* Immediate consequence: if d; = —Vf(x;) then §; = 0 and |Vf(x;)| — 0.

* if the descent direction is chosen such that 6 is bounded away from 90°, i.e.
cosfy > 6 > 0 then |Vf| — 0.

Beniamin BOGOSEL Computational Maths 2 54/70

The basic Newton Method

* as in the 1D case, look at the second order Taylor expansion

f(x+ h) = f(x) + VF(x)-h+ %hTsz(x)h + o(|h|?)

Beniamin BOGOSEL Computational Maths 2 55/70

The basic Newton Method

* as in the 1D case, look at the second order Taylor expansion

f(x+ h) =~ f(x) + VF(x)-h+ %hTsz(x)h

* then minimize the quadratic function in order to find the new iterate
. L 12
min f(x)—|—Vf(x)-h+§h D*f(x)h

D?f(x)h+ Vf(x) =0 = h = —[D*f(x)] *Vf(x)

Algorithm 7 (Newton's method)

Given a starting point xo run the recurrence
Xi+1 = Xj — [sz(X;)]_IVf(X,').

Beniamin BOGOSEL Computational Maths 2 55/70

Remarks

Inconvenients:
e the method is not necessarily well-defined: is D*f(x;) invertible at x;?
e the Taylor expansion is local: are we sure that [D?f(x;)] "1V f(x;) is small?
@ is the value of the function decreasing: f(xjt+1) < f(x;)?
e is d = [D?*f(x;)] "1V f(x;) a descent direction? Yes, if D?f(x;) is
positive-definite!

e note that [D?f(x;)] "1V f(x;) implies the resolution of a linear system
(recall that for large matrices we NEVER compute inverses!) - this might
be costly if the number of variables is large

Advantage: when the method converges, the convergence is quadratic!

Theorem 22 (Quadratic convergence: Newton method)

If x* is a non-degenerate minimizer for the function f : R" — R, i.e. D*f(x*) is
positive definite, and the starting point xq is close enough to the optimum x*
then Newton's algorithm converges quadratically to x*.

Beniamin BOGOSEL Computational Maths 2 56/70

Newton-Rhapson Method

* another point of view: solve nonlinear systems

gi(xt,..,xs) = 0

gn(x1,-sxs) = 0
* denote g(x) = (g1(x), ..., gn(x)) and Dg(x) = (gi’) (the Jacobian matrix)

* the Newton iteration

Xni1 = X — (Dg(x)) g (%)
converges to a zero x* of g quadratically provided that xp is close to x* and
Dg(x*) is non-degenerate.

* note that the Newton method corresponds to the Newton-Rhapson method
applied for finding the zeros of g = Vf

Beniamin BOGOSEL Computational Maths 2 57/70

Fixing Newton's method

1. Use a line-search procedure. If D2f(x) is positive definite then the Newton
direction d = —(D?f(x)) "1V f(x) is a descent direction.

Proposition 23 (Newton with line-search)

Let f be a C? function and a-convex function. Let xy be such that the level set
S ={x:f(x) <f(x)} is bounded. Then the Newton method with Wolfe
line-search converges to the unique global minimizer of f.

Proof: A lower bound for cos 8, can be found in terms of the eigenvalues of
D?f(x). The sequence of iterates converges to a critical point. Convergence is
not quadratic if the step t is smaller than 1!

2. Variable metric methods. Any positive definite matrix A defines a new
metric. There are choices of A for which convergence towards the minimum
may be faster.

Beniamin BOGOSEL Computational Maths 2 58/70

Discussion

* gradient descent direction as the minimizer of a quadratic function
1
f(x +d) ~ f(x) +d"VF(x)+ 5c/Td

* the quadratic approximation is minimized by

d* = -Vf(x)
Remarks:
* Note that the gradient method is the same as the Newton method when the
Hessian D?f(x) is the identity matrix.

* This is bad, especially if the Hessian matrix is ill conditioned
* The current gradient does not necessarily point towards the minimizer

Beniamin BOGOSEL Computational Maths 2 59/70

Discussion: change the metric

Isovalues Euclidean Metric

Isovalues new Metric

* change the metric: change the coordinate system around x
* let A be a symmetric positive-definite matrix

f(x +d) ~ f(x)+d"VFf(x)+ %dTAd
* the quadratic approximation is minimized by
d=—-A"'Vf(x)
* how to choose A?

Beniamin BOGOSEL Computational Maths 2

60/70

What metric to choose?

* For f(x) = $xT Ax — b x change the variable to £ = AY/2x

* Recall that AY/2 = P=1\/DP where A= P~1DP is a diagonalization of A.
* Then denote g(¢) = f(x) = F(A~Y/2¢) = 2¢7¢ — bT A=Y/2¢ and note that
this function is well conditioned

* Write the GD algorithm for & — f(A~1/2¢):

Ent1 =& — tVg(&n)
§n+1 = 5n - tA_1/2Vf(A_1/2§n)
Then multiplying by A=1/2 we get
Xni1 = Xp — tATIVF(x,).
% Choosing the descent direction —A~1Vf(x) is equivalent to performing a GD

step in the new metric (coordinate system)!

Practical remark: the optimal metric given by A'/2 is not known! Finding it
may require more computational effort than the optimization problem

x in practice the metric A is changed iteratively (see the next course)

Beniamin BOGOSEL Computational Maths 2 61/70

General algorithm

incorporating all previous algorithms...

Algorithm 8 (Generic Variable Metric method)

Choose the starting point xg
Iteration i:

e compute f(x;), Vf(x;) and eventually D*f(x;)
@ choose a symmetric positive-definite matrix A;: compute the new direction
di = —A7VF(x;)
@ perform a line-search from x; in the direction d; giving a new iterate
Xii1 = X + tidi = x; — t;A71Vf(X;).

* A; = Id gives the Gradient Descent method

x A; = D?f(x;) gives the Newton method with line search (only when D?f(x;) is
positive-definite)

* such an algorithm will converge to a critical point provided the set

{f(x) < f(x0)} is bounded. The key point is that line-search guarantees
descent: f(xi+1) < f(x;) when not at a critical point

Beniamin BOGOSEL Computational Maths 2 62/70

Modified Newton method

Idea: Choose A; based on D?f(x;) by eventually changing the Hessian matrix
to make it positive definite
Choose a threshold § > 0 and compute the spectral decomposition
D?f(x;) = U;D; U]
If a diagonal value of D; is smaller than § then replace it with §.
— Large arithmetic cost: 2n3 to 4n3 arithmetic operations
Levenberg-Marquardt modification: A; = D?f(x;) + eld. Choose ¢ such
that A; is positive definite by using a bisection scheme.
Test the positive-definiteness using the Cholesky Factorization: A; = LDL”
- arithmetic cost: n*/6
Use a modified Cholesky factorization so that the resulting diagonal matrix
has entries bigger than § > 0.

* all these techniques are too costly for large n
* we lose quadratic convergence as soon as A; # D?f(x;) or the corresponding
line-search step is smaller than 1

Beniamin BOGOSEL Computational Maths 2 63/70

Conclusion: Newton's method

@ quadratic convergence when we start close to a non-degenerate minimizer

@ in order to guarantee convergence in general a line-search procedure should
be used

e if D?f(x;) is not positive-definite then multiple ways exist to " correct the
algorithm” but they are all costly: O(n3)

@ a linear system should be solved at each iteration
@ the cost becomes too big if n is very large

@ even the RAM memory usage is too heavy for large n: O(n?) when the
Hessian is full

Beniamin BOGOSEL Computational Maths 2 64/70

@ Theoretical aspects

@ Gradient descent methods
@ Newton's method

@ Other methods

Beniamin BOGOSEL

T -

Gauss-Newton Method

* non-linear least squares: assume m > n

F6) = ri(x)?

j=1
* define the Jacobian matrix
on .. On
8x1 ax,,
Jox)=| : o
Ot .. Orm
6x1 8x,,

* note that V£(x) = 2(J(x))"r where r = (r1, ..., Iim)
x Hessian computation: D?f(x) = 2J(x)T J(x) + something small...
* choose to approximate the Hessian by 2J(x)T J(x) which is positive definite
when J is of maximal rank
* Therefore we get the Gauss-Newton method
xiv1 = xi = %i(J0a) TI(x) 7T (xi) ()
where either v; = 1 or a line-search is performed
x as before one must check if —(J(x;)TJ(x;)) " J 7 (x;)r(x;) is a descent direction

Beniamin BOGOSEL Computational Maths 2 66/70

Example 1

* the Rosenbrock function: f(x) = 100(y — x?)? + (1 — x)? =
n=10(y—x)? rn=(1-x)

—20x 10
* J(x) = < 1 0)

* true Hessian vs Gauss-Newton approx:

_ (1200x? — 400y +2 —400x
H(x) = (—400x 200)
£, (800x2+2 —400x
2/ = < —400x 200

* Numerically this converges very fast, using only gradient information

Beniamin BOGOSEL Computational Maths 2

67/70

Example 2: Triangulations

Suppose you know the coordinates (x;, y;) of three antennas and the distances d;

of a cellphone to these antennas, find the coordinates (xg, yo) of the cellphone.

* least squares formulation'
Z 2y n(y) =di—V(x =2+ (y — yi)2

* Gauss-Newton generally converges faster than GD here

Beniamin BOGOSEL Computational Maths 2

68/70

Further examples

* Other important applications: least squares are often used when fitting models
to data

m m
f(x) = Z ri(x)? = Z(Y(SI»X) -y
i=1 i=1
where y(s, x) is a non-linear function

Practical session:
* find parameters of a population model: exponential model, logistic model
x find parameters for a temperature model: T(t) = Asin(wt 4+ ¢) + C

Beniamin BOGOSEL Computational Maths 2 69/70

Nelder-Mead method

* gradient free

Algorithm 9 (Nelder-Mead method)
Current test points xi, ..., Xp+1 € R”
Order: relabel points such that f(x1) < ... < f(Xp41)

Compute centroid xg of points xq, ..., X,

Reflection: compute x, = xo + a(xo — Xp11) with « > 0. If
f(x1) < f(x) < f(xn) then replace x,+1 by x, and go to Step 1

B

Expansion: if f(x,) < f(x1) compute xe = xo + (%, — xo) with v > 1.
If f(x.) < f(x,) replace x,+1 by x. and go to Step 1
Else replace x,+1 by x, and go to Step 1
Contraction: If f(x,) > f(x,) then compute x. = xp + p(Xy+1 — Xo) with
p € (0,0.5]. If f(xc) < f(xst1) then replace xn,+1 by x. and go to Step 1
@ Shrink: Replace all points except x; by x; = x1 + o(x; — x1). Go to Step 1
.

x Standard parameters: « =1,y =2,p=1/2,0 =1/2.
* Termination criterion: Simplex too small, variation of f small, etc.

Beniamin BOGOSEL Computational Maths 2 70/70

	Optimization in higher dimensions
	Theoretical aspects
	Gradient descent methods
	Newton's method
	Other methods

