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Higher dimensions

* we consider functions f defined on K = O where O C R" is open, smooth
and connected.
* the objective is to solve problems of the form

min f(x)
* most of the theoretical aspects regarding existence and uniqueness of
minimizers are similar to the one dimensional case: however, all partial
derivatives need to be taken into account, and the notions of gradient and
Hessian are essential
* once a descent direction is found, we come back to one-dimensional
algorithms when looking along this direction in order to decrease f

Beniamin BOGOSEL Computational Maths 2

2/70



@ Theoretical aspects

@ Gradient descent methods
@ Newton's method

@ Other methods

Beniamin BOGOSEL

R L s



Partial derivatives

* for simplicity, some results are stated for f : R” — R, but they apply to f
defined on more restricted " nice” domains
* as usual, we denote by e,/ = 1,..., n the canonical basis of R"

e =(..,0,1,0,...) only component i is non-zero equal to 1

Definition 1 (Partial derivatives, gradient, Hessian)

Consider a function f : R” — R. The partial derivative with respect to x; is
g(x) i f(x + tej) — f(x)
ox; t—0 t
In practice, g—; is computed by differentiating f w.r.t x;, supposing that the
other coordinates are constant.
The gradient vector contains all partial derivatives: V£ (x) = (g—)fl_(x)),-zlw,,,.

The Hessian matrix contains all combinations of two successive partial
2

derivatives: D?f(x) = (%)i,j:l,...,n-

v

* note that f is of class C? then D?f(x) is a symmetric matrix (result known as
Schwarz's theorem)
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Basic examples

L f(x)=|x]|? =2 + ... + x2

Vf(x) =2x, D*f(x)=2Id
where Id is the identity matrix.
2. f(x) = %XTAX —bTx
Vf(x) = Ax — b, D*f(x)=A
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Directional and Fréchet derivatives

Definition 2 (Directional (Gateaux) derivative)

f : R" — R is differentiable at x in direction d if the one dimensional function
t — f(x + td) is differentiable at t = 0.

Definition 3 (Fréchet derivative)

f :R"” — R is Fréchet differentiable at x if there exists a bounded linear
mapping L : R" — R such that for h € R” with |h| small enough we have

F(x + h) = £(x) + Lh+ o(h)

* the application L is denoted by f’(x). When f is C! we simply have

f'(x)(h) = Vf(x) - h.

* in general Fréchet differentiability implies the existence of directional
derivatives, but the converse is false

* if the partial derivatives exist and are continuous then the function is Fréchet
differentiable

* for more subtle differences and implications consult a real analysis course: e.g.
[Differential Calculus, by Henri Cartan]
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Taylor expansion in higher dimensions

Consider f : R” — R. Then
e if fis of class C!
f(x+ h) = f(x)+ f'(x)(h) + o(|h]) as || — 0
f(x+h)="rf(x)+ VF(x)-h+o(lh]) as |h| = 0
e if fis of class C?

Fx+ ) = Fx) + F()(B) + o /() (b, h) + o [P as [h] = 0

1
f(x+h) = f(x) + VF(x)-h+ 5hTD2f(x)h + o(|h?) as |h| — 0

* again it is possible to write the remainder in Lagrange form
* recall that the second derivative (in the sense of Fréchet) of a function is a
bilinear form. Why? For each differentiation you need to choose a direction...

compute first f'(x)(h1) and then (f'(x)(h1)) (h2) — " (x)(h1, h2)
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Existence of solutions

In the same way as in dimension one we have the following

Proposition 4

* If f is continuous it attains its extremal values on compact sets.
* If f : R" — R is continuous and "infinite at infinity” i.e.

|f(x)] = o0 as |x| = oo
then f admits minimizers on R".
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Positive (definite) matrices

Definition 5
A matrix A € M,(R) is called:
o positive definite if for every vector x € R" \ {0}
xTAx >0

@ positive semi-definite if for every vector x € R”
xT Ax >0

* these notions are often useful when dealing with optimization problems
* when A is also symmetric, it is possible to give a characterization of the above
definition in terms of the eigenvalues of A:

@ A is positive definite if all its eigenvalues are positive
@ A is positive semi-definite if all its eigenvalues are non-negative

* recall that symmetric matrices are diagonalizable and there exists an
orthonormal basis made of eigenvectors
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Basic optimality conditions

Proposition 6

Let f : R™ — R be a C! function. If x* is a local minimum (maximum) of f
then Vf(x*) = 0. Moreover, if f is of class C* then the Hessian matrix
D?f(x*) is positive (negative) semi-definite.

Conversely, if f is of class C?, Vf(x*) = 0 and D*f is positive semi-definite in a

neighborhood of x* then x* is a local minimum of f.
As a consequence, if f is of class C?, Vf(x*) = 0 and D*f(x*) is positive
definite then x* is a local minimum of f.

* The proof comes immediately from the Taylor expansion formulas.
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Euler inequalities

% what happens when we minimize on a closed convex set K C R9?

Proposition 7

Let K be a convex set and x* be a minimum of f on K. Suppose that J is
differentiable at x*. Then for every x € K we have

Vi(x*)-(x—x*) > 0.

* Proof: just write the directional derivative at x* in the direction x — x*.
* compare with the 1D case!
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Convex functions again...

* In higher dimensions convex functions give the same advantages regarding the
existence, unicity and convergence of algorithms as in dimension one.

Definition 8 (Convex functions)

A function f : R” — R is said to be convex if for every x,y € R" and for every
t € (0,1) we have

f(tx 4+ (1 — t)y) < tF(x) 4+ (1 — t)f(y)

* for strict convexity the inequality is strict.
Equivalent definitions: f is convex iff

o f is below any affine section
e f is above its tangent planes

@ any 1D "slice” is a convex 1D function
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Useful characterizations

Proposition 9

Let f : R" — R be a C! function. The following statements are equivalent:
f is convex
f(y) > f(x) + VFf(x) - (y — x), Vx,y € R"
(VE(x) = V£(y)) - (x—y) 20, Vx,y € R"

Proof: Exercise!

Proposition 10

Let f : R — R be a C? function. Then f is convex if and only if the Hessian
matrix D*f is positive semi-definite everywhere.

* we say that f is a-convex for some v > 0 if the Hessian matrix has
eigenvalues > o > 0.
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Optimality conditions

* for convex functions, the usual necessary optimality conditions are also
sufficient

Proposition 11

* Let f : R" — R be a convex function and x* be a point such that
Vif(x*) =0. Then x* is a global minimum of f.

* Let f : K — R be a convex function defined on a convex subset K of R".
Then if x* € K verifies

Vi(x*)-(x—x*)>0
for every x € K then x* is a global minimum of f on K.

Proof: f(x) > f(x*) + VFf(x*) - (x — x*), ¥x € K
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Optimization without Calculus

[Charles L. Byrne, A first Course in Optimization]
[Niven, I. Maxima and Minima Without Calculus|

* sometimes, solutions can be found without the need of calculus or algorithms
Basic ingredients.

@ x2 > 0: the most basic inequality

o AM-GM:

X1+ ...+ X
X,'20:>¥
n

> (xl...x,,)l/n
@ Generalized AM-GM (or just convexity of the — log function):
n
x; > 0,a; > 0723,- =1= x{"..x;" < a1x1 + ... + apxy

i=1
e Cauchy-Schwarz: a;, b; € R

n 2 n n
(Za,-b,-) < (Za,?> <Zb,-2> or |a-b| < [a||b]
i=1 i=1 i=1
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Examples

minimize f(x,y) = % + % + xy on (0, 00)?

maximize f(x,y) = xy(72 — 3x — 4y)

minimize f(x,y) = 4x + % + 47}/ on (0,00)?

maximize f(x,y,z) = 2x + 3y + 6z when x> + y2 + 22 =1
maximize f(x,y,z) =2x + 3y + 6z when xP + yP +z°P =1, p > 1.
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Example 1

12 1
* minimize f(x,y) = — + 18 + xy on (0, 00)?
X

Since we are dealing with positive numbers apply AM-GM:
1/3
12 18 1218
++xy23~<xy> =3-6=18.
y Xy

* Therefore the lower bound of the above expression is 18
* it is attained when 12 = % = xy leading to x =2,y = 3.
* the same technique can be applied for Examples 2 and 3
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Example 4

* maximize f(x,y,z) = 2x + 3y + 6z when x> + y? + 72 =1
Here it is possible to use Cauchy-Schwarz:

(2x +3y +62)2 < (22432 +6%) (x> + y? + 2%) = 49
with equality of (x,y,z) and (2,3,6) are colinear.

* recognize cases when the solution can be found explicitly.
* provide examples on which to test numerical algorithms!
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Basic idea

Suppose that f is C! (at least). Then the Taylor expansion says
f(x+ h) = f(x)+ VF(x)-h+o(|h]),|h] =0
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Basic idea

Suppose that f is C! (at least). Then the Taylor expansion says
f(x+h) = f(x)+ VF(x)-h
With this in mind, the following definition is natural

Definition 12 (Descent direction)

A direction d € R” is called a descent direction for f at x if Vf(x)-d <0

This gives the following natural result

Proposition 13

If d is a descent direction for f at x, then going from x along d with a small
step increment decreases the value of f.
Equivalently, if q(t) = f(x + td) then ¢'(0) < 0.

Indeed, by the chain rule, ¢’(0) = Vf(x)-d < 0.
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Gradient descent algorithm

* the direction which gives (asymptotically) the steepest descent is the opposite
of the gradient
Indeed, if |d| = |V ] then by the Cauchy-Schwarz inequality
|d - V| <|d||VFf] = |VF[
Therefore
d-Vf>—|VFf|?
and the minimum is attained for d = —Vf

Algorithm 1 (Generic gradient descent)

Initialization: Choose a starting point xo and set i = 0
Step i:

o compute f(x;) and Vf(x;)
@ choose a step size t and set
Xit1 = Xj — tVf(X,')
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Simplest algorithm: fixed step

* fix the descent step t = tp, the tolerance £ > 0 and run the algorithm

Algorithm 2 (GD with fixed step)
Initialization: Choose a starting point xq and set i = 0
Step i:
e compute f(x;) and Vf(x;)
@ set
Xit1 = Xi — t()Vf(X,')
@ check convergence

o |Vf(x)| < € (the gradient is too small)
o |xit1 — xi| < & (the position of the optimum does not change much)
o |f(xi+1) — f(x;)| < € (the objective function does not change much)

* the algorithm is stopped in one of the following situations
@ convergence is reached
@ maximum number of iterations/function evaluations is reached

* the choice of ty is essential
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Quadratic case

* simple example in where the solution is known
* easy to visualize in 2D

1
f(x) = EXTAX —b-x
with A symmetric positive definite

* recall that A is positive semi-definite if Ax - x > 0 for every x
* recall that A is positive definite if Ax-x >0and Ax-x=0=x=0.
Compute the gradient: two options

o write down the formulas in terms of x = (xg, ..., xy) and compute the
partial derivatives (a bit long)

e write f(x+ h) for h small and identify the derivative from there as the linear
part of the decomposition, proving that what remains is o(h) as |h| — 0

* in the end Vf(x) = Ax — b
* note that minimizing f amounts to solving the system Ax = b
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Concrete quadratic example

1 04
A:<0_4 2>,b:(1,1),x0:(—0.5,0)

Step size t = 0.1: the algorithm converges

Number of iterations. = 66

2.0 I
/\ » 36
1.5 1
3.0
1.0+ 2.4
0.5 1 :’ 1.8
—r 1.2
0.0 .
T 0.6
—0.5 A1 ]
—r 0.0
-1.0 T T T T T —--0.6

‘210 -05 00 0.5 1.0 1.5 2.0
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Concrete quadratic example

1 04

A:< >,b:(1,1),x0:(—0.5,0)

04 2

Step size t = 0.001: no convergence before reaching max number of iterations...

2.0

15

0.5

0.0

-1.0
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For which steps we have convergence?

* In the quadratic case the GD algorithm is
Xk+1 = xk — t(Axk — b)
* subtracting the solution x* and using Ax* = b we get
(xks1 — x*) = (I = tA) (xi — x*) = (I — tA)K(xo — x*).
* it is well known that BX — 0 if and only if p(B) < 1, where
p(B) = max \;(B) is the spectral radius of B.

=L...n

* the GD algorithm converges if and only if _max |1 —tX\(A) <1
* a simple computation shows that GD converg’esj if and only if t € (0,2/A,(A))
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The best convergence ratio

* the ratio of convergence is p(/ — tA)
Question: Minimize this ratio for t € (0,2/A,)
* minimize the maximum of |1 —tX\;|, i=1,...,n

10

0.8

0.6

0.4

02— I1=pN|
= |1 = pdo|
— |1 — p\
0.0 | s
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

* a brief graphical argument shows that
p(l — tA) = max{|1 — tA1],|1 — tAn|}
* the spectral radius is minimized when t = 2/(A1 + Ap).
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Steepest Descent

* In an ideal world, one would like to minimize q(t) = f(x; — tV£(x;))

Algorithm 3 (GD with Steepest Descent)

Initialization: Choose a starting point xg and set i = 0
Step i:
e compute f(x;) and Vf(x;)
@ choose the step size tope which minimizes the (one-dimensional) function
q(t) = f(x; — tVIf(x;)) and set
Xit1 = Xj — foptVf(X,')

* note that the second step is an optimization problem in itself: if this cannot
be solved explicitly, this algorithm is not too efficient.
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Back to the quadratic function

* f(x) = ixTAx —b-x, Vf(x) = Ax—b

% in the following denote g; = V£ (x;)

* q(t) = f(x; — tg;) is a quadratic function of ¢

xq'(t) =Vf(x —tg) (—&) = —g' (Ax; — b) + tg;]” Ag

* a simple computation yields

&' &

g,-TAg,-

* in particular the gradient at the next point x; — top:g; is orthogonal to the
actual gradient g;

* note that the knowledge of the optimal descent step is strictly related to the
objective function

q/(t) = O = topt =
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What happens in practice

Number of iterations. = 10

2.0 T 4.0
1.04 :7 2.4
0.5 :, 1.6

0.8

0.0

K T T T T T —- 0.8
-1.0 -0.5 0.0 0.5 1.0 1.5 2.0

Proposition 14

When using the Gradient Descent algorithm with optimal descent step, any two
consecutive descent directions are orthogonal.
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Orthogonality of consecutive descent directions

Two ideas of proof:
1. ¢'(t) =0 <= VI (x — tVFf(x)) - VFf(x) =0
2. Let d; = Vf(x;) be the ith gradient descent direction. If d; - dj11 # 0 then
the previous step was not optimal!
@ d;-diy1 > 0: then —d; is still a descent direction
@ d; - diy1 < 0: then d; is still a descent direction

* this brings us to one important idea

Other descent directions

The opposite of the gradient is not the only descent direction! For example,
every symmetric positive definite matrix A generates a descent direction

d = —AVf(x).

but more on this fact later on in the course...
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Accelerate convergence: variable step

* modify the step at each iteration, making sure that the obj. function decreases
* trivial line-search algorithm

Algorithm 4 (GD with variable step)

Initialization: Choose a starting point xg, starting step t = tg, maximum step
tv, N+ >1,m— <1 andseti=0
Step i:
e compute f(x;) and V£ (x;)
@ set a temporary new point
Xtemp = Xi — tVf(X,')
o If f(X,'+1) < f(X,')
o Accept the iteration: X1 = Xtemp
o increase the step size: t = min{t -7, tm}
o Else

o Refuse the iteration
o decrease the step size: t =t -7_

@ check convergence (additionally you may check if t is too small)
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Back to the quadratic example

Step size t = 0.5, ty = 10,7, = 1.1,n_ = 0.8, = 107°: the algorithm
converges faster

Number of iterations. = 23

2.0 rT40
1.0 :» 2.4
05 : 16
0.0 : 0.8
05 : 0.0
10 . ; : -0.8

-1.0 -05 0.0 0.5 1.0 1.5 2.0

* a simple trick accelerates the convergence

Beniamin BOGOSEL Computational Maths 2 32/70



GD with Armijo line-search

Algorithm 5 (GD with Armijo line-search)

Initialization: Choose a starting point xo, an initial step t = ty, n > 1,
my € (0,0.5) and set i =0
Step i:

o compute f(x;) and Vf(x;)

o line-search: q(t) = f(x; — tVf(x;)), set t = ty

o while: m14’(0) < (q(t) — q(0))/t do t <« t/n

@ set

Xit1 = X; — tVF(x;)

v

* the above algorithm is similar to the GD with adaptive step, but is somewhat

stronger since it imposes a quantified descent condition

* note that ¢’(0) < 0 so in the end
q(t) — q(0)

t

which guarantees that g(t) < g(0)

* as in the lectures regarding the 1D case it is also possible to formulate GD

algorithms with Goldstein-Price or Wolfe line-search routines

<mq(0)<0
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Convergence of the GD algorithm

Proposition 15

For a given C! function f denote by I'¢ the set of its critical points
e ={x eR":Vf(x) =0}
and suppose that f admits minimizers on R". Furthermore, suppose that the set
S={xeR": f(x) < f(x)} is bounded.
The trajectory (x,) of a GD algorithm with Steepest-Descent (Armijo,
Goldstein-Price, ...) line-search possesses limiting points and any such limiting
point belongs to the set of critical points I¢.

Proof idea for Steepest Descent:

* we have minf < f(xyy1) < f(xk). Therefore (x¢) C S

* suppose that Vf(xx) does not converge to zero and arrive at a contradiction
* this kind of argument could be made rigorous using a point to set definition of
the optimization algorithm also in the case where line-search is used
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Limiting points of GD

d
Consider the ODE Ex(t) = —Vf(x(t)): the trajectory dictated by the gradient

* Note that the gradient descent is just a discretization for this ODE!
*x VI(x(t)) = VF(x(t)) — VF(x*) = D>f(x*)(x(t) — x*)

=VE(x(1)) - (x* = x(t) = (x(t) = x*) T D> (x")(x(t) — x*).

We have the following situations:

A D?*f(x*) is positive definite: then x* can be a limiting point for GD as it is
a local minimum

B D?f(x*) is negative definite: then the trajectory x(t) will never get close to
x* provided it does not start there.

C D?f(x*) is indefinite: then x* is a saddle point of f. In order to reach x*
you need to start in a particular set S of dimension less than n: practically,
this is extremely unlikely.
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Example: Saddle point

fx,y) = (x* = 1)*(y*+1) + 0.2y°

* f >0 and f attains its minimum for (£1,0)
x (0,0) is a saddle point: V£(0,0) = (0,0), D?f(0,0) = (

-15 .
-1.5 -1.0 -0.5 0.0
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Behavior of GD with different initializations

* Initializing on the "ridge” that passes through the saddle point: xp = (0,1.5)

Number of iterations. = 49

r4.737

r4.211

3.684

3.158

2.632

2.105

1.579

1.053

0.526

0.000

* the algorithm converges to the saddle point
* the gradient information "does not see” that there are regions where the value
of f is lower
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Behavior of GD with different initializations (2)

* A slightly perturbed initialization: xo = (107°,1.5)

Number of iterations. = 67

r4.737

r4.211

3.684

3.158

2.632

2.105

1.579

1.053

0.526

0.000

* the algorithm converges to a local minimum and avoids the saddle point

* Remember: avoid initializations that may be biased with respect to the
function f (e.g. xo =0, etc...). You may use a random number generator to
add some random noise to your initial condition. Also, repeat simulation with
multiple initializations in order to avoid saddle points and local minima
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Convergence of GD for quadratic functionals

* Consider f(x) = xTAx — b”x with A symmetric positive-definite and denote
by 0 < Amin < Amax the smallest and largest of its eigenvalues

* the gradient is Vf(x) = Ax — b and x* verifies Ax* = b

* inaccuracy in terms of the objective:

E() = ()~ F(x*) = 2 (x — x)TAGx — x*) = 5[l = x°[

x denoting g; = Ax; — b (the gradient at iteration i) we previously found that
the optimal step for the Steepest descent is

t = & ;4g/ , which gives x;11 = x;j —

8i
g,'T 8i g,.TAgi

* explicit computation gives
(& - &)
Flin) = (1 [g,-TAg/][g,-TA‘lgf]> il
Lemma: (Kantorovich) if Q is the condition number of a positive definite and
symmetric matrix A (ratio largest/smallest eigenvalues) then
(x - x)? < 4Q
[xTAX][xTA-1x] = (1+ Q)?’
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GD with steepest descent

x Consider the norm given by A: |x[|3 = x" Ax.

Proposition 16 (Convergence ratio: Steepest Descent, quadratic case)

The Steepest Descent algorithm applied to a strongly convex quadratic form f
with condition number Q converges linearly with the convergence ratio at most

1= (1100)2 B (811)2-
F(xn) — min f < (g:)m [F(x0) — min f].

Another interpretation is:

* Qi]‘ N *
b=l < (§57) o=l

More precisely, we have

V.

* note that if @ is large then the convergence is slow: this is observed in practice
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Convergence rate: a-convex case

Proposition 17

Suppose f : R" — R is a-convex, i.e.
«a
f(y) 2 F(x) + V() - (y = x) + S = yP?
for some o« > 0. Moreover, suppose that Vf is Lipschitz, i.e. there exists a
constant L > 0 such that
[VE(x) = VI(y)l < Lix - yl.
Then, if ty is small enough, then the Gradient Descent algorithm with fixed step
t = ty converges linearly to the global optimum.

v

Proof: As in the one dimensional case, simply define the fixed-point application
Fi(x) = x — tVF(x),

which is a contraction for t small enough.

* therefore, the recurrence xp+1 = F(x,) converges to the fixed point x* which

verifies Vf(x*) = 0 and is thus the global minimum.

* the hypotheses could be somewhat relaxed, but the theoretical proof gets

more involved
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Interpretation

* it is possible to prove that
[Fe(x) = Fely)| < (1= 20t + L262)2]x — |
x for t € (0,2ar/L?) we have (1 — 2at + L?t?) € (0,1) so F; is a contraction
% in particular |x,11 — x*| < (1 — 2t + L2t2)'/?|x, — x*|
x for t = a/L? the contraction factor is (1 — o?/[?)'/?
* the eigenvalues of D?f(x) are in [«, L] so the condition number verifies

L
1<Q= @ < =
min «

* the convergence is linear, but the ratio of convergence is (roughly) dictated by

the condition number of the Hessian D?f(x) at x*

Important observation

Note that in the convergence estimates for the Gradient descent the condition
number @ is important for evaluating the speed of convergence!
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Optimal convergence speed

Proposition 18
Suppose f : R" — R is a-convex, i.e.
@
Fly) 2 f(x) + VF(x) - (y =x) + 5 lx = yI?
for some o > 0. Moreover, suppose that Vf is Lipschitz, i.e. there exists a
constant L > 0 such that
[VF(x) = VE(y)| < Lix =yl

Then, then the Gradient Descent algorithm with fixed step t converges linearly
to the optimum for all initalizations xq if and only if t € (0,2/L).
Moreover, the optimal convergence speed is attained for the step
topt = 2/(L + @) and the optimal convergence ratio ~op; verifies

1-—a/L

Yopt = o/l IXa11 — X" || < Yopt lIXn — x*]|.

* the proof uses the Taylor remainder theorem with exact remainder
* see the course MAP435 by G. Allaire!
* the optimal convergence speed is still bad if the condition number L/« is big.
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Quadratic ill-conditioned problem

01 0
o 2000) ,x0 = (—0.5,1.5), Q = 20000

Geometry and Initialization:

flx)=x"Ax, A= (

Isovalues of J(xp, x1) and initial point Xjn;¢

+ 4000
15 <
It 3200
1.0
I 2400
£ 051
I 1600
0.0 °
054 — 800
-1.0 ; : ; : : Lo
-1.0 -05 00 05 1.0 15 2.0

Xo
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Quadratic ill-conditioned problem

7 {01 0
f(x) = x' Ax, A_(O 2000
Fixed step, 1000 iterations: algorithm seems to converge

) ,x0 = (—0.5,1.5), Q = 20000

2000 A
1500 A
=

1000 A
500 A

04

0 200 400 600 800 1000
iteration: it
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Quadratic ill-conditioned problem

o /01 o0
f(x) = x"Ax, A—(O 2000

Fixed step, 1000 iterations:

) , %0 = (—0.5,1.5), Q = 20000

20 Number of iterations. = 1001

15

1.0
0.5 '
0.0 [ ]

—-0.5

-1.0 T T T T T
-1.0 -0.5 0.0 0.5 1.0 1.5 2.0

Beniamin BOGOSEL Computational Maths 2 44/70



Quadratic ill-conditioned problem

0.1 0
0 2000
Fixed step, 10° iterations:

f(x)=x"Ax, A= ( ) ,x0 = (—0.5,1.5), @ = 20000

Number of iterations. = 100001

2.0

15
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Quadratic ill-conditioned problem

01 0
o 2000) ,x0 = (—0.5,1.5), Q = 20000

Optimal step: good, but not applicable to general functions

flx)=x"Ax, A= (

Number of iterations. = 4

2.0 —
4000
1.5
I~ 3200
1.0
T 2400
0.5 4
T 1600
0.0 *—e
—0.5 —T 800
-1.0 T T T T T —-0
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Quadratic ill-conditioned problem

01 0
o 2000) X0 = (~0.5,1.5), @ = 20000

Rescale using the Hessian: look at the function in the right coordinates

flx)=x"Ax, A= (

Number of iterations. = 25

2.0 —
I 4000
1.5 L1
Q
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1.0 hY ||
k T 2400
0.5 A \
T 1600
0.0
—0.5 — 800
-1.0 T T T T T —0
-1.0 -0.5 0.0 0.5 1.0 1.5 2.0
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Conclusions for GD

@ the GD algorithms usually converge to local minimizers under very weak
hypothesis

@ in the strongly convex case we can prove that the rate of convergence is
linear

@ the speed of convergence is dictated by the condition number of f: in cases
where this condition number is large, the GD algorithm may fail to
converge rapidly enough

@ when the problem is ill-conditioned GD algorithms look at the optimization
path in the wrong coordinates: the key to accelerating the convergence is
to modify the geometry by rescaling some directions with respect to others!

@ source of ill conditioning in practice: components of the gradients are orders
of magnitude apart, different units of measure for different variables, etc.
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Before going further: constraints

* often the minimization is subject to some constraints

min f(x)

where K is defined via some analytic relations or inequalities

* the theory of Lagrange multipliers is presented further on in the course, but
there is a simple way to handle basic constraints: projection

* suppose that K is closed and convex. Then for every y € R” the projection
Pky is well defined and solves the problem

P in|x —
K(y)<—;n€';glx yl

Algorithm 6 (Projected GD)

Consider K a closed and convex set in R" and let xo € K be an initial point.
The solution of the problem

inf
TR )

may be approximated using the iterative algorithm
Xi+1 = PK(X,' — tVf(X,'))
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Convergence

Proposition 19 (Convergence of Projected GD)

Suppose that f is a-convex, differentiable and f’ is L-Lipschitz. Then if the step
t verifies t € (0,2a/L?) then the GD algorithm with fixed step and projection
on K converges to the unique solution.

Proof: The same as for the GD algorithm using the fact that the projection is a
weak-contraction
|Prx — Py| < [x —y|

* Projected GD may seem good, but is of limited practical use: the main
difficulty is how to compute Pk which is in itself an optimization problem
* particular cases which are easy:

o K =T][/_,[ai, bi]: Px is just the truncation operator on each coordinate

e K =B(c,r)isaballin RY: Px(x)=c+r(x—c)/|x—c|

o K={x:> ", vix;=c}: affine hyperplanes - projection can be computed

analytically
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Projection on affine constraints

Suppose K = {x : Ax = b} where Ais an m x n matrix of rank m and b € R™.
We are interested in solving

Pi(y) = argmin,ei |x — y?

e Existence, uniqueness: x — |x — y|? is " 0o at infinity" and strictly convex,
K is convex

Euler inequality: (V,|x* — y|?,v) > 0 for every v € ker A
x* —y € (ker A)t = ImAT (Exercise!)
x* =y +ATXA () € R™ contains the Lagrange multipliers)
Ax = b= b= Ax* = Ay + AAT X so finally A = (AAT)~1(b— Ay)
In the end, use \ to find x*:
x* =y + AT(AAT) (b — Ay).

® 6 6 o o
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Constraints: second method

* we can eliminate the constraints by including them into the function to be
minimized

1
min f(x) becomes min f(x) + =|C(x)|? 0
c(xiio (x) becomes xe]IRDn (x) 5| CF (== 0)

* we obtain an optimization problem without constraints for which classical
algorithms can be applied

Proposition 20 (Constraints via Penalization)

Consider the problem (P) defined by Cr(n;no f(x), where C is a continuous

function C : R" — RP defining the constraints. Suppose that f is convex,

continuous and oo at infinity.

Define now for ¢ > 0 the problems (P.) by min f(x) + L|C(x)[?. The problems
xeR"

(P:) admit minimizers denoted by x.. Then every limit point of x. ase — 0
converges to a solution of (P).

Proof: Exercise!
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Conclusion: constraints

o for simple constraints: projected gradient algorithm works fine
@ it is possible to eliminate the constraints using a penalization

e simple to implement in practice if f and C are smooth

theoretical convergence is valid for ¢ — 0: in practice we never get to 0...

e as ¢ grows, the constraint term 1|C(x)|> may dominate in (P:) so we no
longer advance in a direction which minimizes (P)

e in practice we often start with ¢ large and solve the problem multiple times,
diminishing € and starting from the previous solution.

@ we will come back later to the optimality conditions related to constraints
related to the Lagrange multipliers
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@ Theoretical aspects

@ Gradient descent methods
@ Newton's method

@ Other methods
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Towards Newton's method

* the anti-gradient direction d = —Vf(x): the best asymptotic descent direction
* that does not mean it is the best choice in all applications!

* other descent directions exist: any direction such that d - Vf(x) <0 is a
descent direction.

Examples:
— _of .
o d=—7-(x)e
e d = —DVf(x), where D is a diagonal matrix with positive entries

o d = —AVf(x) (or —A~1Vf(x)) where A is a positive-definite matrix
Why these work?
f(x + td) = f(x) + tVF(x) - d + o(t) = f(x) — t(VF(x))TAVF(x) + o(t)

—_————
>0
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Recall Wolfe's condition

* my, my € (0,1) are chosen constants
* d is a descent direction at x: d - Vf(x) <0, q(t) = f(x + td)
* recall that ¢’(0) = Vf(x)-d <0

a) a(t)—4(0) ~ m1q'(0) and ¢'(t) > mpq’(0) (then we have a good t)

b) 40=90O) - m ¢/(0) (then t is too big)
) 1=90) < m ¢/(0) and ¢'(t) < mxq’(0) (then t is too small)
* Interpretation of ¢'(t) > maq’(0): the slope should be "less negative” at the

next point
* If X311 = x; + t;d; with t; verifying the above then:

Vf(Xk_H) . dk Z m2Vf(Xk) . dk.
* define 0 as the angle between di and —Vf(xk):
*Vf(Xk) . dk

O = =t K
Ok = I (e e
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Zoutendijk condition

Consider the iteration x;11 = x; + t;d; where d; - Vf(x;) < 0 and t; verifies the
Wolfe conditions. Suppose that f is of class C1 on R" and is bounded from
below. Assume also that Vf is L-Lipschitz, i.e.
|[Vf(x)—Vi(y)| < Llx—yl| forall x,y € R".
Then
Z cos? 6k|Vf(xk)|2 < 00.
k>0

x the proof is rather straightforward (in the Notes)

* Immediate consequence: if d; = —Vf(x;) then §; = 0 and |Vf(x;)| — 0.

* if the descent direction is chosen such that 6 is bounded away from 90°, i.e.
cosfy > 6 > 0 then |Vf| — 0.
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The basic Newton Method

* as in the 1D case, look at the second order Taylor expansion

f(x+ h) = f(x) + VF(x)-h+ %hTsz(x)h + o(|h|?)
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The basic Newton Method

* as in the 1D case, look at the second order Taylor expansion

f(x+ h) =~ f(x) + VF(x)-h+ %hTsz(x)h

* then minimize the quadratic function in order to find the new iterate
. L 12
min f(x)—|—Vf(x)-h+§h D*f(x)h

D?f(x)h+ Vf(x) =0 = h = —[D*f(x)] *Vf(x)

Algorithm 7 (Newton's method)

Given a starting point xo run the recurrence
Xi+1 = Xj — [sz(X;)]_IVf(X,').
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Remarks

Inconvenients:
e the method is not necessarily well-defined: is D*f(x;) invertible at x;?
e the Taylor expansion is local: are we sure that [D?f(x;)] "1V f(x;) is small?
@ is the value of the function decreasing: f(xjt+1) < f(x;)?
e is d = [D?*f(x;)] "1V f(x;) a descent direction? Yes, if D?f(x;) is
positive-definite!

e note that [D?f(x;)] "1V f(x;) implies the resolution of a linear system
(recall that for large matrices we NEVER compute inverses!) - this might
be costly if the number of variables is large

Advantage: when the method converges, the convergence is quadratic!

Theorem 22 (Quadratic convergence: Newton method)

If x* is a non-degenerate minimizer for the function f : R" — R, i.e. D*f(x*) is
positive definite, and the starting point xq is close enough to the optimum x*
then Newton's algorithm converges quadratically to x*.
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Newton-Rhapson Method

* another point of view: solve nonlinear systems

gi(xt,..,xs) = 0

gn(x1,-sxs) = 0
* denote g(x) = (g1(x), ..., gn(x)) and Dg(x) = (gi’) (the Jacobian matrix)

* the Newton iteration

Xni1 = X — (Dg(x)) g (%)
converges to a zero x* of g quadratically provided that xp is close to x* and
Dg(x*) is non-degenerate.

* note that the Newton method corresponds to the Newton-Rhapson method
applied for finding the zeros of g = Vf
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Fixing Newton's method

1. Use a line-search procedure. If D2f(x) is positive definite then the Newton
direction d = —(D?f(x)) "1V f(x) is a descent direction.

Proposition 23 (Newton with line-search)

Let f be a C? function and a-convex function. Let xy be such that the level set
S ={x:f(x) <f(x)} is bounded. Then the Newton method with Wolfe
line-search converges to the unique global minimizer of f.

Proof: A lower bound for cos 8, can be found in terms of the eigenvalues of
D?f(x). The sequence of iterates converges to a critical point. Convergence is
not quadratic if the step t is smaller than 1!

2. Variable metric methods. Any positive definite matrix A defines a new
metric. There are choices of A for which convergence towards the minimum
may be faster.
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Discussion

* gradient descent direction as the minimizer of a quadratic function
1
f(x +d) ~ f(x) +d"VF(x)+ 5c/Td

* the quadratic approximation is minimized by

d* = -Vf(x)
Remarks:
* Note that the gradient method is the same as the Newton method when the
Hessian D?f(x) is the identity matrix.

* This is bad, especially if the Hessian matrix is ill conditioned
* The current gradient does not necessarily point towards the minimizer

Beniamin BOGOSEL Computational Maths 2 59/70



Discussion: change the metric

Isovalues Euclidean Metric

Isovalues new Metric

* change the metric: change the coordinate system around x
* let A be a symmetric positive-definite matrix

f(x +d) ~ f(x)+d"VFf(x)+ %dTAd
* the quadratic approximation is minimized by
d=—-A"'Vf(x)
* how to choose A?

Beniamin BOGOSEL Computational Maths 2

60/70



What metric to choose?

* For f(x) = $xT Ax — b x change the variable to £ = AY/2x

* Recall that AY/2 = P=1\/DP where A= P~1DP is a diagonalization of A.
* Then denote g(¢) = f(x) = F(A~Y/2¢) = 2¢7¢ — bT A=Y/2¢ and note that
this function is well conditioned

* Write the GD algorithm for & — f(A~1/2¢):

Ent1 =& — tVg(&n)
§n+1 = 5n - tA_1/2Vf(A_1/2§n)
Then multiplying by A=1/2 we get
Xni1 = Xp — tATIVF(x,).
% Choosing the descent direction —A~1Vf(x) is equivalent to performing a GD

step in the new metric (coordinate system)!

Practical remark: the optimal metric given by A'/2 is not known! Finding it
may require more computational effort than the optimization problem

x in practice the metric A is changed iteratively (see the next course)
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General algorithm

incorporating all previous algorithms...

Algorithm 8 (Generic Variable Metric method)

Choose the starting point xg
Iteration i:

e compute f(x;), Vf(x;) and eventually D*f(x;)
@ choose a symmetric positive-definite matrix A;: compute the new direction
di = —A7VF(x;)
@ perform a line-search from x; in the direction d; giving a new iterate
Xii1 = X + tidi = x; — t;A71Vf(X;).

* A; = Id gives the Gradient Descent method

x A; = D?f(x;) gives the Newton method with line search (only when D?f(x;) is
positive-definite)

* such an algorithm will converge to a critical point provided the set

{f(x) < f(x0)} is bounded. The key point is that line-search guarantees
descent: f(xi+1) < f(x;) when not at a critical point
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Modified Newton method

Idea: Choose A; based on D?f(x;) by eventually changing the Hessian matrix
to make it positive definite
Choose a threshold § > 0 and compute the spectral decomposition
D?f(x;) = U;D; U]
If a diagonal value of D; is smaller than § then replace it with §.
— Large arithmetic cost: 2n3 to 4n3 arithmetic operations
Levenberg-Marquardt modification: A; = D?f(x;) + eld. Choose ¢ such
that A; is positive definite by using a bisection scheme.
Test the positive-definiteness using the Cholesky Factorization: A; = LDL”
- arithmetic cost: n*/6
Use a modified Cholesky factorization so that the resulting diagonal matrix
has entries bigger than § > 0.

* all these techniques are too costly for large n
* we lose quadratic convergence as soon as A; # D?f(x;) or the corresponding
line-search step is smaller than 1
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Conclusion: Newton's method

@ quadratic convergence when we start close to a non-degenerate minimizer

@ in order to guarantee convergence in general a line-search procedure should
be used

e if D?f(x;) is not positive-definite then multiple ways exist to " correct the
algorithm” but they are all costly: O(n3)

@ a linear system should be solved at each iteration
@ the cost becomes too big if n is very large

@ even the RAM memory usage is too heavy for large n: O(n?) when the
Hessian is full
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@ Theoretical aspects

@ Gradient descent methods
@ Newton's method

@ Other methods
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Gauss-Newton Method

* non-linear least squares: assume m > n

F6) = ri(x)?

j=1
* define the Jacobian matrix
on .. On
8x1 ax,,
Jox)=| : o
Ot .. Orm
6x1 8x,,

* note that V£(x) = 2(J(x))"r where r = (r1, ..., Iim)
x Hessian computation: D?f(x) = 2J(x)T J(x) + something small...
* choose to approximate the Hessian by 2J(x)T J(x) which is positive definite
when J is of maximal rank
* Therefore we get the Gauss-Newton method
xiv1 = xi = %i(J0a) TI(x) 7T (xi) ()
where either v; = 1 or a line-search is performed
x as before one must check if —(J(x;)TJ(x;)) " J 7 (x;)r(x;) is a descent direction
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Example 1

* the Rosenbrock function: f(x) = 100(y — x?)? + (1 — x)? =
n=10(y—x)? rn=(1-x)

—20x 10
* J(x) = < 1 0)

* true Hessian vs Gauss-Newton approx:

_ (1200x? — 400y +2 —400x
H(x) = ( —400x 200 )
£, (800x2+2 —400x
2/ = < —400x 200

* Numerically this converges very fast, using only gradient information
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Example 2: Triangulations

Suppose you know the coordinates (x;, y;) of three antennas and the distances d;

of a cellphone to these antennas, find the coordinates (xg, yo) of the cellphone.

* least squares formulation'
Z 2y n(y) =di—V(x =2+ (y — yi)2

* Gauss-Newton generally converges faster than GD here
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Further examples

* Other important applications: least squares are often used when fitting models
to data

m m
f(x) = Z ri(x)? = Z(Y(SI»X) -y
i=1 i=1
where y(s, x) is a non-linear function

Practical session:
* find parameters of a population model: exponential model, logistic model
x find parameters for a temperature model: T(t) = Asin(wt 4+ ¢) + C
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Nelder-Mead method

* gradient free

Algorithm 9 (Nelder-Mead method)
Current test points xi, ..., Xp+1 € R”
Order: relabel points such that f(x1) < ... < f(Xp41)

Compute centroid xg of points xq, ..., X,

Reflection: compute x, = xo + a(xo — Xp11) with « > 0. If
f(x1) < f(x) < f(xn) then replace x,+1 by x, and go to Step 1

B

Expansion: if f(x,) < f(x1) compute xe = xo + (%, — xo) with v > 1.
If f(x.) < f(x,) replace x,+1 by x. and go to Step 1
Else replace x,+1 by x, and go to Step 1
Contraction: If f(x,) > f(x,) then compute x. = xp + p(Xy+1 — Xo) with
p € (0,0.5]. If f(xc) < f(xst1) then replace xn,+1 by x. and go to Step 1
@ Shrink: Replace all points except x; by x; = x1 + o(x; — x1). Go to Step 1
.

x Standard parameters: « =1,y =2,p=1/2,0 =1/2.
* Termination criterion: Simplex too small, variation of f small, etc.
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