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Optimization in dimension 1

Methods of order zero (without derivatives)
Methods of order one and above (with derivatives)
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Some basic definitions

Let f : K → R be a regular function and K be an interval.

1 x∗ is a local minimum of f on K if there exists ε > 0 such that
f (x∗) ≤ f (x) for every x ∈ (x∗ − ε, x∗ + ε)

2 x∗ is a local maximum of f on K if there exists ε > 0 such that
f (x∗) ≥ f (x) for every x ∈ (x∗ − ε, x∗ + ε)

3 x∗ is a global minimum of f on K if f (x∗) ≤ f (x) for every x ∈ K

4 x∗ is a global maximum of f on K if f (x∗) ≥ f (x) for every x ∈ K

5 x∗ is an local/global extremum of f on K if it is a local/global minimum or
maximum of f
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Existence of a minimizer

Compact interval

Let f : [a, b]→ R be a continuous function. Then f is bounded and it attains
its upper and lower bounds on [a, b], i.e. f admits global minima and maxima.

? a classical condition to recover existence on the whole space is what we call
”infinite at infinity”

Existence on R
Let f : R→ R be a continuous function such that f (x)→ +∞ when
|x | → +∞ then f admits global minimizers on R.

? Uniqueness is not guaranteed, in general.

Classical method in the calculus of variations

lower bound on f : existence of a minimizing sequence

compactness: extract a converging subsequence

continuity: conclude that a limit point of the minimizing sequence is a
solution
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Necessary conditions of optimality

Suppose that f is a C 1 function defined on an interval K ⊂ R and that f has a
local extremum at x∗ which is an interior point of K . Then f ′(x∗) = 0.

Proof: Classical. Just write f ′(x∗) = lim
x→x∗

f (x)− f (x∗)

x − x∗
.

? points x such that f ′(x) = 0 are called critical points.
? what happens if the extremum is attained at the end of the interval?

Euler’s inequality

Let f : [a, b]→ R be a C 1 function on an open set containing [a, b]. Then

if a is a local minimum then f ′(a) ≥ 0

if b is a local minimum then f ′(b) ≤ 0

if a is a local maximum then f ′(a) ≤ 0

if b is a local maximum then f ′(b) ≥ 0

Proof: the same idea.
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Before going further...

? Recall the Taylor expansion formula around a: suppose that f is smooth and x
is ”close to a”. Then

f (x) = f (a) +
f ′(a)

1!
(x − a) +

f ′′(a)

2!
(x − a)2 +

f ′′′(a)

3!
(x − a)3 + ...
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Before going further...

Proposition 1 (Taylor theorem with remainder)

Suppose that f : R→ R is of class C k at a. Then

f (x) =
k∑

i=0

f (i)(a)

i !
(x − a)i + Rk(x)

where the remainder Rk(x) is equal to one of the following:

Rk(x) = hk(x)(x − a)k with limx→a hk(x) = 0. In other words
Rk(x) = o(|x − a|k) as x → a.

if f is of class C k+1 then

Rk(x) =
f (k+1)(ξL)

(k + 1)!
(x − a)k+1

with ξL between a and x. This is the Lagrange form of the remainder.

? Recall the Little-o and Big-O notations:

|O(x)| ≤ C |x | and
o(x)

|x | → 0 as |x | → 0
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What about sufficient conditions?

? in general, we may have critical points which are not local extrema
Example: f (x) = x3 has a unique critical point x = 0, but x = 0 is not a local
minimizer.
? the first option is to look at second order conditions

Second order necessary and sufficient conditions

1. Suppose f : R→ R is of class C 2 and x∗ ∈ R. Then

x∗ is a local minimum of f =⇒ f ′(x∗) = 0 and f ′′(x∗) ≥ 0

x∗ is a local maximum of f =⇒ f ′(x∗) = 0 and f ′′(x∗) ≤ 0

2. Suppose f : R→ R is of class C 2 and x∗ ∈ R. Then

f ′(x∗) = 0 and f ′′ ≥ 0 on (x∗ − ε, x∗ + ε) =⇒ x∗ is a local minimum of f .

This implies the following weaker sufficient condition:

f ′(x∗) = 0 and f ′′(x∗) > 0 =⇒ x∗ is a local minimum of f .

? proof idea: f (x) is above f (x∗) plus a ”positive parabola” centered at x∗.
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Important particular case

? the class of convex functions is important from the optimization point of view
? we can have results of existence and uniqueness of minimizers
? first order optimality conditions are necessary and sufficient

Definition 2 (Convex functions)

Let f : R→ R be a function.
f is convex if ∀t ∈ [0, 1], ∀x , y ∈ R we have

f (tx + (1− t)y) ≤ tf (x) + (1− t)f (y)

Equivalent definitions:
? f is below its secants
? f is above its tangents (where f is regular)

? if we replace the inequality above with a strict one, we obtain the class of
strictly convex functions
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Existence and uniqueness: convex case

Proposition 3

Let f : R→ R be a convex function. If f is convex then any local minimum of f
is a global minimum.

Proposition 4 (Uniqueness)

Let f : R→ R be a convex function. If f is strictly convex then there exists at
most one minimum of f on R.

? We cannot say more with strict convexity alone! In particular, strict convexity
does not guarantee existence. Consider f (x) = exp(x).

Proposition 5 (Existence and Uniqueness)

Let f : R→ R be a function. Then if

f (x)→ +∞ when |x | → ∞
f is strictly convex

then there exists a unique minimizer x∗ of f on R.

Exercise: Prove that a convex function f : [a, b]→ R is continuous on (a, b).
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Optimality conditions: convex case

Proposition 6

Suppose that f : R→ R is a convex function of class C 1 and x∗ ∈ R. Then the
following statements are equivalent:

x∗ is a global minimum of f

x∗ is a local minimum of f

f ′(x∗) = 0

? convexity gives convenient tools for proving convergence results regarding
numerical algorithms
? it is one of the rare hypotheses which can guarantee the convergence of an
algorithm to the global minimum
? numerical algorithms will be applied to general functions, but in general we
can only hope to converge to a local minimum
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Importance of the 1D case

? It gives an initial framework, to be extended to higher dimensions
? most efficient optimization algorithms use a line-search routine

Example of optimization algorithm

Optimization of a function f : Rn → R starting from an initial point x0
At iteration i

Point xn: find a descent direction dn

Find a reasonable step size such that f (xn + γdn) is significantly smaller
than f (xn)

? The second step is essentially a one dimensional optimization routine
? Often it is not reasonable to solve an optimization problem at every iteration
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What to expect?

[photo from Ziv Bar-Joseph, used with permision]

Assumption: the function f is unimodal on the segment [a, b], i.e. it possesses
a unique local minimum on [a, b]
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Optimization in dimension 1

Methods of order zero (without derivatives)
Methods of order one and above (with derivatives)
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Motivation

? some practical objective functions don’t have derivatives available

Examples:
a) physical proprieties of a given material
b) trajectory of an object in a gravitational field
c) general ”black box” functions

? function evaluations can cost money in real life: achieve best results for a
given number of function evaluations
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Simplest idea: grid search

Given f : [a, b]→ R:

Discretize [a, b] using N points x1, ..., xN

Evaluate f (xi ) and select the smallest value

If N is large enough and f is not oscillating too much, this method will give
a first indication concerning the global minimizer

? the precision depends on N
? lots of unnecessary evaluations of f away from the local minimizers
? Advantage: it gives indication on the position of global minimizers (under
regularity assumptions...)
? a more localized approach should be used in order to achieve faster converging
algorithms.
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Bracketing algorithms: unimodal case

? f is unimodal on [a, b]: it possesses a unique local minimum x∗ ∈ [a, b]

Proposition 7

If f is unimodal on [a, b] with minimum x∗ then:
? f is strictly decreasing on [a, x∗] and strictly increasing on [x∗, b].
? f is unimodal on every sub-interval [a′, b′] ⊂ [a, b]

? We wish to reduce the size of the interval [a, b] containing x∗ by computing
the value of f at some intermediary points
? Without the use of derivatives, one intermediary point is not enough. Are two
intermediary points enough?

Consider two points x+, x− ∈ (a, b) such that a < x− < x+ < b.
Case 1: f (x−) ≤ f (x+)⇒ ...
Case 2: f (x−) ≥ f (x+)⇒ ...
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Bracketing algorithms: unimodal case

? f is unimodal on [a, b]: it possesses a unique local minimum x∗ ∈ [a, b]

Proposition 7

If f is unimodal on [a, b] with minimum x∗ then:
? f is strictly decreasing on [a, x∗] and strictly increasing on [x∗, b].
? f is unimodal on every sub-interval [a′, b′] ⊂ [a, b]

? We wish to reduce the size of the interval [a, b] containing x∗ by computing
the value of f at some intermediary points
? Without the use of derivatives, one intermediary point is not enough. Are two
intermediary points enough?

Consider two points x+, x− ∈ (a, b) such that a < x− < x+ < b.
Case 1: f (x−) ≤ f (x+)⇒ x∗ is to the left of x+ ⇒ replace [a, b] with [a, x+]
Case 2: f (x−) ≥ f (x+)⇒ x∗ is to the right of x− ⇒ replace [a, b] with [x−, b]
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Generic Algorithm

Algorithm 1 (Zero-order minimization of a unimodal function)

Initialization: Initial segment S0 = [a, b], iteration number i = 1
Step i : Given previous segment Si−1 = [ai−1, bi−1]

choose points x−i , x
+
i : ai−1 < x−i < x+i < bi−1

compute f (x−i ) and f (x+i )

define the new segment as follows

if f (x−i ) ≤ f (x+
i ) then Si = [ai−1, x

+
i ]

if f (x−i ) ≥ f (x+
i ) then Si = [x−i , bi−1]

go to step i + 1

? Why does the algorithm work?

at each step we guarantee that x∗ belongs to Si

the length of Si is diminished at each iteration

? Stopping criterion: the length of the segment Si is smaller than a tolerance
ε > 0
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Rate of convergence

? measure the speed of convergence of the iterates to the optimum
? define an error function err(xi ): for example err(xi ) = |xi − x∗|
? in the following, denote ri = err(xi )
Standard classification

linear convergence: there exists q ∈ (0, 1) such that ri+1 ≤ qri
? the constant q ∈ (0, 1) is called the convergence ratio
? it is easy to show that ri ≤ qi r0, so in particular ri → 0.

sublinear convergence: ri → 0 but is not linearly converging

superlinear convergence: ri → 0 with any positive convergence ratio
? sufficient condition: lim

i→∞
(ri+1/ri ) = 0

convergence of order p > 1: there exists C > 0 such that for i large enough

ri+1 ≤ Crpi
? p is called the order of convergence
? the case p = 2 has a special name: quadratic convergence
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Rates of convergence - Examples

Let γ ∈ (0, 1). Then:

(γn) converges linearly to zero, but not superlinearly

(γn
2

) converges superlinearly to zero, but not quadratically

(γ2
n

) converges to zero quadratically

Quadratic convergence is much faster than linear convergence
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Plotting the order of convergence

For the convergence of order p we have ri+1 ≈ Crpi .
? representing this directly does not illustrate clearly the power p
? taking logarithms we get log err(xi+1) ≈ logC + p log err(xi )
? therefore, plotting the next error in terms of the previous error in a log-log
scale gives the line y = logC + px
? the slope of the line shows the order of the method!
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Trisection algorithm

? the interval Si gives an approximation of x∗ with error at most |Si |

Trisection algorithm

Define intermediary points by

x−i =
2

3
ai−1 +

1

3
bi−1 x+i =

1

3
ai−1 +

2

3
bi−1

Then |Si | = 2/3|Si−1| and we achieve linear convergence rate.

? if xi is an arbitrary point in Si then

|x∗ − xi | ≤
(

2

3

)i

|b − a|.

? if xi is an approximation of x∗ after k function evaluations then

|x∗ − xi | ≤
(

2

3

)bk/2c
|b − a|.

? in terms of function evaluations the convergence ratio is
√

2/3 ≈ 0.816
? it is possible to be more efficient by doing one function evaluation when
changing from Si−1 to Si
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Fibonacci search

? the Fibonacci sequence is defined by

F0 = 1, F1 = 1, Fn+1 = Fn + Fn−1.

? first few terms are: 1, 1, 2, 3, 5, 8, 13, 21, 34, 55...
? Fibonacci search: when you know from advance the number of function
evaluations N you want to make

Algorithm 2 (Fibonacci search)

Initialization: Start with S0 = [a0, b0] and perform N steps as follows: For
i = 1, ...,N − 1

choose x−i and x+
i such that

|ai−1 − x+
i | = |bi−1 − x−i | =

FN−i

FN−i+1
|ai−1 − bi−1|

compute f (x−i ) or f (x+
i ) (which one was not computed before)

define the new segment as follows

if f (x−i ) ≤ f (x+
i ) then Si = [ai−1, x

+
i ]

if f (x−i ) ≥ f (x+
i ) then Si = [x−i , bi−1]

go to step i + 1
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Why is this choice ok?

Proposition 8

We need to do only one function evaluation per iteration.

? |bi − ai | = FN−i

FN−i+1
...FN−1

FN
|b0 − a0| = FN−i

FN
|b0 − a0|

? in the end |x∗ − xN | = |bN − aN | = |b0−a0|
FN

? Formula: Fn = 1
λ+2 [(λ+ 1)λn + (−1)nλ−n] , λ = 1+

√
5

2

? In the end: |x∗ − xN | ≤ Cλ−N |b0 − a0|(1 + o(1)) which gives a linear
convergence rate with ratio λ−1 = 2

1+
√
5

= 0.61803...

? the previous method gave a rate of convergence of
√

2/3 = 0.81649... in
terms of the number of evaluations
? this is the best we can do in a given number of iterations
[J. Kiefer, Sequential minimax search for a maximum]
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Fun fact - computing Fibonacci numbers

Question

What algorithm do you use to compute Fn given n?
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Fun fact - computing Fibonacci numbers

Question

What algorithm do you use to compute Fn given n?

Trivial algorithm

Initialize F0 = 1,F1 = 1, at each step compute Fi = Fi−1 + Fi−2.
Complexity:

Don’t store all values Fi if they are not needed: diminish memory consumption
Don’t use recursive algorithms(!!!): exponential complexity
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Fun fact - computing Fibonacci numbers

Question

What algorithm do you use to compute Fn given n?

Trivial algorithm

Initialize F0 = 1,F1 = 1, at each step compute Fi = Fi−1 + Fi−2.
Complexity: O(n)

Don’t store all values Fi if they are not needed: diminish memory consumption
Don’t use recursive algorithms(!!!): exponential complexity

Efficient algorithm

If M =

(
1 1
1 0

)
then Mn =

(
Fn+1 Fn

Fn Fn−1

)
.

Complexity:
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Fun fact - computing Fibonacci numbers

Question

What algorithm do you use to compute Fn given n?

Trivial algorithm

Initialize F0 = 1,F1 = 1, at each step compute Fi = Fi−1 + Fi−2.
Complexity: O(n)

Don’t store all values Fi if they are not needed: diminish memory consumption
Don’t use recursive algorithms(!!!): exponential complexity

Efficient algorithm

If M =

(
1 1
1 0

)
then Mn =

(
Fn+1 Fn

Fn Fn−1

)
.

Complexity: O(log n)

? Exponentiation is very fast if done properly: search for ”exponentiation by
squaring” or ”fast exponentiation” if you are interested
? If you want other tricky problems where maths can significantly reduce the
complexity of the problem take a look at Project Euler
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Other ways of computing Fibonacci numbers

Use the following recursion formulas:

F2n = Fn(2Fn+1 − Fn)

F2n+1 = F 2
n+1 + F 2

n

? This will again give you a O(log n) algorithm since you can always go from n
to 2n or 2n + 1: the number of steps is the length of the binary expansion of n
? All this is nice, but be aware that Fibonacci numbers grow exponentially fast:

Fn =
1√
5

(1 +
√

5

2

)n+1

−

(
1−
√

5

2

)n+1


? Note that Fn ≈ 1√
5
λn+1

? in NumPy you will quickly go beyond the 16 digit precision: there is no need
to be extremely efficient...
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Golden search

? Fibonacci search: one needs to know in advance the number of function
evaluations N
? Golden ratio: λ = 1+

√
5

2
? Essential property:
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Algorithm

Algorithm 3 (Golden search)

Initialization: Start with S0 = [a0, b0] and define λ =

√
5 + 1

2
Iterate

choose x−i and x+
i such that

x−i =
λ

λ+ 1
ai−1 +

1

λ+ 1
bi−1 x+

i =
1

λ+ 1
ai−1 +

λ

λ+ 1
bi−1

compute f (x−i ) or f (x+
i ) (which one was not computed before)

define the new segment as follows

if f (x−i ) ≤ f (x+
i ) then Si = [ai−1, x

+
i ]

if f (x−i ) ≥ f (x+
i ) then Si = [x−i , bi−1]

go to step i + 1

Until |Si | is small enough

? Consequence: One of f (x−i ) and f (x+i ) was computed previously. Only one
evaluation per iteration is needed
? |SN | = λ−N |b0 − a0|: same ratio as Fibonacci search
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Other methods...

Parabolic approximation knowing the values of f at points a, b, c approximate f
by a parabola and choose the next point as

x = b − 1

2

(b − a)2(f (b)− f (c))− (b − c)2(f (b)− f (a))

(b − a)(f (b)− f (c))− (b − c)(f (b)− f (a))
? this method converges fast if f is close to being quadratic
? in general, faster methods are combined with robust methods: if the fast
method gives an aberrant result at the current iterate, run the robust method
instead
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Important drawback

? when using zero-order methods we compare values of the function for different
arguments: up to which precision can we detect such differences?
? if f is smooth near the optimum x∗ we have

f (x) ≈ f (x∗) +
1

2
f ′′(x∗)(x − x∗)2

? if 0.5f ′′(x∗)(x − x∗)2 < εf (x∗) where ε is the machine epsilon (typically
around 10−16 for double precision) then numerically we don’t see any difference
between f (x) and f (x∗)
? in conclusion, the algorithm will not be able to tell the difference between
f (x) and f (x∗) if

|x − x∗| ≤
√
ε|x∗|

√
2|f (x∗)|

(x∗)2|f ′′(x∗)|

? in these cases (in practice, most of the time!), zero-order methods will not be
able to obtain precision higher than

√
ε !!!
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Conclusion - zero-order methods

we may achieve linear convergence rate even with the simple trisection
method

it is important to minimize the number of function evaluations in order to
minimize the computational cost of the methods

with Fibonacci or Golden search we arrive at the best possible convergence
ratio of λ−1 = 0.61803...

if the number of function evaluations is known: use Fibonacci search

else use Golden search: one function evaluation per iteration!

All of this is to be used when you can’t compute the derivatives of f .
!!! As soon as you have access to the derivative, even the most basic algorithm
is better than Fibonacci and Golden search, as we will see in the next section !!!
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Optimization in dimension 1

Methods of order zero (without derivatives)
Methods of order one and above (with derivatives)
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Using derivatives...

Assumptions: f is unimodal on [a, b] and is smooth (admits as many
derivatives as we want)
Suppose that x∗ is a local minimum of f on [a, b]

Proposition 9 (Classical result - optimality conditions)

If x∗ ∈ (a, b) then f ′(x∗) = 0 (x∗ is a critical point)

If x∗ = a then f ′(x∗) ≥ 0

If x∗ = b then f ′(x∗) ≤ 0

? The second and third conditions are called Euler inequalities
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Towards an algorithm...

? Direct consequence of unimodality: if a < x∗ < b is the minimizer of f on
[a, b] then

f ′(x) < 0 for x ∈ [a, x∗) and f ′(x) > 0 for x ∈ (x∗, b]

? Therefore, if we choose one intermediary point a < xn < b then we know the
position of x∗ w.r.t. xn by looking at f ′(xn)
? Note that, compared to zero-order methods, one intermediary point is enough
in order to reduce the size of the search interval
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Simplest algorithm

Algorithm 4 (Bisection)

Initialization: S0 = [a0, b0], i = 1
Loop:

choose xi = 0.5(ai−1 + bi−1)

compute f ′(xi )

if f ′(xi ) < 0 then Si = [xi , b]
if f ′(xi ) > 0 then Si = [a, xi ]
if f ′(xi ) = 0 then x∗ = xi and stop

replace i with i + 1 and continue until the desired precision is reached

? the third option (f ′(xi ) = 0 can (almost) never be verified numerically) when
working with fixed machine precision for general functions f
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Convergence rate

Proposition 10

The Bisection algorithm converges linearly with ratio 0.5.

Proof: |Si | = 0.5|Si−1| therefore

|x∗ − xN | ≤ 0.5N(b − a).

? Already better than the Fibonacci/Golden search algorithms.
? Is there a contradiction between the optimality of their claimed optimal
rate/ratio of convergence and the result stated above?
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Answer: No, since the Bisection algorithm uses information about derivatives
f ′(xi ) of the function f while Fibonacci/Golden search algorithms use only the
values of f .
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Convergence rate

Proposition 10

The Bisection algorithm converges linearly with ratio 0.5.

Proof: |Si | = 0.5|Si−1| therefore

|x∗ − xN | ≤ 0.5N(b − a).

? Already better than the Fibonacci/Golden search algorithms.
? Is there a contradiction between the optimality of their claimed optimal
rate/ratio of convergence and the result stated above?

Answer: No, since the Bisection algorithm uses information about derivatives
f ′(xi ) of the function f while Fibonacci/Golden search algorithms use only the
values of f .
? Bisection method can be seen as a search for a zero of f ′. For a general
function f such that f ′(a)f ′(b) ≤ 0 it will converge to a critical point of f
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Convergence rate

Proposition 10

The Bisection algorithm converges linearly with ratio 0.5.

Proof: |Si | = 0.5|Si−1| therefore

|x∗ − xN | ≤ 0.5N(b − a).

? Already better than the Fibonacci/Golden search algorithms.
? Is there a contradiction between the optimality of their claimed optimal
rate/ratio of convergence and the result stated above?

Answer: No, since the Bisection algorithm uses information about derivatives
f ′(xi ) of the function f while Fibonacci/Golden search algorithms use only the
values of f .
? Bisection method can be seen as a search for a zero of f ′. For a general
function f such that f ′(a)f ′(b) ≤ 0 it will converge to a critical point of f
? Can we reach machine precision using the bisection method? The answer is
yes: we compare the values of f ′ with 0!
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Further improvements...

? all methods presented so far possess global linear convergence assuming that f
is unimodal.
? Can we hope for something better?
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Further improvements...

? all methods presented so far possess global linear convergence assuming that f
is unimodal.
? Can we hope for something better?

Use curve fitting: approximate f locally by a simple function with analytically
computable minimum.

Basic ideas:

for each iteration: a set of working points for which we compute the values
and (eventually) the derivatives

construct an approximating polynomial p

find analytically the minimum of p and update the family of working points
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First example: Newton’s method

? suppose that given x we can compute f (x), f ′(x), f ′′(x)

Algorithm 5 (Newton’s method in dimension one)

Initialization: Choose the starting point x0
Step i :

Compute f (xi−1), f ′(xi−1), f ′′(xi−1) and approximate f around xi−1 by its
second-order Taylor expansion

p(x) = f (xi−1) + f ′(xi−1)(x − xi ) +
1

2
f ′′(xi−1)(x − xi−1)2.

choose xi as the critical point of the quadratic function p:

xi = xi−1 −
f ′(xi−1)

f ′′(xi−1)
.

replace i with i + 1 and loop
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Example

f (x) = x6/6− x2/2 + x on [−2.5, 2.5], x0 = 2.
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Fast convergence...

Proposition 11

Let x∗ ∈ R be a local minimizer of a smooth function f such that f ′(x∗) = 0
and f ′′(x∗) > 0. Then the Newton method converges to x∗ quadratically,
provided that the starting point x0 is close enough to x∗.
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Fast convergence...

Proposition 11

Let x∗ ∈ R be a local minimizer of a smooth function f such that f ′(x∗) = 0
and f ′′(x∗) > 0. Then the Newton method converges to x∗ quadratically,
provided that the starting point x0 is close enough to x∗.

All the hypotheses are essential!

What happens for f (x) = x4? Which hypothesis is not verified? Does the
algorithm converge for every starting point x0? What is the observed
convergence rate of the algorithm?

What happens for f (x) =
√

1 + x2? Does the algorithm converge for every
starting point x0?
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Fast convergence...

Proposition 11

Let x∗ ∈ R be a local minimizer of a smooth function f such that f ′(x∗) = 0
and f ′′(x∗) > 0. Then the Newton method converges to x∗ quadratically,
provided that the starting point x0 is close enough to x∗.

All the hypotheses are essential!

What happens for f (x) = x4? Which hypothesis is not verified? Does the
algorithm converge for every starting point x0? What is the observed
convergence rate of the algorithm?
Answer: x∗ = 0, f ′′(x∗) = 0, xi = 2

3xi−1. The convergence rate is linear.

What happens for f (x) =
√

1 + x2? Does the algorithm converge for every
starting point x0?
Answer: x∗ = 0, f ′′(x∗) > 0, xi = −x3i−1. The convergence rate is cubic
when |x0| < 1, but the algorithm does not converge at all for |x0| ≥ 1.
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Proof ideas

Denote g = f ′ and observe that g(x∗) = 0, g ′(x∗) > 0,
g(x∗) = g(xi ) + g ′(xi )(x∗ − xi ) + 1

2g
′′(ξi )(x∗ − xi )

2

Use g(x∗) = 0 and reformulate:
g(xi )

g ′(xi )
+ (x∗ − xi ) = − g ′′(ξi )

2g ′(xi )
(x∗ − xi )

2.

Use the definition of the Newton iterations to see that

x∗ − xi+1 =
−g ′′(ξi )
2g ′(xi )

(x∗ − xi )
2.

use the hypotheses to conclude!
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Another point of view

? Newton’s method can be seen a linearization method for finding the zeros of
g = f ′.
? Indeed, g(x) = g(xi−1) + g ′(xi−1)(x − xi−1) + o(|x − xi−1|)
? Imposing that the linear part is zero amounts to

x = − g(xi−1)

g ′(xi−1)
+ xi−1

which is exactly the Newton method
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Modified Newton: degenerate case

? it is possible to show that when f ′′(x∗) = 0 then the rate of convergence is
linear
? if the multiplicity m of the root x∗ of f ′ is known then the following modified
Newton method converges quadratically (if it is well defined...)

xn+1 = xn −m
f ′(xn)

f ′′(xn)
.

? in practice this does not really help: you don’t know the multiplicity a priori
for a general function f !
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A second example: Regula Falsi

? approximate f again by a quadratic polynomial
? we consider two working points with first order information
? given the two last iterates xi−1 and xi−2 we may approximate f ′′(xi−1) using
finite differences

f ′′(xi−1) ≈ f ′(xi−1)− f ′(xi−2)

xi−1 − xi−2
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A second example: Regula Falsi

Algorithm 6 (False Position Method)

Initialization: Choose the starting points x0, x1.
Step i ≥ 2:

Compute f (xi−1), f ′(xi−1), f ′(xi−2) and approximate f around xi−1 with a
second-order polynomial

p(x) = f (xi−1) + f ′(xi−1)(x − xi ) +
1

2

f ′(xi−1)− f ′(xi−2)

xi−1 − xi−2
(x − xi−1)2.

choose xi as the minimizer of the quadratic function p:

xi = xi−1 − f ′(xi−1)
xi−1 − xi−2

f ′(xi−1)− f ′(xi−2)
.

replace i with i + 1 and loop
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Remarks

? The method is symmetric with respect to xi−1 and xi−2. It is equivalent to

xi = xi−2 − f ′(xi−2)
xi−1 − xi−2

f ′(xi−1)− f ′(xi−2)
? this can be viewed again as a search for a zero of g = f ′: approximate f ′ by a
straight line through points (xi−1, f

′(xi−1)) and (xi−2, f
′(xi−2)).

? for a non degenerate minimizer x∗ of a smooth function f
(f ′(x∗) = 0, f ′′(x∗) > 0) and for x0, x1 close enough to x∗ the method
converges to x∗ superlinearly with order of convergence

λ = (1 +
√

5)/2.

? the Regula Falsi method has a slower convergence rate than Newton’s
method, but it does not need the knowledge of the second derivative
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Proof ideas

Lemma: Let (rn) be a sequence of positive reals verifying rn+1 ≤ rnrn−1 for
n ≥ 1. If r0, r1 ∈ (0, 1) then

there exists a constant C > 0 such that rn ≤ Crλ
n

,

where r ∈ (0, 1) and λ =
√
5+1
2 is the golden ratio

Show that the errors en = |x∗ − xn| verify an inequality of the form

en+1 ≤ Menen−1.
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Cubic fit

? consider two working points x1 and x2 with zero and first order information
? define the cubic polynomial such that

p(x1) = f (x1), p(x2) = f (x2), p′(x1) = f ′(x1), p′(x2) = f ′(x2)

? as the next iterate, choose the local minimizer of p.
? if x∗ is non degenerate and the method starts sufficiently close to x∗ then the
method converges quadratically
? formulas: complicated, if you are interested, ask for references
? curve fitting is used with polynomials of small degree: we need to be able to
compute analytically position of the minima: therefore, there is no point using
approximating polynomials of degree higher than four!
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Conclusion: curve fitting - towards descent methods

when the algorithm works we achieve superlinear convergence

the convergence results are local

when applying these methods in the general case they might converge to a
local maximum or a critical point

What to do when these methods do not work?

alternate zero-order or bisection search methods with curve fitting (in cases
where curve fitting gives iterates outside the desired search region)
at each iteration be sure to decrease the objective function using a
line-search method
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Descent direction in 1D

if f ′(x) 6= 0 there are only two options: go left or go right

choose the direction d ∈ {−1,+1} which decreases f .

first order Taylor expansion:

f (x + γd) = f (x) + γd · f ′(x) + o(γ)

if d · f ′(x) < 0 then if γ is small enough then

f (x + γd) < f (x)

Examples when f ′(x) 6= 0

1. d = −f ′(x)
2. The Newton direction d = −f ′(x)/f ′′(x) is a descent direction if and only if
f ′′(x) > 0.
3. The direction d = −f ′(xi−1) xi−1−xi−2

f ′(xi−1)−f ′(xi−2)
from the Secant method is a

descent direction if f is strictly convex.
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Inexact line search

? big question: how to choose a descent step?
? the 1D reasoning will be useful in higher dimensions

Denote q(t) = f (x + td) where d is a descent direction (with d ∈ {±1} in 1D
or general in nD), sometimes called merit function.
? Note that if d is a descent direction, then q′(0) = d · f ′(x) < 0

We perform a test for t, with three options

a) t is good

b) t is too big

c) t is too small

We should be able to answer these questions by looking at q(t) and q′(t).
? perform an iterative process for constructing confidence interval [tl , tr ] for t
? ideally the condition a) should be attained as quickly as possible!
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Generic line-search algorithm

Algorithm 7 (Line-search)

Start with tl = 0, tr = 0 and pick an initial t > 0.
Iterate:

Step 1:
If a) then exit: you found a good t
If b) then tr = t: you found a new upper bound for t
If c) then tl = t: you found a new lower bound for t

Step 2:
If no valid tr exists we choose a new t > tl , like t = 2tl (extrapolation step)
Else choose a new t ∈ (tl , tr ), like t = 0.5(tl + tr ) (interpolation step)

? a), b), c) should form a partition of R+

? if t is big enough c) should be false
? each interval [tl , tr ] should contain a non-trivial sub-interval verifying a)
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Armijo’s rule

? m1 ∈ (0, 1) and η > 1 are chosen constants.
? we fix an initial choice of t = t0 (for example t = 1)
? recall that q′(0) < 0

a)
q(t)− q(0)

t
≤ m1q

′(0)⇐⇒ q(t) ≤ q(0) + t(m1q
′(0)) (t is good)

b) m1q
′(0) <

q(t)− q(0)

t
⇐⇒ q(t) > q(0) + t(m1q

′(0)) (t is too big, tr = t)

c) never

? if t is too big, then the next t is chosen as t/η (a popular choice is η = 2).

Proposition 12

Suppose that q is of class C 1 and q′(0) < 0. Then the line-search with Armijo’s
rule finishes in a finite number of steps.

Armijo’s rule may lead to slow convergence: we choose once and for all a
maximal step.
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Goldstein-Price rule

? m1 < m2 ∈ (0, 1) are chosen constants
? recall that q′(0) < 0

a) m2q
′(0) ≤ q(t)−q(0)

t ≤ m1q
′(0)

⇐⇒ q(0) + t(m2q
′(0)) ≤ q(t) ≤ q(0) + t(m1q

′(0)) (good t)

b) m1q
′(0) < q(t)−q(0)

t ⇐⇒ q(t) > q(0) + t(m1q
′(0)) (t is too big)

c) q(t)−q(0)
t < m2q

′(0)⇐⇒ q(t) < q(0) + t(m2q
′(0)) (t is too small)

Proposition 13

Suppose that q ∈ C 1 is bounded from below and q′(0) < 0. Then the
line-search with the Goldstein-Price rule finishes in a finite number of steps.

? What about the choice of the constants m1,m2?
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Wolfe rule

? m1 < m2 ∈ (0, 1) are chosen constants
? recall that q′(0) < 0

a) q(t)−q(0)
t ≤ m1q

′(0) and q′(t) ≥ m2q
′(0) (good t)

b) q(t)−q(0)
t > m1q

′(0) (t is too big)

c) q(t)−q(0)
t ≤ m1q

′(0) and q′(t) < m2q
′(0) (t is too small)

Proposition 14

Suppose that q ∈ C 1 is bounded from below and q′(0) < 0. Then the
line-search with the Wolfe rule finishes in a finite number of steps.

? The condition on q′(t) is called curvature condition. Wolfe’s rule is widely
used in line-search algorithms: it gives good convergence properties
? the first condition in a) assures that the value of f decreases while the second
assures that the slope reduces
? What about the choice of the constants m1,m2?
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The quadratic case

Proposition 15

Suppose that q is quadratic with minimum t∗: q(t) = (x − t∗)2 + a. Then:
q′(t) = 2(x − t∗) and q(t∗) = q(0) + 1

2q
′(0)t∗.

? we should not refuse the optimal step when q is quadratic!
q(t∗)− q(0)

t∗
=

1

2
q′(0).

Armijo: 1
2q
′(0) ≤ m1q

′(0)
Goldstein-Price: m2q

′(0) ≤ 1
2q
′(0) ≤ m1q

′(0)
Wolfe: 1

2q
′(0) ≤ m1q

′(0) and q′(t∗) ≥ m2q
′(0)

In conclusion it is recommended to:
? choose m1 < 0.5 (for Armijo, Goldstein-Price and Wolfe)
? choose 0.5 < m2 < 1 (for Goldstein-Price)
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Finally...

Algorithm 8 (Generic gradient descent algorithm)

Initialization: Choose an initial point x0 and the eventual parameters for the
line-search algorithm
Step i :

compute the function value f (xi−1) and the derivative f ′(xi−1)

perform the line-search algorithm in order to find a descent step t.

choose the next iterate

xi = xi−1 − tf ′(xi−1).

Stopping criterion: |f ′(xi )| is small, |f (xi−1)− f (xi )| is small, the descent step
t is too small, maximum number of iterations reached, etc.

? f ′(xi−1) can be replaced with any descent direction d .
? various simplified variants exist: fixed descent step, variable descent step
? the generalization to higher dimensions is straightforward
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Convergence rate?

? it is a order 1 algorithm so a priori we cannot expect more than linear
convergence
? if f (x) = x2 and we use a fixed step algorithm then the update at each
iteration is

xi = xi−1 − tf ′(xi−1) = (1− 2t)xi−1.

therefore, for t < 0.5 we have linear convergence to the optimum.
? the function f (x) = x2 is strictly convex and quadratic: the ideal case.
Therefore we cannot expect something better.
? locally, around a minimizer x∗ the function f is convex. Therefore, if
convergence is proved for convex functions, it will follow, that locally, around
the minimizer, the convergence of GD is linear
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Example of global convergence result

Proposition 16 (Convergence rate for the gradient descent with fixed step)

Suppose that f : R→ R is of class C 2 with f ′ Lipschitz continuous on R: there
exists M > 0 such that

|f ′(x)− f ′(y)| ≤ M|x − y |, ∀x , y ∈ R.
Moreover, suppose that f is α-strictly convex (f ′′(x) ≥ α > 0) and that f is ∞
at infinity (so that a minimizer exists).
Then the Gradient Descent algorithm with fixed step t converges to the
minimum linearly when t is small enough.

Proof: Define the application F : R→ R
F(x) = x − tf ′(x)

and prove that for t small enough F is a contraction:

|F(x)−F(y)| ≤ k |x − y |, k ∈ (0, 1).

? then we know that the fixed point iteration xn+1 = F(xn) converges to the
unique fixed point, which is exactly the optimum.
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Example of local result

Proposition 17 (Local convergence rate)

Suppose that f : [a, b]→ R is unimodal and has a unique minimizer x∗ in [a, b].
Then if f is of class C 2 and f ′′(x∗) > 0 the gradient descent algorithm with
fixed step t converges linearly to x∗ if t is chosen small enough and x0 is close
enough to x∗.

? Taylor expansion for f ′ around x∗ gives a recurrence relation for the error!
? the condition f ′′(x∗) > 0 cannot be ommited: degenerate minimizers will lead
to sublinear rate of convergence. Example f (x) = x4.
? using more involved techniques, it is possible to prove that the gradient
descent always converges to a local minimizer, with an eventual sublinear rate of
convergence
? various convergence results can be formulated when using line-search
procedures instead of a fixed step: guaranteeing descent is essential for
convergence
? Wolfe’s rule gives good convergence results!
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Improve the speed of convergence

? we saw that Newton’s method or the Secant method give superlinear
convergence under the right hypotheses, but they offer no guarantee of
convergence

? modify the gradient descent algorithm by changing the descent direction:

xi+1 = xi + γdi
where di is either

−f ′(xi )/f ′′(xi ) (if f ′′(xi ) > 0)

−f ′(xi ) xi−xi−1

f ′(xi )−f ′(xi−1)
(if this is indeed a descent direction)

? combine this with a line-search procedure with initial step size t = 1.
? the new algorithm will eventually attain a superlinear rate of convergence
provided we can choose the step γ = 1 for all iterations i ≥ n0

? this idea is useful in higher dimensions where the family of descent directions
is richer
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Conclusions - optimization in dimension one

there are efficient zero-order algorithms (when derivatives are not available)

as soon as derivatives can be computed, the convergence is accelerated

curve-fitting methods give increased convergence rates, but they are
sensitive to the initialization

line-search procedures play an important role even in higher dimensions

inexact line-search: sometimes searching for an optimum is not the main
objective but attaining a significant decrease in the objective function is
enough

gradient descent algorithms (almost) always converge to a local minimzer,
but the rate of convergence is linear at best
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