
Advanced Programming Techniques
Aurel Vlaicu University Arad

Practical Session #1

Python introduction:

• Make sure you have Python 3.0 installed:
• Windows: https://docs.conda.io/projects/conda/en/latest/user-guide/install/
windows.html

• Linux: https://docs.conda.io/projects/conda/en/stable/user-guide/install/
linux.html

• Quick intro: https://www.w3schools.com/python/python_intro.asp
• Basic commands will be introduced in the first lab; Coding syntax is quite straight-

forward
• Install Jupyter Notebook: Google it! Straightforward through Anaconda/Miniconda

or with pip. Advantage: facilitates teaching/learning, quick coding/running code,
useful for projects: combine text cells with code cells.

What to do if you don’t know a command/method? Search the documentation!
Use a search engine!

Exercise 1 (Basic Python commands). In this exercise we look at the most basic
things we can do in Python:

0. Comments: start with #.
1. Print a message: print("Hello world!")

2. Basic arithmetic operations
3. Arrays, lists, etc https://www.w3schools.com/python/python_arrays.asp

4. if, else statements; indentation!
5. Loops for, while

6. Function definition def.

Exercise 2. Define and test basic functions

1. Define a function which adds two numbers: two inputs, one output

2. Define a function which concatenates two arrays: output: [first input, second input]

3. Code the Insertion-Sort function taught in the course.

Exercise 3. Define and test basic recursive functions

1. Implement the Factorial function recursively.

2. Implement Fibonacci’s sequence: F0 = 1, F1 = 1, Fn = Fn−1 + Fn−2 for n ≥ 2. Use
both iterative and recursive approaches. Use a global counter (keyword global to
keep track of the number of executions of the recursive version).

3. Can you implement Fibonacci recursively with linear complexity?

4. Implement the Merge-Sort function.

5. Implement the Insertion-Sort function recursively.

https://docs.conda.io/projects/conda/en/latest/user-guide/install/windows.html
https://docs.conda.io/projects/conda/en/latest/user-guide/install/windows.html
https://docs.conda.io/projects/conda/en/stable/user-guide/install/linux.html
https://docs.conda.io/projects/conda/en/stable/user-guide/install/linux.html
https://www.w3schools.com/python/python_intro.asp
https://www.w3schools.com/python/python_arrays.asp


Exercise 4. String manipulation, find matching substrings

1. Strings are defined using single or double quotes quotes, for example: ’some string’.
Define a few strings of your choice and print them.

2. Compute the length of a string with ’len’. Iterate and print all characters printed
in a string: s[i], where the index ranges from 0 to the length of the string.

3. Test the concatenation operator: +.

4. Test if the comparison operators <,>,== output the expected boolean variables
corresponding to the lexicographic order. Search the documentation to be sure.

5. Download a DNA sequence data set from Kaggle: https://www.kaggle.com/datasets/
nageshsingh/dna-sequence-dataset/data?select=dog.txt.

Consider the problem defined in the course: Find if the DNA sequence contains
subsequences of length M � N (for example M = 4).

• Load the DNA string from the text file. Create a new substring which is sig-
nificantly shorter (for example 1000 characters), so that testing algorithms
on it will be fast.

• Construct a function which builds a list containing all substrings of size M
from the DNA string.

• Sort the list using the algorithm of your choice.

• Answer the question if the string contains duplicate substrings of length M .

2

https://www.kaggle.com/datasets/nageshsingh/dna-sequence-dataset/data?select=dog.txt
https://www.kaggle.com/datasets/nageshsingh/dna-sequence-dataset/data?select=dog.txt

