Advanced Programming Techniques PART V

Problem solving

Beniamin BOGOSEL

Ecole Polytechnique
Department of Applied Mathematics

Generic approaches

- Brute force: simplest, direct method, starting from the definition, exhaustive research
- Divide and conquer: divide the problem into sub-problems, solve them and (eventually) fusion the solutions
- Dynamical programming: solve the current problem using smaller, possibly overlapping problems
- Greedy algorithms: construct the solution locally, by optimizing blindly a local criterion

Brute Force

- Divide and Conque
- Opposition of the state of t
- Greedy Algorithms

Brute Force

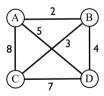
- Build the most direct solution to the problem
- Examples:
 - Search an element in an array: linear loop
 - Compute a^n : multiply a with itself n times
 - Compute Fibonacci numbers: direct recursion (without thinking)
- Often, not efficient!
- Even if inefficient, use it to create and benchkmark test cases on which you can test more refined algorithms

Examples

- * Searching: bubble sort: double loop, swap elements not respecting the order $O(n^2)$
- * Exhaustive search: generate all possible solutions until one verifies the desired properties
 - Generate all permutations of an array and pick the sorted one...
 - O(n!)

Traveling salesman

- \star consider *n* cities and the distances between them
- \star Find the shortest path going through all the cities exactly once before coming back to the original city.
- \star Exhaustive search: O(n!)
- * polynomial algorithms are not known for this problem



A-B-C-D-A	17
A-B-D-C-A	21
A-C-B-D-A	20
A-C-D-B-A	21
A-D-B-C-A	20
A-D-C-B-A	17

Brute force/exhaustive search

Advantages:

- simple
- good starting point
- sometimes it's not worth going further

Inconvenients:

- It is rarely the best solution
- less elegant and creative than other techniques

In practice you can always start by giving the brute force solution before searching for something better.

Brute Force

- 2 Divide and Conquer
- Oynamical programming
- 4 Greedy Algorithms

Divide and Conquer

General principle:

- if the problem is trivial, solve it directly
- else:
 - divide the problem into smaller ones
 - solve the smaller problems (recursively)
 - fusion the solutions to subproblems to find a solution to the original problem

Examples already seen

- Merge Sort:
 - 1. Divide: split the array into two sub-arrays of equal size
 - 2. Conquer: sort recursively the two sub-arrays
 - 3. Fusion: fusion the sub-arrays

Complexity $\Theta(n \log n)$

- Quick Sort:
 - 1. Divide: Partition the table according to the pivot
 - 2. Conquer: sort recursively the two sub-arrays
 - 3. Fusion: none

Average Complexity $\Theta(n \log n)$

- Binary search (dichotomy):
 - 1. Divide: Control the central element of the array
 - 2. Conquer: Search recursively into the left/right sub-arrays
 - 3. Fusion: trivial

Complexity $O(\log n)$ (brute force O(n))

Example: search for spikes

- Consider a table A and assume $A[0] = A[A.length] + 1 = -\infty$
- Definition: A[i] is a spike/peak if it is not smaller than its neighbors

$$A[i-1] \leq A[i] \geq A[i+1].$$

(local maximum)

- Objective: find a spike in an array
- A spike always exists (Exercise: prove it!)

Brute force approach

* Test all possible positions sequentially:

```
PEAK1D(A)

1 for i=1 to A. length

2 if A[i-1] \le A[i] \ge A[i+1]

3 return i
```

- \star Complexity: $\Theta(n)$ in worst case
- \star Second variant: maximum element in the table is a peak. Search for a maximum: $\Theta(n)$

A more refined idea

Divide and conquer:

- Look at A[i] and the neighbors A[i-1], A[i+1]
- \bullet If we have a peak, return i
- Otherwise:
 - the values must increase at least on one side

$$A[i-1] > A[i]$$
 or $A[i] < A[i+1]$.

- if A[i-1] > A[i] search for a peak in A[1..i-1]
- if A[i+1] > A[i] search for a peak in A[i+1..A.length].
- At which position i should we look first?

Algorithm

```
Peak1d(A, p, r)
1 \quad q = |\frac{p+r}{2}|
2 if A[q-1] \le A[q] \ge A[q+1]
        return a
   elseif A[q-1] > A[q]
        return PEAK1D(A, p, q - 1)
   elseif A[q] < A[q+1]
        return Peak1D(A, q + 1, r)
```

Initial call: Peak1D(A, 1, A.length)

Analysis

- Is the algorithm correct? Yes
 - We need to prove this.
 - Assume A[q+1] > A[q] and there's no peak in A[q+1..r].
 - Then A[q+1] < A[q+2] (otherwise A[q+1] is a peak).
 - Repeat this until reaching the end of the array.
 - if A[r-1] < A[r] (r is the endpoint) then by definition we have a peak!
- Complexity:
 - Worst case: $T(n) = T(n/2) + c_1$
 - $T(n) = O(\log n)$ (like the binary search)

Extending to a 2D array

- Consider a matrix $n \times n$ containing numbers
- Find an element which is largest than its neighbors
- Brute force $O(n^2)$, Search for a maximum $O(n^2)$

Divide and conquer

- Search for a maximum in the central column
- If it's a peak (in 2D) return it
- Otherwise, apply the function recursively to the left/right half of the matrix if the left/right neighbor is larger

Correct? Yes:

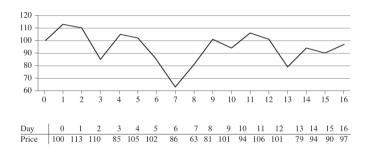
- A peak must exist on the half giving a larger value
- If not, then we can always find a neighbor with a larger value
- At some point we'll run out of points (finite number)

Complexity?

- $\Theta(n)$: finding the maximum on one column
- $O(\log n)$ iterations
- $O(n \log n)$ in total

Can we do better: yes, there exists a O(n) algorithm.

Another example: Buy/Sell stocks



- Consider the price of a stock on *n* consecutive days
- Determine retrospectively:
 - when should we have bought the stock
 - when should we have sold the stock

to maximize the profit

Strategies

First idea:

- Buy at minimum price, sell at maximum
- Not correct: the maximum is not necessarily after the minimum!

Second idea:

- Buy at minimum, sell at maximum price afterwards
- Sell at maximum, buy at minimum price before
- Not correct: if the max/min are at the beginning/end

Third idea:

- Test all pairs (brute force)
- Correct? Complexity?

Transform the problem

Day	l																
Price	100	113	110	85	105	102	86	63	81	101	94	106	101	79	94	90	97
Change		13	-3	-25	20	-3	-16	-23	18	20	-7	12	-5	-22	15	-4	7

- Assume the initial price table is labeled A
- Compute the difference table: D[i] = A[i] A[i-1]
- Determine the non-void subsequence of maximal sum in D
- Let D[i..j] be this sub-sequence: then it is optimal to buy on i-th day and sell on j-th day
- * In the example: buy on 8th day and sell 11th
- * If we can find the maximal sub-sequence in a table we have a solution for our problem

Beniamin BOGOSEL Advanced Programming Techniques

19/61

Brute force

- Generate all sub-arrays and compute all sums
- $O(n^2)$ sub-arrays and O(n) for computing the sum: $O(n^3)!$

Divide and Conquer

- Find maximum sub-array in A[p..r]
- Divide: split at midpoint $q = \lfloor (p+r)/2 \rfloor$
- Fusion?
 - Search for max sub-array crossing the midpoint!
 - Pick the best among the three options

New problem: maximum sub-array crossing the junction point!

- brute-force? $\Theta(n^2)$ (n/2 choices on the left, n/2 choices on the right)
- better solution: search independently the left/right parts $\Theta(n)$ for the two parts

Max Crossing Sub Array

```
MAX-CROSSING-SUBARRAY (A, low, mid, high)
    left-sum = -\infty
    sum = 0
    for i = mid downto low
         sum = sum + A[i]
         if sum > left-sum
             left-sum = sum
             max-left = i
    right-sum = -\infty
    sum = 0
    for j = mid + 1 to high
11
         sum = sum + A[j]
12
         if sum > right-sum
13
             right-sum = sum
14
             max-right = i
    return (max-left, max-right, left-sum + right-sum)
                                                             A[mid + 1...j]
                                        low
                                                          mid
                                                                               high
                                                             mid + 1
                                                    A[i ..mid]
```

Global Solution

```
MAX-SUBARRAY (A, low, high)
     if high == low
         return (low, high, A[low])
     else mid = \lfloor (low + high)/2 \rfloor
          (left-low, left-high, left-sum) = Max-Subarray(A, low, mid)
          (right-low, right-high, right-sum) = Max-Subarray(A, mid + 1, high)
          (cross-low, cross-high, cross-sum) =
              MAX-CROSSING-SUBARRAY (A, low, mid, high)
         if left-sum > right-sum and left-sum > cross-sum
              return (left-low, left-high, left-sum)
         elseif right-sum \geq left-sum and right-sum \geq cross-sum
10
11
              return (right-low, right-high, right-sum)
12
         else return (cross-low, cross-high, cross-sum)
```

Analysis

• The cost T(n) verifies

$$T(n) = 2T(n/2) + cn, n \ge 2.$$

- Same complexity as merge sort: $\Theta(n \log n)$
- Can we do better? Yes.

Brute Force

- Divide and Conquer
- 3 Dynamical programming

4 Greedy Algorithms

Dynamical programming

- * use smaller subproblems to solve the current one!
- * Consider a steel rod to cut and sell piece by piece
- * the selling price depends non-linearly on the length
- \star Find the maximum profit from selling a rod of n centimeters
 - Inputs: a price table: p_i , i = 1, 2, ..., n
 - \bullet Output: maximum revenue obtained from selling a rod of length n

Example:

Ideas

Brute force approach

- enumerate all possible cuts, compute the revenue, select the maximum one
- Cost: exponentially in terms of *n*!
- \bullet Infeasible even for moderately sized n

Recursivity

- Re-formulate r_n recursively
- If *n* corresponds to a base case, return it
- Otherwise consider all possible sub-cuts using one admissible length.

Naive version

 r_n is the maximum of

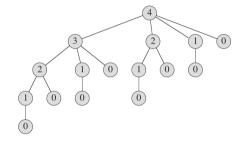
- p_n : the price without cutting (if admissible)
- $r_{n-1} + r_1$: rod of length 1 + rod of length n-1
- $r_{n-2} + r_2$:
- ...

Simplified:

- Consider the left-most cut part for an admissible cut size
- $r_n = \max_{1 \leq i \leq n} (p_i + r_{n-i}).$
- Only one sub-problem required

Direct implementation

- extremely inefficient due to redundant calls
- recursion tree for n = 4



- Number of nodes grows exponentially
- Store computed values in an array and re-use them when needed
- Two implementations possible:
 - top-down: memoization \longrightarrow dictionaries or hash tables!
 - bottom-up

Top-down: memoization

```
MEMOIZED-CUT-ROD(p, n)

1 Let r[0..n] be a new array

2 for i=1 to n

3 r[i]=-\infty

4 return MEMOIZED-CUT-ROD-AUX(p, n, r)
```

```
\label{eq:memorate_add_equation} \begin{split} & \text{Memoized-Cut-rod-aux}(p,n,r) \\ & 1 \quad \text{if } r[n] \geq 0 \\ & 2 \qquad \text{return } r[n] \\ & 3 \quad \text{if } n = 0 \\ & 4 \qquad q = 0 \\ & 5 \quad \text{else } q = -\infty \\ & 6 \qquad \text{for } i = 1 \text{ to } n \\ & 7 \qquad \qquad q = \max(q,p[i] + \text{MEMOIZED-CUT-ROD-AUX}(p,n-i,r)) \\ & 8 \quad r[n] = q \\ & 9 \quad \text{return } q \end{split}
```

- * if the current value is computed, use it
- * otherwise, use the recursive formula

Bottom-up

* solve the subproblems which are smallest first and go upwards

```
BOTTOM-UP-CUT-ROD(p, n)
   Let r[0..n] be a new array
2 r[0] = 0
3 for i = 1 to n
        q=-\infty
5
       for i = 1 to i
            q = \max(q, p[i] + r[i - i])
        r[j] = q
   return r[n]
```

Analysis

- The ascending version is $\Theta(n^2)$
- The descending version is also $\Theta(n^2)$
- Reconstructing the solution??

 \star a new array s contains the left-most cut in the optimal solution for the size j

```
EXTENDED-BOTTOM-UP-CUT-ROD(p, n)

1 Let r[0..n] and s[1..n] be new arrays

2 r[0] = 0

3 for j = 1 to n

4 q = -\infty

5 for i = 1 to j

6 if q < p[i] + r[j - i]

7 q = p[i] + r[j - i]

8 s[j] = i

9 r[j] = q

10 return r and s
```

 \star To show the solution, use the values in s

$\frac{i}{p[i]}$ $r[i]$ $s[i]$	0	1	2	3	4	5	6	7	8
p[i]	0	1	5	8	9	10	17	17	20
r[i]	0	1	5	8	10	13	17	18	22
s[i]	0	1	2	3	2	2	6	1	2

Generalities regarding dynamic programming

- optimization problems which can be decomposed into sub-problems of the same nature
 - optimal sub-structure: computing solution for problem of size *n* starting from solutions to subproblems
 - Subproblems may overlap
- Direct recursive implementation: exponential complexity
- saving previous results is helpful to decrease the cost

Fibonacci

- Direct recursion: exponential complexity
- Iterative version: linear complexity
- Matrix exponentiation: logarithmic complexity

$$\begin{pmatrix} F_{n+1} & F_n \\ F_n & F_{n-1} \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}^n$$

Exponentiation by squaring

• Divide and conquer:

$$a^n = \begin{cases} a^{n/2} \cdot a^{n/2} & \text{n even} \\ a^{(n-1)/2} \cdot a^{(n-1)/2} \cdot a & \text{n odd} \end{cases}$$

Maximal subsequence

```
MAX-SUBARRAY-LINEAR(A)

1 Let m[1..n] be a new array

2 max-so-far = A[1]

3 m[1] = A[1]

4 for i = 2 to A.length

5 if m[i-1] > 0

6 m[i] = m[i-1] + A[i]

7 else m[i] = A[i]

8 if m[i] > max-so-far

9 max-so-far = m[i]

10 return max-so-far
```


35/61

- Complexity: $\Theta(n)$ (vs $\Theta(n \log n)$ for divide and conquer)
- m[i] is the maximal subsequence sum ending at i
- The algorithm computes m[i] starting from m[i-1].
- Ascending dynamical programming (very simple)
- Exercise: add variables to keep track of the sub-array bounds

Longest common sub-sequence

* Why? Example: Compute diff between two text files to view modifications **Problem:** Given two sequences $X = x_1,, x_m$ and $Y = y_1, ..., y_n$ find the longest common sub-sequence Examples:



Brute force

- Enumerate all subsequences of the shortest sequence
- For every one of them verify if it is a subsequence of the first one
- Complexity: $\Theta(n \cdot 2^m)$
 - 2^m possible subsequences
 - Testing if sub-sequence: $\Theta(n)$
- Exercise: implement this

Solve using dynamical programming

Sub-structure property:

 The longest common sub-sequence has prefixes which are longest common sub-sequences for some prefixes

Example: if $Z = z_1...z_k$ is the longest common sub-sequence (LCSS) then:

- z_1 is the LCSS for $x_1...x_{i_1}$; $y_1, ..., y_{i_1}$
- z_1, z_2 is the LCSS for $x_1...x_{i_2}$; $y_1, ..., y_{j_2}$
- etc...

Denote by $X_i = x_1...x_i$ a prefix for X and $Y_i = y_1...y_i$ a prefixe for Y for the index i.

Towards a solution

Let c[i,j] the length of the LCSS in X_i and Y_j . Then

$$c[i,j] = \begin{cases} 0 & i = 0 \text{ or } j = 0 \\ c[i-1,j-1] + 1 & i,j > 0 \text{ and } x_i = y_j \\ \max\{c[i-1,j],c[i,j-1]\} & i,j > 0 \text{ and } x_i \neq y_j \end{cases}$$

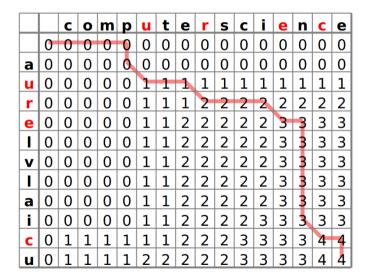
 \star in other words: if two elements are equal, the length of the common subsequence increases, else, it stays the same as the best previous case

Implementation

```
LCS-LENGTH(X, Y, m, n)
     Let c[0..m,0..n] be a new table
 2 for i = 1 to m
         c[i,0]=0
    for i = 0 to n
         c[0,i]=0
    for i = 1 to m
         for i = 1 to n
               if x_i == y_i
                   c[i, j] = c[i-1, j-1] + 1
10
               elseif c[i - 1, j] \ge c[i, j - 1]
                   c[i, j] = c[i - 1, j]
11
               else c[i, j] = c[i, j - 1]
13
     return c
```

Complexity: $\Theta(m \cdot n)$

Example



Recovering an example?

- \star use the array c[i,j]
- \star start from the bottom right which has value k
- \star find the position (i,j) such that i and j are minimal and c[i,j]=k: this gives the k-th element of the common subsequence
- \star Do the same for k-1, k-2, ... etc

Knapsack problem

Problem:

- ullet A thief goes in a museum and wants to steal some objects which he can carry in his knapsack, of maximum weight W
- The museum has a list of n art objects each one having weight p_i and a value v_i
- ullet Find the list of objects with total weight at most W and the maximum price!
- \star Consider S a set of n objects having values v_i and weights p_i .
- \star Find $x_1, ..., x_n \in \{0, 1\}$ such that
 - $\sum_{i=1}^n x_i p_i \leq W$
 - $\sum_{i=1}^{n} x_i v_i$ is maximal

Example

i	V_i	p_i
1	1	1
2	6	2
3	18	5
4	22	6
5	28	7

- ullet Consider the knapsack capacity of W=11
- $\{5,2,1\}$ has weight 10 and value 35
 - {3,4} has weight 11 and value 40

Brute force approach

- Enumerate all subsets of S and compute their value: $O(n2^n)$
- Any amelioration that involves heuristics, but is still based on an enumeration of all possibilities will lead to a similar complexity

Dynamical programming

- * Define M(k, w), $0 \le k \le n$ and $0 \le w \le W$ the maximum benefit that we can find using objects 1, 2, ..., k from S and a knapsack of maximum charge w. (assume all variables are integers)
- ★ We have two possibilities:
- (a) The object k is not in the optimal choice: M(k, w) = M(k 1, w)
- (b) The object k is among the optimal choice of objects: $M(k, w) = M(k 1, w p_k) + v_k$ We obtain the recurrence:

$$M(k,w) = egin{cases} 0 & ext{if } k=0 \ M(k-1,w) & ext{if } p_k > w \ \max\{M(k-1,w), v_k + M(k-1,w-p_k)\} \end{cases}$$
 otherwise

46/61

```
KNAPSACK(p, v, n, W)
 1 Let M[0...n, 0...W] be a new table
 2 for w = 0 to W
        M[0,w]=0
 4 for k=1 to n
       M[k, 0] = 0
   for k = 1 to n
        for w = 1 to W
            if p[k] > w
                 M[k, w] = M[k-1, w]
             elseif M[k-1, w] > v[k] + M[k-1, w-p[k]]
10
                 M[k, w] = M[k - 1, w]
11
12
             else M[k, w] = v[k] + M[i - 1, w - p[k]]
    return M[n, W]
```

47/61

Example

M	0	1	2	3	4	5	6	7	8	9	10	11	i	V_i	p_i
Ø	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1
$\{1\}$	0	1	1	1	1	1	1	1	1	1	1	1	2	6	2
$\{1, 2\}$	0	1	6	7	7	7	7	7	7	7	7	7	_	18	_
$\{1, 2, 3\}$	0	1	6	7	7	18	19	24	25	25	25	25	-		-
$\{1, 2, 3, 4\}$	0	1	6	7	7	18	22	24	28	29	29	40	4	22	6
$\{1, 2, 3, 4, 5\}$	0	1	6	7	7	18	22	28	29	34	35	40	5	28	7

• Optimal solution: {3,4}

• Optimal value: 22 + 18 = 40

Recover the solution

- \star Go back through the table M starting from the down rightmost position.
- $\star k = n$
- \star decrease k until the value of M[k-1, w] < M[k, w]
- \star replace w by $w p_k$ and repeat

Complexity of the solution

Time and space complexity: $\Theta(nW)$

- Filling the matrix: $\Theta(nW)$
- Searching the solution $\Theta(n)$

Dynamical programming: summary

- Define the value searched through a recurrence relation
- Compute the optimal solution (fill a table)
- Reconstruct the optimal solution

... vs divide and conquer

- For divide and conquer the size of the subproblems is significantly smaller $n \mapsto n/2$
- For dynamical programming: $n \rightarrow n-1$, in general
- For divide and conquer the subproblems are independent.
- Direct recursive implementations will not work well for dynamical programming!

Brute Force

- Divide and Conquer
- Opposition of the state of t
- 4 Greedy Algorithms

Greedy Algorithms

- used for solving optimization problems (like dynamical programming)
- Main idea: if there is a local choice to be made, do it in the most greedy way possible!
 Example: for the knapsack problem always take the available object with the highest price.
- For such algorithms to work we need two properties:
 - Being able to get to an optimal solution via greedy choices
 - Optimal substructures: the solution to the problem can be found by solving similar sub problems
- Sometimes one can apply greedy algorithms even if they are not optimal.

Example 1: giving change

- Objective: having coins with values 1, 2, 5, 10, 20, find a method for reimbursing x using the least number of coins.
- Example for x = 34:
 - {1,1,2,5,5,20}: 6 coins
 - {2, 2, 10, 20}: 4 coins
- Simple greedy algorithm: at each step choose the coin with maximum value, smallest than the remaining sum
- Example: x = 49: 20, 20, 5, 2, 2

Is the Greedy solution optimal?

Theorem. For c = [20, 10, 5, 2, 1] the greedy algorithm is optimal.

By direct inspection one can prove the following:

- (a) If x is the total sum, then the largest coin $c^* \le x$ can be given.
 - at most one coin equal to 1, 5, 10, at most two coins with value 2!
- (b) The solution for x is made of c^* and the solution for $x c^*$!

For other coin values the greedy algorithm may not be optimal!

- C = [1, 10, 21, 34, 70, 100] and x = 140
 - Greedy: [100, 34, 1, 1, 1, 1, 1, 1]
 - Optimal: [70, 70].

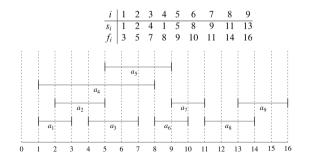
Example 2: Activity selection

A room is used for different activities:

- $S = \{a_1, ..., a_n\}$ a set of n activities
- a_i starts at time s_i and ends at time f_i
- ullet Two activities a_i, a_j are compatible if the intervals do not intersect: $f_i \leq s_j$ or $f_j \leq s_i$

Problem: Find the largest set of activities which are compatible.

⋆ Example:



Activity selection: greedy approach

- Define a natural order for the activities
- Select activities in this order

Example: Sort activities by starting time, final time, length $f_i - s_i$, etc.

57/61

Sorting: Final time

Assume activities are sorted with respect to the final time. If multiple activities start at the same time, the shortest comes first.

- \star put the first activity in the list A.
- \star iterate through the activities k = 2, ..., n:
 - if a_k starts after the last activity in A finishes, put it in the list.

Complexity: $\Theta(n)$ ($+\Theta(n \log n)$ for sorting)

Proving that we have a correct approach

(a) Consider the activity a_x with the first end time f_x . Then there exists an optimal solution containing a_x .

Idea: replace the first activity in an optimal solution with a_x to obtain another solution.

(b) Optimal substructures: if a_x is the greedy choice and A^* is the optimal solution for the remaining activities then $\{a_x\} \cup A^*$ is a solution for the problem.

Other Greedy algorithms

Dikkstra's algorithm: find path of minimal length between two points in a graph.
 Idea: at the current point, investigate all unvisited neighbors of the current point and compute its minimal distance to the source.

Algorithm conception - conclusion

- size of inputs/outputs
- complexity of brute force solution?
- can a simple rule lead to a solution (greedy: best local choice → best global choice)
- can sorting help in some way?
- can I use smaller subproblems to solve bigger ones? (divide and conquer, dynamical programming)
- can a data structure help to find an efficient solution: tree, queue, file, heap, dictionary, hash table?
- relation to other algorithms
- find references online for optimized solution!