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Algorithm analysis

Two questions to ask when facing an algorithm

Is my algorithm correct?

Is my algorithm efficient?

? Problem: general question like sorting an array
? Instance of a problem: one particular case: sort the array [8, 2, 4, 3, 1].

An algorithm is correct for a problem if it produces a correct solution for all instances of the
problem!

Example

Consider the algorithm A which permutes the first two elements in an array.
Algorithm A is correct for the instance: Sort the array [2, 1, 3, 4], but is not a sorting
algorithm!
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How to test for correctness?

Testing

implement the algorithm
test it on all instances (assuming we can do this)
difficult to ”prove” there’s no bug

Have a mathematical formal proof:

it is not necessary to implement the algorithm to know it is correct
not perfect either...

In practice: a mix of the two.

Tools:

iterative algorithms: Hoare triplets, loop invariants
recursive algorithms: induction proofs

A quote by Dijkstra

A good programmer knows that an algorithm is correct before implementing it.
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Assertions

A relation between the variables which is valid at a certain point in the execution

Consider two conditions:

P: conditions verified by a valid input for the algorithm
Q: conditions verified by the output if the algorithm is correct

The algorithm is correct if the triplet P code Q is true (called Hoare triplet).

Example

{x ≥ 0}y = Sqrt(x){y == x2}.

Beniamin Bogosel Advanced Programming Techniques 4/50



Correcting a series of instructions

? in practice algorithms have multiple instructions

1: {P}
2: S1
3: S2
4: ...
5: Sn
6: {Q}
? to check correctness it is useful to insert intermediary assertions P1, ...,Pn−1 describing
variables at each step in the program.
? then check that triplets {P}S1{P1}, {P1}S2{P2}, ...,{Pn−1}Sn{Q} are correct.

? different types of instructions: assign value to a variable, conditions, loops
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Correcting value assignments and conditions

? value assignments: straightforward, assert that the value changed the way we want in an
assignment
? conditions

1: {P}
2: if B then
3: C1
4: else
5: C2
6: {Q}

To prove correctness show that the following triplets are true

{P&B}C1{Q}
{P& non-B}C2{Q}

Basically: test that the if statement does what it’s supposed to do!
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Correcting loops

1: {P}
2: while B do
3: CODE
4: {Q}

1: {P}
2: INIT
3: {I}
4: while B do
5: {I and B} CODE {I}
{I and non-B}

6: {Q}
? To prove that a loop does what it’s supposed to do, find a Loop invariant I : a property
that is valid throughout the loop
? Prove that the property is preserved (by design)
? Prove that the loop must finish! Termination function: for example, some function which is
strictly decreasing and reaches zero at termination.
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Example: Fibonacci-Iter

? Proposition: if n ≥ 0 Fibonacci-Iter(n)
outputs Fn.

Add post and pre-conditions
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Analysis

Analyzing the condition Analyzing the loop
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Analysis - continued

Does the loop end?

Termination function: f = n − i + 1

i = i + 1: f decreases strictly at every iteration
i ≤ n: implies f = n − i + 1 > 0.

Therefore the algorithm is correct and finishes!

Beniamin Bogosel Advanced Programming Techniques 10/50



Another example: insertion sort

Quick proof of correctness:

Loop invariant: the subtable A[1..j − 1] contains the elements of the original table
A[1..j − 1] sorted

Invariant is preserved!

the loop finishes
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Finding the loop invariant

may be difficult for some algorithms

Generally the algorithm is a consequence of the invariant not the other way around

Fibonacci algorithm: We compute iteratively Fi−1 and Fi−2

Insertion sort algorithm: We add the element j to the sorted sub-array containing the first
j − 1 elements at the correct position.

Using a loop invariants is based on the general principle of
induction or recurrence proofs

P(0) is true
P(i − 1) implies P(i)
Termination when we reached the desired value i = n.
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Classical example

Proposition: for every n ≥ 0 we have

n∑
i=0

i =
n(n + 1)

2
.

Proof:

Base case: n = 0:
∑0

i=0 i = 0 = 0(0+1)
2 .

Inductive case for n ≥ 1:

n∑
i=0

i =
n−1∑
i=0

i + n =
(n − 1)n

2
+ n

=
n(n + 1)

2
.

By induction/recurrence the property is valid for every n ≥ 0.
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Induction proofs can prove correctness of recursive algorithms

Property to prove: the algorithm is correct for a given instance of the problem

Order the instances of the problem by some ”size” (array length, number of bits, some
integer, etc)

Base case: for induction = base case for recursion

Inductive case: assume that recursive calls are correct and deduce that the current call
is correct

Termination: show that recursive calls only apply to sub-problems, finite number of
calls (usually trivial, by construction)
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Example: Fibonacci

Proposition: For every n Fibonacci(n) returns Fn Proof:

Base case: for n ∈ {0, 1} the function returns Fn = 1.

Inductive case: Assuming Fibonacci(m) returns Fm for m < n we find that
Fibonacci(n) returns

Fn−1 + Fn−2 = Fn.
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Example: Merge sort

Proposition: For 1 ≤ p ≤ r ≤ A.length Merge-Sort(A, p, r) sorts the sub-array A[p..r ].

Assuming that Merge is correct (to be proved using an invariant)
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Example: Merge sort

Proof:

Basis case: for r − p = 0 merge sort ne modifie pas A et A[p] = A[r ] is sorted

If r − p > 0 then p − q and r − q − 1 are strictly smaller than r − p. The calls to
Merge-Sort for sub-arrays of smaller lengths are correct by induction hypothesis

Supposing Merge-sort is correct, we find that Merge-Sort(A, p, r) is correct.
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Conclusions on Algorithm correction

? Correctness proofs

Iterative algorithms: Invariant

Recursive algorithms: Induction

Beniamin Bogosel Advanced Programming Techniques 18/50



1 Testing for correctedness

2 Complexity

3 Sums and recurrences

Beniamin Bogosel Advanced Programming Techniques 18/50



Algorithm performance

Multiple ways of measuring efficiency:

program length (number of lines)
code simplicity
Memory space consumed
Computation time
number of elementary operations

Computation time/number of operations

most relevant
quantifiable, easy to compare

Memory usage is also relevant!
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How to measure execution time?

Experimentally: (?)

write a program and execute it for multiple instances of a data set
Problems:

Computation time depends on implementation: CPU, OS, programming language,
compiler, machine status, etc.
On what data should you test the algorithm?

Cost for computing Fn in different Programming Languages
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How to measure execution time?

On paper:

Assume a machine model:

operations executed sequentially
Basic operations (addition, assignment, branching) take constant time
sub-routines: call time (constant)+ sub-routine execution (recursive computation)

Computation time= sum all contributions corresponding to pseudo-code instructions

? Execution time depends on inputs
? Execution time is generally computed in term of some ”size” for the entry

length of an array

some integer parameter
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Analysis of insertion sort

tj number of iterations in the while loop
Total execution time:

T (n) = c1n + c2(n − 1) + c4(n − 1) + c5

n∑
j=2

tj + c6

n∑
j=2

(tj − 1)

+ c7

n∑
j=2

(tj − 1) + c8(n − 1)
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Different aspects

Even for a fixed size, the complexity might differ from one instance to another

Different ways of reasoning:

best case scenario
worst case scenario
average case

Usually we use the worst case scenario
it gives an upper bound for the execution time
best case is not representative; average case is difficult to compute/interpret
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Insertion sort: best case

Best case: the array is sorted in increasing order
? the inner while loop condition is only tested once, tj = 1.
? the execution time is linear in n: T (n) = an + b.

Worst case: The array is sorted in a decreasing order: the inner loop is ran j times: tj = j .
? Then it can be seen that sums of the form

∑n
i=1 = n(n + 1)/2 appear in the computation

of T (n), which gives
T (n) = an2 + bn + c ,

a quadratic function of n.
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Asymptotic analysis

? we are interested in the growth speed of T (n) as n increases
? The computation time T (n) is simplified:

Example: T (n) = 10n3 + n2 + 40n + 800

T (1000) = 100001040800; 10n3 = 100000000000

? ignoring the coefficient of the dominant term; asymptotically this does not change the
relative order

? Insertion sort: T (n) = an2 + bn + c −→ n2.
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Why is it important to have this estimate?

? assume elementary operations take one micro second
? the computation time for different values of n can be estimated
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Why is it important?

Maximum problem size that can be handled in a given time

T (n) 1 second 1 minute 1 hour

n 106 6× 107 3.6× 109

400n 2500 150000 9× 106

2n2 707 5477 42426
n4 31 88 244
2n 19 25 31

If m is the value that can be treated in a given time what becomes this value on a
machine 256 more powerful?

T (n) Time

n 256m
400n 256m
2n2 16m
n4 4m
2n m + 8
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Asymptotic notations

? Allow to characterize the growth of functions f : N→ R+

? three notations:

(upper bounds) Big-O: f (n) ∈ O(g(n)) if f (n) ≤ Cg(n)

(lower bounds) Big-Ω: f (n) ∈ Ω(g(n)) if f (n) ≥ Cg(n)

(lower and upper bounds) Big-Theta: f (n) ∈ Θ(g(n)) if f (n) ' g(n).
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Examples

3n5 − 16n + 2 ∈ O(n5)? ∈ O(n)? ∈ O(n17)?

3n5 − 16n + 2 ∈ Ω(n5)? ∈ Ω(n)? ∈ Ω(n17)?

3n5 − 16n + 2 ∈ Θ(n5)? ∈ Θ(n)? ∈ Θ(n17)?

? Complexity classes:

O(1) ⊂ O(log n) ⊂ O(n) ⊂ O(n log n) ⊂ O(na>1) ⊂ O(2n).
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Some properties

f (n) ∈ Ω(g(n))⇔ g(n) ∈ O(f (n))

f (n) ∈ Θ(g(n))⇔ f (n) ∈ O(g(n)) and f (n) ∈ Ω(g(n))

f (n) ∈ Θ(g(n))⇔ g(n) ∈ Θ(f (n))

Scalar multiplication: f (n) ∈ O(g(n)), k ∈ R+ then kf (n) ∈ O(g(n))

Addition, max: f1(n) ∈ O(g1(n)) and f2(n) ∈ O(g2(n)) then

f1(n) + f2(n) ∈ O(g1(n) + g2(n)), f1(n) + f2(n) ∈ O(max{g1(n), g2(n)}).

Product: f1(n) ∈ O(g1(n)) and f2(n) ∈ O(g2(n)) then f1(n) · f2(n) ∈ O(g2(n) · g2(n)).
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Algorithm complexity

We use asymptotic notations to characterize the complexity

We must specify what type of complexity: best case, worst case, average case

The Big-O notation is the most used: in practice we say that an algorithm is O(g(n)) if
g(n) gives the best (smallest) possible complexity class
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Complexity of a problem

We say that a problem is O(g(n)) if there exists an algorithm O(g(n)) which can solve it

We say that a problem is Ω(g(n)) if every algorithm that solves it is at least Ω(g(n))

We say that a problem is Θ(g(n)) if it belongs to both cases above

Example: The sorting problem

The sorting problem is O(n log n)

We can easily show that the sorting problem is Ω(n)

We can show that, in fact, the sorting problem is Ω(n log n).

Exercise: Show that the search for the maximum in an array is Θ(n).
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The sorting problem is Ω(n)

Suppose there exists an algorithm better than O(n) to solve the sorting problem

This algorithm cannot iterate through all elements in an array, otherwise it would be
O(n)

Therefore there exists at least one element in the array which is not visited by the
algorithm

Therefore there are instances of arrays which will not be correctly sorted by this
algorithm

Therefore there does not exist an algorithm faster than O(n) for the sorting problem.
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Computing complexity in practice

Simple rules for iterative algorithms:

Affectation, accessing an element in an array, arithmetic operation, function calls: O(1)

Instruction IF-THEN-ELSE: O( max complexity of the two branches )

Sequence of operation: the most costly operation (sum)

Simple loop O(nf (n)) if the loop body costs O(f (n))

Complete double loop O(n2f (n)) if the loop body costs O(f (n))

Incremental loops: i = 1..n, j = 1..i : O(n2)

Loops with exponential increase i 7→ 2i ≤ n: O(log n).
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Example

PrefixAverages(X)

input: array X of size n

output: array A of size n such that A[i ] = (
∑i

j=1 X [j ])/i (average of the first i
elements of X )

First variant: Θ(n2), Second variant: Θ(n)
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More complex algorithms

Applying the previous rules might lead to overestimating the complexity

More ”scientific” approach:

Detect an analytic expression for the number of executions of the basic operations T (N)
for a problem of ”size” N
Conclude that the cost of the algorithm is aT (N) where a is the constant cost of the basic
operation

The sorting example: the abstract operation is the comparison
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Complexity of recursive algorithms

Usually leads to a recurrence relation

Solving the recurrence relation is not necessarily trivial
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Factorial and Fibonacci

Factorial(n)

1: if n == 0 then
2: return 1
3: return n· Factorial(n − 1)

T (0) = c0

T (n) = T (n − 1) + c1

= c1n + c0

=⇒ T (n) ∈ Θ(n).

Fib(n)

1: if n ≤ 1 then
2: return n
3: return Fib(n − 2)+Fib(n − 1)

T (0) = c0

T (1) = c0

T (n) = T (n − 1) + T (n − 2) + c1

=⇒ T (n) ∈ Θ(1.61n).
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Merge sort

Merge-Sort(A, p, q, r)

1: if p < r then
2: q = bp+r

2 c
3: Merge-Sort(A, p, q)
4: Merge-Sort(A, q + 1, r)
5: Merge(A, p, q, r)

Recurrence:
T (1) = c1 T (1) = Θ(1)
T (n) = 2T (n/2) + c2n + c3 T (n) = 2T (n/2) + Θ(n)
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Analysis: merge-sort

Simplify the recurrence:

T (1) = c

T (n) = 2T (n/2) + cn

Represent the recurrence graphically

Sum the cost at every node
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Analysis: merge-sort

Each level costs cn

Assume n is a power of 2 there are
log2 n + 1 levels

Total cost is cn log2 n + cn ∈ Θ(n log n)
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Remarks

Limitation of asymptotic analysis

Constants are important for problems of small sizes

Insertion sort is faster than merge sort for n small

Two algorithms having the same complexity might behave differently

Space complexity:

Same type of reasoning, same notations

Bounded by the time complexity (why?)
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Sums and recurrences

Complexity analysis often involve computing sums and recurrences

Recall some basic techniques
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Examples

?
∑n

i=1 i = n(n+1)
2

?
∑n

i=1 i
2 = n(n+1)(2n+1)

6
Technique:

n∑
i=1

i2 = an3 + bn2 + cn + d

Identify coefficients a, b, c , d starting from some values of the sum

Prove the result by induction.

?
∑n−1

i=0 z i = 1−zn

1−z

?
∑n−1

i=0 iz i = z−(n+1)zn+1+nzn+2

(1−z)2
.

? Sn =
∑n

k=0 k2k = (n − 1)2n+1 + 2 (appearing when studying the complexity of heap sort)
? other examples will be handled individually when they appear
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Recurrences

When dealing with recursive algorithm, recurrence relations will appear

Examples:

Merge Sort:

T (1) = 0

T (n) = T (dn/2e) + T (bn/2c) + n − 1 for n > 1

Fibonacci:

T (1) = 0

T (n) = T (n − 1) + T (n − 2) + 2 for n > 1

Various types: linear, polynomial, divide and conquer, etc...
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Methods...

”guess” and prove by induction

Replace and compute:

Merge sort:
T (1) = 0;T (n) = 2T (n/2) + n − 1.

? Pattern:

T (n) = 2iT (n/2i ) + (n − 2i−1) + (n − 2i−2) + ...+ (n − 20)

= 2iT (n/2i ) + in − 2i + 1

? If k = log2 n and i = k then

T (n) = 2kT (n/2k)kn − 2k + 1

= nT (1)n log2 n − n + 1

= O(n log n)
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General theorem

Theorem

Consider the following recurrence

T (n) = c if n < d
T (n) = aT (n/b) + f (n) ifn ≥ d

,

where d ≥ 1, a > 0, c > 0, b > 1 and f (n) ≥ 0 for n ≥ d . Then:

1. If f (n) ∈ O(nlogb a−ε) for ε > 0 then T (n) ∈ O(nlogb a)

2. If f (n) ∈ Θ(nlogb a) then T (n) ∈ Θ(nlogb a log n).

3. If f (n) ∈ O(nlogb a+ε) for ε > 0 and there exists δ < 1 such that af (n/b) ≤ δf (n) then
T (n) ∈ Θ(f (n))
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Linear/divide and conquer recurrences

Tn = 2Tn−1 + 1 Tn ∼ 2n

Tn = 2Tn−1 + n Tn ∼ 2 · 2n

Tn = 2Tn/2 + 1 Tn ∼ n

Tn = 2Tn/2 + n − 1 Tn ∼ n log nTn = Tn−1 + Tn−2 Tn ∼ (1.61)n+1

Divide and conquer recurrences are generally polynomial

Linear recurrences are exponential

Generating smaller sub-problems is more important than reducing the non-homogeneous
term
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Comparing recurrences: number of sub-problems

Linear recurrences:

Tn = 2Tn + 1 =⇒ Tn ∈ Θ(2n)

Tn = 3Tn + 1 =⇒ Tn ∈ Θ(3n)

? passing from 2 to 3 sub-problems increases the time exponentially

Divide and conquer recurrences:

T1 = 0

Tn = aTn/2 + n − 1

The master theorem implies:

Tn =


Θ(n) for a < 2

Θ(n log n) for a = 2

Θ(nlog2 a) for a > 2

? The situation is very different from a = 1.9 to a = 2.1Beniamin Bogosel Advanced Programming Techniques 49/50



What we have seen

Correcting algorithms: iterative (invariants), recursive (recurrence)

Algorithm complexity, asymptotic notation

How do we compute the complexity of iterative and recursive algorithms
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