ADVANCED PROGRAMMING TECHNIQUES
PART 1I

Algorithm Analysis Tools

Beniamin BOGOSEL

Ecole Polytechnique
Department of Applied Mathematics

Beniamin BOGOSEL

Advanced Programming Techniques

1/50

@ Testing for correctedness

Beniamin BOGOSEL Advanced Programming Techniques 1/50

Algorithm analysis

Two questions to ask when facing an algorithm
@ Is my algorithm correct?
@ Is my algorithm efficient?

* Problem: general question like sorting an array
* Instance of a problem: one particular case: sort the array [8,2,4,3,1].

An algorithm is correct for a problem if it produces a correct solution for all instances of the
problem!

Consider the algorithm A which permutes the first two elements in an array.

Algorithm A is correct for the instance: Sort the array [2,1,3,4], but is not a sorting
algorithm!

Beniamin BOGOSEL Advanced Programming Techniques 2/50

How to test for correctness?

o Testing

e implement the algorithm
o test it on all instances (assuming we can do this)
o difficult to "prove” there's no bug

@ Have a mathematical formal proof:
e it is not necessary to implement the algorithm to know it is correct
e not perfect either...

@ In practice: a mix of the two.

@ Tools:

e iterative algorithms: Hoare triplets, loop invariants
e recursive algorithms: induction proofs

A quote by Dijkstra
A good programmer knows that an algorithm is correct before implementing it.

Beniamin BOGOSEL Advanced Programming Techniques 3/50

Assertions

@ A relation between the variables which is valid at a certain point in the execution
@ Consider two conditions:

e P: conditions verified by a valid input for the algorithm
e Q: conditions verified by the output if the algorithm is correct

@ The algorithm is correct if the triplet P code Q is true (called Hoare triplet).

{x > 0}y = SqrT(x){y == x*}.

Beniamin BOGOSEL Advanced Programming Techniques 4/50

Correcting a series of instructions

* in practice algorithms have multiple instructions
{P}

. S1

52

: f;l7
- {Q}
* to check correctness it is useful to insert intermediary assertions P4, ..., P,_1 describing

variables at each step in the program.
* then check that triplets {P}S1{P1}, {P1}S2{P2},{Pn—1}Sn{Q} are correct.

o U A W N

* different types of instructions: assign value to a variable, conditions, loops

Beniamin BOGOSEL Advanced Programming Techniques

5/50

Correcting value assignments and conditions

* value assignments: straightforward, assert that the value changed the way we want in an
assignment
* conditions
{P}
if B then
C1
else
Cc2
{Q}
To prove correctness show that the following triplets are true
o {P&B}C1{Q}
o {P& non-B}C2{Q}
Basically: test that the if statement does what it's supposed to do!

AU e

Beniamin BOGOSEL Advanced Programming Techniques 6/50

Correcting loops

1: {P}
. 7 2 T
2: while B do ' .
3 CODE 4: while B do
. (Q) 5. {/ and B} CODE {/}
' {I and non-B}
6:

* To prove that a loop does what it's supposed to do, find a Loop invariant /: a property
that is valid throughout the loop

* Prove that the property is preserved (by design)

* Prove that the loop must finish! Termination function: for example, some function which is

strictly decreasing and reaches zero at termination.

Beniamin BOGOSEL Advanced Programming Techniques 7/50

Example: FIBONACCI-ITER

FIBONACCI-ITER(n)

FIBONACCI-ITER(n) {n=>0} 7 {P}

ifn<1 ez
return n prev.=1n
else else .
B pprev =
pprev = 0
prev =1 prev =1
fori =2ton \vahile (i < n)
= priv + pprev f :_prev + pprev
g/r);(jV_—fpreV pprev = prev
— prev = f
return f i=i+1
* Proposition: if n > 0 FIBONACCI-ITER(n) {prev == Fa} 7/ {Q}
outputs E. return prev

Add post and pre-conditions

Beniamin BOGOSEL Advanced Programming Techniques 8/50

Analysis

Analyzing the condition

{n>0etn<1}

prev = n

{prev == F,}
correct (Fp =0, F; = 1)

{n>0etn>1}

pprev = 0
prev = 1
i=2

while (i < n)

f = prev + pprev
pprev = prev

prev = f
i=i+1
{prev == F,}

‘ | = {pprev == F;_»,prev == F;_1} |

Beniamin BOGOSEL

Analyzing the loop

{n>1}

pprev = 0

prev = 1

i=2

{pprev == F;_», prev == F;_1}
correct

{pprev == Fi_a, prev == Fi_1,i < n}
f = prev + pprev
pprev = prev

prev = f
i=i+1
{pprev == F;_», prev == F;_;}
correct
{pprev == Fi_5,prev == Fi_1,i == n+ 1}
{prev == F,}
correct
Advanced Programming Techniques 9/50

Analysis - continued

| = 2
while (i < n)
f = prev + pprev
pprev = prev
prev = f
I =1+1
@ Does the loop end?

@ Termination function: f =n—i+1

e i =i+ 1: f decreases strictly at every iteration
e i< n:impliesf=n—i+4+1>0.

@ Therefore the algorithm is correct and finishes!

Beniamin BOGOSEL Advanced Programming Techniques 10/50

Another example: insertion sort

INSERTION-SORT(A)
1 for j = 2 to A.length
2 key = A[j]
// Insert A[j] into the sorted sequence A[l..j —1].
i=j-1
while i > 0 and A[i] > key
Ali +1] = A[i]
i=i—-1
Ali + 1] = key

0 ~NO 1B~ W

Quick proof of correctness:
e Loop invariant: the subtable A[l..j — 1] contains the elements of the original table
A[l..j — 1] sorted
@ Invariant is preserved!
@ the loop finishes

Beniamin BOGOSEL Advanced Programming Techniques 11/50

Finding the loop invariant

e may be difficult for some algorithms
@ Generally the algorithm is a consequence of the invariant not the other way around

e Fibonacci algorithm: We compute iteratively F;_; and F;_»
e Insertion sort algorithm: We add the element j to the sorted sub-array containing the first
Jj — 1 elements at the correct position.

@ Using a loop invariants is based on the general principle of
induction or recurrence proofs
o P(0) is true
o P(i—1) implies P(i)
e Termination when we reached the desired value i = n.

Beniamin BOGOSEL Advanced Programming Techniques 12/50

Classical example

Proposition: for every n > 0 we have

. n(n+1)
| = ———.
" 2
i=0
Proof:
o Basecase: n=0: Y9 (i=0= w.
@ Inductive case for n > 1:
n n—1
— 1
i=0 i=0

n-+)

@ By induction/recurrence the property is valid for every n > 0.

Beniamin BOGOSEL Advanced Programming Techniques 13/50

Induction proofs can prove correctness of recursive algorithms

@ Property to prove: the algorithm is correct for a given instance of the problem

@ Order the instances of the problem by some "size” (array length, number of bits, some
integer, etc)

@ Base case: for induction = base case for recursion

@ Inductive case: assume that recursive calls are correct and deduce that the current call
is correct

@ Termination: show that recursive calls only apply to sub-problems, finite number of
calls (usually trivial, by construction)

Beniamin BOGOSEL Advanced Programming Techniques 14/50

Example: Fibonacci

FiBonacci(n)
1 ifn<l1l
2 return n

3 return FiBoNAccI(n — 2) + FiBoNAccI(n — 1)

Proposition: For every n Fibonacci(n) returns F, Proof:
@ Base case: for n € {0,1} the function returns F, = 1.

@ Inductive case: Assuming F1BONACCI(m) returns Fp, for m < n we find that
F1BoNAccI(n) returns
Foo1+ Fh2 = Fp.

Beniamin BOGOSEL Advanced Programming Techniques 15/50

Example: Merge sort

Proposition: For 1 < p < r < A.length MERGE-SORT(A, p, r) sorts the sub-array A[p..r].

MERGE-SORT(A, p, r)

1
2

(€2 OV

if p<r
q = |2
MERGE-SORT(A, p, q)
MERGE-SORT(A, g + 1,r)
MERGE(A, p, g, r)

Assuming that MERGE is correct (to be proved using an invariant)

Beniamin BOGOSEL

Advanced Programming Techniques

16/50

Example: Merge sort

Proof:

@ Basis case: for r — p = 0 merge sort ne modifie pas A et A[p] = A[r] is sorted

@ If r—p>0then p—qgand r— q—1 are strictly smaller than r — p. The calls to
MERGE-SORT for sub-arrays of smaller lengths are correct by induction hypothesis

@ Supposing MERGE-SORT is correct, we find that MERGE-SORT(A, p, r) is correct.

Beniamin BOGOSEL

MERGE-SORT(A, p, r)

1
2

1B~ W

if p<r
g =&
MERGE-SORT(A, p, q)
MERGE-SORT(A, g+ 1,r)
MERGE(A, p, q,r)

Advanced Programming Techniques

17/50

Conclusions on Algorithm correction

* Correctness proofs
@ lterative algorithms: Invariant

@ Recursive algorithms: Induction

Beniamin BOGOSEL

Advanced Programming Techniques

18/50

© Complexity

Beniamin BOGOSEL Advanced Programming Techniques 18/50

Algorithm performance

@ Multiple ways of measuring efficiency:
program length (number of lines)
code simplicity

Memory space consumed
Computation time

number of elementary operations

e Computation time/number of operations

e most relevant
e quantifiable, easy to compare

@ Memory usage is also relevant!

Beniamin BOGOSEL Advanced Programming Techniques

19/50

How to measure execution time?

Experimentally: (?)

@ write a program and execute it for multiple instances of a data set
@ Problems:

e Computation time depends on implementation: CPU, OS, programming language,

compiler, machine status, etc.
e On what data should you test the algorithm?

60

Ruby
Python
| Scheme

Cc

50

40 + C-wiz
Java

30 | C-gce

20 |

Time (seconds)

20 25 30 3 40 45 50
(Carzaniga)

Cost for computing F, in different Programming Languages

Beniamin BOGOSEL Advanced Programming Techniques

20/50

How to measure execution time?

On paper:
@ Assume a machine model:

e operations executed sequentially
o Basic operations (addition, assignment, branching) take constant time
o sub-routines: call time (constant)+ sub-routine execution (recursive computation)

@ Computation time= sum all contributions corresponding to pseudo-code instructions

* Execution time depends on inputs
* Execution time is generally computed in term of some "size” for the entry

@ length of an array

@ some integer parameter

Beniamin BOGOSEL Advanced Programming Techniques 21/50

Analysis of insertion sort

INSERTION-SORT(A) cost
1 for j = 2to A.length [
2 key = A[j] &
3 // Insert A[j] into the sorted

sequence A[l..j —1]. 0
4 i=j-1 Ca
5 while i > 0 and A[i] > key Cs
6 Ali + 1] = A[i] Cs
7 i=i—-1 c7
8 Ali + 1] = key Cg

@ t; number of iterations in the while loop
@ Total execution time:

T(n=an+a(n-1)+an—1)+c> ti+c (t—1)
=

+ ¢ i(tj — 1) + Cs(n — 1)

Beniamin BOGOSEL

j=2

times

n

n—1

n—1

n—1

Z_;'l:z 15
Z;‘:z(t.i - 1)
Z?=2([.i - 1)
n—1

j=2

Advanced Programming Techniques

22/50

Different aspects

@ Even for a fixed size, the complexity might differ from one instance to another
o Different ways of reasoning:

e best case scenario
e worst case scenario
e average case

@ Usually we use the worst case scenario

e it gives an upper bound for the execution time
o best case is not representative; average case is difficult to compute/interpret

Beniamin BOGOSEL Advanced Programming Techniques 23/50

Insertion sort: best case

Best case: the array is sorted in increasing order
* the inner while loop condition is only tested once, t; = 1.
* the execution time is linear in n: T(n) = an+ b.

Worst case: The array is sorted in a decreasing order: the inner loop is ran j times: t; = j.
* Then it can be seen that sums of the form "7, = n(n+ 1)/2 appear in the computation
of T(n), which gives

T(n) = an®* + bn + c,

a quadratic function of n.

Beniamin BOGOSEL Advanced Programming Techniques 24/50

Asymptotic analysis

* we are interested in the growth speed of T(n) as n increases
* The computation time T(n) is simplified:

o Example: T(n) = 10n% + n? + 40n + 800

e T(1000) = 100001040800; 10n* = 100000000000

* ignoring the coefficient of the dominant term; asymptotically this does not change the
relative order

—1000"N
_4"N2
_NS
—o0.01%2N

x Insertion sort: T(n) = an®+ bn+ ¢ — n?.

Beniamin BOGOSEL Advanced Programming Techniques 25/50

Why is it important to have this estimate?

* assume elementary operations take one micro second
* the computation time for different values of n can be estimated

T(n) n=10 n =100 n = 1000 n = 10000
n 10us 0.1ms 1ms 10ms

400n 4ms 40ms 0.4s 4s

2n’> 200ps 20ms 2s 3.3m

n* 10ms 100s ~ 11.5 jours 317 années
2" 1ms 4 x 10" années 3.4 x 10% années

Beniamin BOGOSEL Advanced Programming Techniques 26/50

Why is it important?

@ Maximum problem size that can be handled in a given time

T(n) 1 second

1 minute 1 hour

n 10° 6 x 107 3.6 x 10°
400n 2500 150000 9 x 10°
2n® 707 5477 42426

n* 31 88 244
2n 19 25 31

@ If m is the value that can be treated in a given time what becomes this value on a

machine 256 more powerful?

T(n)

Time

n
400n
2n?
p

2!1

256m
256m
16m
4m

m-+ 8

Beniamin BOGOSEL

Advanced Programming Techniques

27/50

Asymptotic notations

* Allow to characterize the growth of functions f : N — R
* three notations:

@ (upper bounds) Big-O: f(n) € O(g(n)) if f(n) < Cg(n)
o (lower bounds) Big-Q: f(n) € Q(g(n)) if f(n) > Cg(n)
o (lower and upper bounds) Big-Theta: f(n) € ©(g(n)) if f(n) ~ g(n).

Beniamin BOGOSEL Advanced Programming Techniques

28/50

Examples

@ 3n° —16n+2 € O(n%)? € O(n)? € O(n'")?

0 3n% —16n+2¢€ Q(n®)? € Q(n)? € Q(nl")?

e 3n% —16n+2 € ©(n%)? € O(n)? € O(n*")?
* Complexity classes:

0(1) c O(log n) € O(n) € O(nlogn) C O(n*>1) c O(2").

Beniamin BOGOSEL Advanced Programming Techniques 29/50

Some properties

o f(n) € Q(g(n)) & g(n) € O(f(n))
o f(n) € ©(g(n)) < f(n) € O(g(n)) and f(n) € Q(g(n))
o f(n) € ©(g(n)) < g(n) € O(f(n))

@ Scalar multiplication: f(n) € O(g(n)), k € Ry then kf(n) € O(g(n))

S
e Addition, max: fi(n) € O(gi(n)) and f2(n) € O(g2(n)) then
fi(n) + f2(n) € O(g1(n) + g2(n)), fu(n) + f2(n) € O(max{g1(n), g2(n)})-

(
e Product: fi(n) € O(g1(n)) and fa(n) € O(g2(n)) then fi(n) - f2(n) € O(g2(n) - g2(n)).

Beniamin BOGOSEL Advanced Programming Techniques 30/50

Algorithm complexity

@ We use asymptotic notations to characterize the complexity
@ We must specify what type of complexity: best case, worst case, average case

@ The Big-O notation is the most used: in practice we say that an algorithm is O(g(n)) if
g(n) gives the best (smallest) possible complexity class

Beniamin BOGOSEL Advanced Programming Techniques 31/50

Complexity of a problem

@ We say that a problem is O(g(n)) if there exists an algorithm O(g(n)) which can solve it

e We say that a problem is Q(g(n)) if every algorithm that solves it is at least Q(g(n))
)

e We say that a problem is ©(g(n)) if it belongs to both cases above
Example: The sorting problem

@ The sorting problem is O(nlog n)

@ We can easily show that the sorting problem is Q(n)

@ We can show that, in fact, the sorting problem is Q(nlog n).

Exercise: Show that the search for the maximum in an array is ©(n).

Beniamin BOGOSEL Advanced Programming Techniques 32/50

The sorting problem is Q(n)

Suppose there exists an algorithm better than O(n) to solve the sorting problem
This algorithm cannot iterate through all elements in an array, otherwise it would be
O(n)

Therefore there exists at least one element in the array which is not visited by the
algorithm

Therefore there are instances of arrays which will not be correctly sorted by this
algorithm

Therefore there does not exist an algorithm faster than O(n) for the sorting problem.

Beniamin BOGOSEL Advanced Programming Techniques

33/50

Computing complexity in practice

Simple rules for iterative algorithms:
o Affectation, accessing an element in an array, arithmetic operation, function calls: O(1)
@ Instruction IF-THEN-ELSE: O(max complexity of the two branches)
@ Sequence of operation: the most costly operation (sum)

Simple loop O(nf(n)) if the loop body costs O(f(n))

Complete double loop O(n?f(n)) if the loop body costs O(f(n))

°
e Incremental loops: i = 1..n, j = 1..i: O(n?)
°

(]

Loops with exponential increase i — 2i < n: O(log n).

Beniamin BOGOSEL Advanced Programming Techniques 34/50

Example

PREFIXAVERAGES(X)
@ input: array X of size n

@ output: array A of size n such that A[i] = (Z}Zl X[j])/i (average of the first i
elements of X)

PREFIXAVERAGES(X) PREFIXAVERAGES2(X)
1 fori =1 to X.length 1 s—0
2 2 :.0_ . 2 for i =1 to X.length
3 forj =1to 3 s = s+ X][il
4 a=a+ X[..
. . 4 Alil = s/i
> Ali] = a/i 5 return A
6 return A

First variant: ©(n?), Second variant: ©(n)

Beniamin BOGOSEL Advanced Programming Techniques 35/50

More complex algorithms

@ Applying the previous rules might lead to overestimating the complexity
@ More "scientific" approach:
o Detect an analytic expression for the number of executions of the basic operations T(N)

for a problem of "size" N
o Conclude that the cost of the algorithm is aT(/N) where a is the constant cost of the basic

operation
@ The sorting example: the abstract operation is the comparison

Beniamin BOGOSEL Advanced Programming Techniques 36/50

Complexity of recursive algorithms

@ Usually leads to a recurrence relation

@ Solving the recurrence relation is not necessarily trivial

Beniamin BOGOSEL Advanced Programming Techniques 37/50

Factorial and Fibonacci

FACTORIAL(n)

FiB(n)

1: if n==0 then
2: return 1
3: return n- FACTORIAL(n — 1)

1: if n <1 then
2: return n
3: return Fi1B(n —2)+FiB(n —1)

T(O) = Q
TN)=T(h-1)+ac
=cn-+ ¢

= T(n) € ©(n).

Beniamin BOGOSEL

co
T(n)=Th—-1)+T(n-2)+¢q

= T(n) € ©(1.61").

Advanced Programming Techniques

38/50

Merge sort

MERGE-SORT(A, p, q, r)
1: if p < r then

2 q=|f|
3: MERGE-SORT(A, p, q)
4: MERGE-SORT(A,q+1,r)
5. MERGE(A, p,q,r)
Recurrence:
T(1)=a T(1)=0(1)

T(n)=2T(n/2)+cn+c T(n)=2T(n/2)+ O(n)

Beniamin BOGOSEL Advanced Programming Techniques 39/50

Analysis: merge-sort

@ Simplify the recurrence:

T(l)=c
T(n)=2T(n/2)+cn

@ Represent the recurrence graphically

@ Sum the cost at every node

Beniamin BOGOSEL

cn
cnl2 cnl2

AVA

cnl4 cn/4 cn/4 cnl4

A AR AR

Advanced Programming Techniques 40/50

Analysis: merge-sort

@ Each level costs cn

@ Assume n is a power of 2 there are
log, n+ 1 levels

e Total cost is cnlogy, n+ cn € ©(nlog n)

Beniamin BOGOSEL

\ S
/
\
/

cnl4 cn/4 cn/4 cnfd s e cn

Total: cnlg n+cn

Advanced Programming Techniques

41/50

Remarks

Limitation of asymptotic analysis
@ Constants are important for problems of small sizes
e Insertion sort is faster than merge sort for n small

@ Two algorithms having the same complexity might behave differently
Space complexity:
@ Same type of reasoning, same notations

e Bounded by the time complexity (why?)

Beniamin BOGOSEL Advanced Programming Techniques 42/50

© Sums and recurrences

Beniamin BOGOSEL Advanced Programming Techniques 42/50

Sums and recurrences

@ Complexity analysis often involve computing sums and recurrences

@ Recall some basic techniques

Beniamin BOGOSEL Advanced Programming Techniques 43/50

Examples

* Dl = n(nzﬂ)
n 2 _ n(n+1)(2n+1)
*Dim it = 6

Technique:

n

Zi2:an3+bn2+cn+d
i=1

@ ldentify coefficients a, b, ¢, d starting from some values of the sum

@ Prove the result by induction.

n—=1_j; __1-z"
* i 2 =15
n—1 . z—(n+1)z"* 1 4nz"+2
* > izl = = .

*x S, = Zk:o k2k = (n —1)2"+1 + 2 (appearing when studying the complexity of heap sort)
* other examples will be handled individually when they appear

Beniamin BOGOSEL Advanced Programming Techniques 44/50

Recurrences

@ When dealing with recursive algorithm, recurrence relations will appear
@ Examples:
e Merge Sort:

T(1)=0
T(n)=T([n/2])+ T(|n/2])+n—1forn>1

e Fibonacci:

T(1)=0
Tn)=T(n—1)+T(n—2)+2forn>1

@ Various types: linear, polynomial, divide and conquer, etc...

Beniamin BOGOSEL Advanced Programming Techniques

45/50

Methods...

@ "guess’ and prove by induction
@ Replace and compute:

Merge sort:
T(1)=0;T(n)=2T(n/2)+n—1.

* Pattern:
T(n)=2"T(n/2Y+(n—2"H+(n=-2"2)+ ...+ (n—2%
=2'"T(n/2) +in—2"+1
* If k =log, nand i = k then
T(n) =2KT(n/2%)n - 25 +1

=nT(1)nlogon—n+1
= O(nlog n)

Beniamin BOGOSEL Advanced Programming Techniques

46/50

General theorem

Theorem

Consider the following recurrence

T(n)=c if n<d
T(n)=aT(n/b)+ f(n) ifn>d ’
where d > 1,a>0,c¢>0,b>1and f(n) >0 for n > d. Then:
1. If f(n) € O(n'°82=¢) for £ > 0 then T(n) € O(n'°s?)
2. If f(n) € ©(n'°8»?) then T(n) € ©(n'°85? log n).

3. If f(n) € O(n'°8>3+2) for ¢ > 0 and there exists § < 1 such that af (n/b) < 6f(n) then
T(n) € ©(f(n))

Beniamin BOGOSEL Advanced Programming Techniques 47/50

Linear/divide and conquer recurrences

T,=2Tp1+1 T,~2"
Th=2T,1+n Th~2:2"
Tn=2T,n+1 To~n
Tn=2T,p+n-1 To~nlognT,= Ty 1+ Th2 Tn ~ (1.61)"1

@ Divide and conquer recurrences are generally polynomial
@ Linear recurrences are exponential

@ Generating smaller sub-problems is more important than reducing the non-homogeneous
term

Beniamin BOGOSEL Advanced Programming Techniques 48/50

Comparing recurrences: number of sub-problems

Linear recurrences:
Tp=2T,+1= T,c0(2")
T,=3T,+1= T,c0(3")

* passing from 2 to 3 sub-problems increases the time exponentially

Divide and conquer recurrences:
T1=0
Th=aT,p+n—1
The master theorem implies:
©(n) fora<?2
Th,=140©(nlogn) fora=2
O(n'°823) for a > 2

Beniamin BOGOSEL Advanced Programming Techniques 49/50

What we have seen

o Correcting algorithms: iterative (invariants), recursive (recurrence)
@ Algorithm complexity, asymptotic notation

@ How do we compute the complexity of iterative and recursive algorithms

Beniamin BOGOSEL Advanced Programming Techniques 50/50

	Testing for correctedness
	Complexity
	Sums and recurrences

