Advanced Programming Techniques
PART II
Algorithm Analysis Tools
Beniamin Bogosel

Ecole Polytechnique
Department of Applied Mathematics

Testing for correctedness

2 Complexity

Sums and recurrences

Algorithm analysis

Two questions to ask when facing an algorithm

- Is my algorithm correct?
- Is my algorithm efficient?
- * **Problem:** general question like sorting an array
- \star Instance of a problem: one particular case: sort the array [8, 2, 4, 3, 1].

An algorithm is correct for a problem if it produces a correct solution for all instances of the problem!

Example

Consider the algorithm A which permutes the first two elements in an array.

Algorithm A is correct for the instance: Sort the array [2,1,3,4], but is not a sorting algorithm!

How to test for correctness?

- Testing
 - implement the algorithm
 - test it on all instances (assuming we can do this)
 - difficult to "prove" there's no bug
- Have a mathematical formal proof:
 - it is not necessary to implement the algorithm to know it is correct
 - not perfect either...
- In practice: a mix of the two.
- Tools:
 - iterative algorithms: Hoare triplets, loop invariants
 - recursive algorithms: induction proofs

A quote by Dijkstra

A good programmer knows that an algorithm is correct before implementing it.

3/50

Assertions

- A relation between the variables which is valid at a certain point in the execution
- Consider two conditions:
 - P: conditions verified by a valid input for the algorithm
 - Q: conditions verified by the output if the algorithm is correct
- The algorithm is correct if the triplet *P* code *Q* is true (called Hoare triplet).

Example

$$\{x \ge 0\}y = SQRT(x)\{y == x^2\}.$$

- * in practice algorithms have multiple instructions
- 1: {*P*}
- 2: *S*1
- 3: *S*2
- 4: ...
- 5: *Sn*
- 6: {*Q*}
- \star to check correctness it is useful to insert intermediary assertions $P_1, ..., P_{n-1}$ describing variables at each step in the program.
- \star then check that triplets $\{P\}S1\{P_1\}$, $\{P_1\}S2\{P_2\}$, ..., $\{P_{n-1}\}Sn\{Q\}$ are correct.

* different types of instructions: assign value to a variable, conditions, loops

5/50

Correcting value assignments and conditions

- \star value assignments: straightforward, assert that the value changed the way we want in an assignment
- * conditions
 - 1: {*P*}
 - 2: **if** *B* **then**
 - 3: *C*1
 - 4: **else**
 - 5: *C*2
 - 6: {*Q*}

To prove correctness show that the following triplets are true

- $\bullet \ \{P\&B\}C1\{Q\}$
- $\{P\& \text{ non-}B\}C2\{Q\}$

Basically: test that the if statement does what it's supposed to do!

6/50

Correcting loops

```
1: {P}
2: while B do
3: CODE
4: {Q}
4: {Q}
2: INI
3: {I}
4: wh
5: {I
```

- 1: {*P*}
 2: INIT
 3: {*I*}
 4: **while** *B* **do**5: {*I* and *B*} CODE {*I*}
 {*I* and non-*B*}
 6: {*Q*}
- * To prove that a loop does what it's supposed to do, find a Loop invariant *I*: a property that is valid throughout the loop
- * Prove that the property is preserved (by design)
- * Prove that the loop must finish! Termination function: for example, some function which is strictly decreasing and reaches zero at termination.

Example: FIBONACCI-ITER

```
FIBONACCI-ITER(n)
   if n < 1
       return n
   else
        pprev = 0
        prev = 1
       for i = 2 to n
            f = prev + pprev
            pprev = prev
            prev = f
        return f
```

* Proposition: if $n \ge 0$ FIBONACCI-ITER(n) outputs F_n .

```
FIBONACCI-ITER(n)
   \{n > 0\} // \{P\}
   if n < 1
        prev = n
   else
        pprev = 0
        prev = 1
        i = 2
        while (i \le n)
             f = prev + pprev
             pprev = prev
            prev = f
            i = i + 1
   \{prev == F_n\} / \{Q\}
   return prev
```

Add post and pre-conditions

Analyzing the condition

```
\{n \ge 0 \text{ et } n \le 1\}
          prev = n
          \{prev == F_n\}
     correct (F_0 = 0, F_1 = 1)
        \{n > 0 \text{ et } n > 1\}
        pprev = 0
        prev = 1
        i = 2
        while (i \le n)
             f = prev + pprev
             pprev = prev
             prev = f
             i = i + 1
        \{prev == F_n\}
I = \{pprev == F_{i-2}, prev == F_{i-1}\}
```

Analyzing the loop

```
\{n > 1\}
  pprev = 0
  prev = 1
  i = 2
  \{pprev == F_{i-2}, prev == F_{i-1}\}
              correct
\{pprev == F_{i-2}, prev == F_{i-1}, i \le n\}
f = prev + pprev
pprev = prev
prev = f
i = i + 1
\{pprev == F_{i-2}, prev == F_{i-1}\}
              correct
\{pprev == F_{i-2}, prev == F_{i-1}, i == n+1\}
\{prev == F_n\}
              correct
```

$$i = 2$$
while $(i \le n)$
 $f = prev + pprev$
 $pprev = prev$
 $prev = f$
 $i = i + 1$

- Does the loop end?
- Termination function: f = n i + 1
 - i = i + 1: f decreases strictly at every iteration
 - $i \le n$: implies f = n i + 1 > 0.
- Therefore the algorithm is correct and finishes!

```
INSERTION-SORT(A)

1 for j = 2 to A. length

2  key = A[j]

3  // Insert A[j] into the sorted sequence A[1..j-1].

4  i = j - 1

5  while i > 0 and A[i] > key

6  A[i+1] = A[i]

7  i = i-1

8  A[i+1] = key
```

Quick proof of correctness:

- **Loop invariant:** the subtable A[1..j-1] contains the elements of the original table A[1..j-1] sorted
- Invariant is preserved!
- the loop finishes

Beniamin BOGOSEL Advanced Programming Techniques 11/50

Finding the loop invariant

- may be difficult for some algorithms
- Generally the algorithm is a consequence of the invariant not the other way around
 - Fibonacci algorithm: We compute iteratively F_{i-1} and F_{i-2}
 - Insertion sort algorithm: We add the element j to the sorted sub-array containing the first j-1 elements at the correct position.
- Using a loop invariants is based on the general principle of induction or recurrence proofs
 - *P*(0) is true
 - P(i-1) implies P(i)
 - Termination when we reached the desired value i = n.

Classical example

Proposition: for every $n \ge 0$ we have

$$\sum_{i=0}^n i = \frac{n(n+1)}{2}.$$

Proof:

- Base case: n = 0: $\sum_{i=0}^{0} i = 0 = \frac{0(0+1)}{2}$.
- Inductive case for n > 1:

$$\sum_{i=0}^{n} i = \sum_{i=0}^{n-1} i + n = \frac{(n-1)n}{2} + n$$
$$= \frac{n(n+1)}{2}.$$

• By induction/recurrence the property is valid for every $n \ge 0$.

Induction proofs can prove correctness of recursive algorithms

- Property to prove: the algorithm is correct for a given instance of the problem
- Order the instances of the problem by some "size" (array length, number of bits, some integer, etc)
- Base case: for induction = base case for recursion
- Inductive case: assume that recursive calls are correct and deduce that the current call
 is correct
- **Termination:** show that recursive calls only apply to sub-problems, finite number of calls (usually trivial, by construction)

Example: Fibonacci

```
FIBONACCI(n)

1 if n \le 1

2 return n

3 return FIBONACCI(n-2) + FIBONACCI(n-1)
```

Proposition: For every n Fibonacci(n) returns F_n Proof:

- Base case: for $n \in \{0,1\}$ the function returns $F_n = 1$.
- Inductive case: Assuming FIBONACCI(m) returns F_m for m < n we find that FIBONACCI(n) returns

$$F_{n-1} + F_{n-2} = F_n$$
.

Example: Merge sort

MERGE-SORT
$$(A, p, r)$$

1 if $p < r$
2 $q = \lfloor \frac{p+r}{2} \rfloor$
3 MERGE-SORT (A, p, q)
4 MERGE-SORT $(A, q+1, r)$
5 MERGE (A, p, q, r)

Proposition: For $1 \le p \le r \le A.length \text{ MERGE-SORT}(A, p, r)$ sorts the sub-array A[p..r].

Assuming that MERGE is correct (to be proved using an invariant)

```
MERGE-SORT(A, p, r)

1 if p < r

2 q = \lfloor \frac{p+r}{2} \rfloor

3 MERGE-SORT(A, p, q)

4 MERGE-SORT(A, q+1, r)

5 MERGE(A, p, q, r)
```

Proof:

- Basis case: for r p = 0 merge sort ne modifie pas A et A[p] = A[r] is sorted
- If r-p>0 then p-q and r-q-1 are strictly smaller than r-p. The calls to MERGE-SORT for sub-arrays of smaller lengths are correct by **induction hypothesis**
- Supposing Merge-sort is correct, we find that Merge-Sort(A, p, r) is correct.

17/50

Conclusions on Algorithm correction

- * Correctness proofs
 - Iterative algorithms: Invariant
 - Recursive algorithms: Induction

Testing for correctedness

2 Complexity

Sums and recurrences

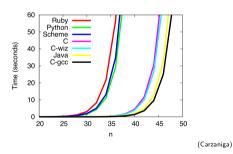
Algorithm performance

- Multiple ways of measuring efficiency:
 - program length (number of lines)
 - code simplicity
 - Memory space consumed
 - Computation time
 - number of elementary operations
- Computation time/number of operations
 - most relevant
 - quantifiable, easy to compare
- Memory usage is also relevant!

How to measure execution time?

Experimentally: (?)

- write a program and execute it for multiple instances of a data set
- Problems:
 - Computation time depends on implementation: CPU, OS, programming language, compiler, machine status, etc.
 - On what data should you test the algorithm?



Cost for computing F_n in different Programming Languages

Beniamin BOGOSEL Advanced Programming Techniques 20/50

How to measure execution time?

On paper:

- Assume a machine model:
 - operations executed sequentially
 - Basic operations (addition, assignment, branching) take constant time
 - sub-routines: call time (constant)+ sub-routine execution (recursive computation)
- Computation time= sum all contributions corresponding to pseudo-code instructions
- * Execution time depends on inputs
- * Execution time is generally computed in term of some "size" for the entry
 - length of an array
 - some integer parameter

Analysis of insertion sort

INSERTION-SORT (A)
$$cost$$
 $times$

1 **for** $j = 2$ **to** $A.length$ c_1 n

2 $key = A[j]$ c_2 $n-1$

3 // Insert $A[j]$ into the sorted sequence $A[1 ... j-1]$. 0 $n-1$

4 $i = j-1$ c_4 $n-1$

5 **while** $i > 0$ and $A[i] > key$ c_5 $\sum_{j=2}^{n} t_j$

6 $A[i+1] = A[i]$ c_6 $\sum_{j=2}^{n} (t_j-1)$

7 $i = i-1$ c_7 $\sum_{j=2}^{n} (t_j-1)$

8 $A[i+1] = key$ c_8 $n-1$

- t_i number of iterations in the while loop
- Total execution time:

$$egin{align} T(n) &= c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 \sum_{j=2}^n t_j + c_6 \sum_{j=2}^n (t_j-1) \ &+ c_7 \sum_{j=2}^n (t_j-1) + c_8 (n-1) \ \end{cases}$$

Beniamin BOGOSEL

Different aspects

- Even for a fixed size, the complexity might differ from one instance to another
- Different ways of reasoning:
 - best case scenario
 - worst case scenario
 - average case
- Usually we use the worst case scenario
 - it gives an upper bound for the execution time
 - best case is not representative; average case is difficult to compute/interpret

Insertion sort: best case

Best case: the array is sorted in increasing order

- \star the inner while loop condition is only tested once, $t_i = 1$.
- * the execution time is linear in n: T(n) = an + b.

Worst case: The array is sorted in a decreasing order: the inner loop is ran j times: $t_j = j$. \star Then it can be seen that sums of the form $\sum_{i=1}^{n} = n(n+1)/2$ appear in the computation

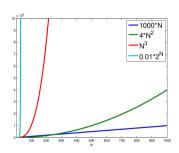
of T(n), which gives

$$T(n) = an^2 + bn + c,$$

a quadratic function of n.

Asymptotic analysis

- \star we are interested in the growth speed of T(n) as n increases
- \star The computation time T(n) is simplified:
 - Example: $T(n) = 10n^3 + n^2 + 40n + 800$
 - T(1000) = 100001040800; $10n^3 = 100000000000$
- \star ignoring the coefficient of the dominant term; asymptotically this does not change the relative order



* Insertion sort: $T(n) = an^2 + bn + c \longrightarrow n^2$.

Beniamin BOGOSEL Advanced Programming Techniques

Why is it important to have this estimate?

- * assume elementary operations take one micro second
- \star the computation time for different values of n can be estimated

T(n)	n = 10	n = 100	n = 1000	n = 10000
n	$10 \mu s$	0.1 <i>ms</i>	1 <i>ms</i>	10 <i>ms</i>
400 <i>n</i>	4 <i>ms</i>	40 <i>ms</i>	0.4 <i>s</i>	4 <i>s</i>
$2n^{2}$	$200 \mu s$	20 <i>ms</i>	2 <i>s</i>	3.3 <i>m</i>
n^4	10ms	100 <i>s</i>	~ 11.5 jours	317 années
2 ⁿ	1ms	$4 imes10^{16}$ années	$3.4 imes 10^{287}$ années	

Why is it important?

• Maximum problem size that can be handled in a given time

$\overline{T(n)}$	1 second	1 minute	1 hour
n	10 ⁶	6×10^7	3.6×10^{9}
400 <i>n</i>	2500	150000	$9 imes 10^6$
$2n^{2}$	707	5477	42426
n^4	31	88	244
2 ⁿ	19	25	31

• If *m* is the value that can be treated in a given time what becomes this value on a machine 256 more powerful?

T(n)	Time	
n	256 <i>m</i>	
400 <i>n</i>	256 <i>m</i>	
$2n^{2}$	16 <i>m</i>	
n^4	4 <i>m</i>	
2 ⁿ	m+8	

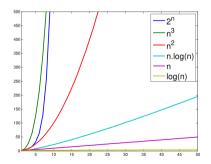
Asymptotic notations

- \star Allow to characterize the growth of functions $f: \mathbb{N} \to \mathbb{R}_+$
- * three notations:
 - (upper bounds) Big-O: $f(n) \in O(g(n))$ if $f(n) \leq Cg(n)$
 - (lower bounds) Big- Ω : $f(n) \in \Omega(g(n))$ if $f(n) \geq Cg(n)$
 - (lower and upper bounds) Big-Theta: $f(n) \in \Theta(g(n))$ if $f(n) \simeq g(n)$.

Examples

- $3n^5 16n + 2 \in O(n^5)$? $\in O(n)$? $\in O(n^{17})$?
- $3n^5 16n + 2 \in \Omega(n^5)$? $\in \Omega(n)$? $\in \Omega(n^{17})$?
- $3n^5 16n + 2 \in \Theta(n^5)$? $\in \Theta(n)$? $\in \Theta(n^{17})$?
- * Complexity classes:

$$O(1) \subset O(\log n) \subset O(n) \subset O(n \log n) \subset O(n^{a>1}) \subset O(2^n).$$



Beniamin BOGOSEL

Some properties

- $f(n) \in \Omega(g(n)) \Leftrightarrow g(n) \in O(f(n))$
- $f(n) \in \Theta(g(n)) \Leftrightarrow f(n) \in O(g(n))$ and $f(n) \in \Omega(g(n))$
- $f(n) \in \Theta(g(n)) \Leftrightarrow g(n) \in \Theta(f(n))$
- Scalar multiplication: $f(n) \in O(g(n))$, $k \in \mathbb{R}_+$ then $kf(n) \in O(g(n))$
- Addition, max: $f_1(n) \in O(g_1(n))$ and $f_2(n) \in O(g_2(n))$ then

$$f_1(n) + f_2(n) \in O(g_1(n) + g_2(n)), f_1(n) + f_2(n) \in O(\max\{g_1(n), g_2(n)\}).$$

• Product: $f_1(n) \in O(g_1(n))$ and $f_2(n) \in O(g_2(n))$ then $f_1(n) \cdot f_2(n) \in O(g_2(n) \cdot g_2(n))$.

Algorithm complexity

- We use asymptotic notations to characterize the complexity
- We must specify what type of complexity: best case, worst case, average case
- The Big-O notation is the most used: in practice we say that an algorithm is O(g(n)) if g(n) gives the best (smallest) possible complexity class

Complexity of a problem

- We say that a problem is O(g(n)) if there exists an algorithm O(g(n)) which can solve it
- We say that a problem is $\Omega(g(n))$ if every algorithm that solves it is at least $\Omega(g(n))$
- We say that a problem is $\Theta(g(n))$ if it belongs to both cases above

Example: The sorting problem

- The sorting problem is $O(n \log n)$
- We can easily show that the sorting problem is $\Omega(n)$
- We can show that, in fact, the sorting problem is $\Omega(n \log n)$.

Exercise: Show that the search for the maximum in an array is $\Theta(n)$.

The sorting problem is $\Omega(n)$

- Suppose there exists an algorithm better than O(n) to solve the sorting problem
- This algorithm cannot iterate through all elements in an array, otherwise it would be O(n)
- Therefore there exists at least one element in the array which is not visited by the algorithm
- Therefore there are instances of arrays which will not be correctly sorted by this algorithm
- Therefore there does not exist an algorithm faster than O(n) for the sorting problem.

Computing complexity in practice

Simple rules for iterative algorithms:

- ullet Affectation, accessing an element in an array, arithmetic operation, function calls: O(1)
- Instruction IF-THEN-ELSE: O(max complexity of the two branches)
- Sequence of operation: the most costly operation (sum)
- Simple loop O(nf(n)) if the loop body costs O(f(n))
- Complete double loop $O(n^2 f(n))$ if the loop body costs O(f(n))
- Incremental loops: i = 1..n, j = 1..i: $O(n^2)$
- Loops with exponential increase $i \mapsto 2i \le n$: $O(\log n)$.

Example

PrefixAverages(X)

- **input**: array X of size n
- **output**: array A of size n such that $A[i] = (\sum_{j=1}^{i} X[j])/i$ (average of the first i elements of X)

```
PREFIXAVERAGES(X)

1 for i = 1 to X. length

2 a = 0

3 for j = 1 to i

4 a = a + X[j]

5 A[i] = a/i

6 return A
```

```
PREFIXAVERAGES2(X)

1  s = 0

2  for i = 1 to X.length

3  s = s + X[i]

4  A[i] = s/i

5  return A
```

First variant: $\Theta(n^2)$, Second variant: $\Theta(n)$

More complex algorithms

- Applying the previous rules might lead to overestimating the complexity
- More "scientific" approach:
 - Detect an analytic expression for the number of executions of the basic operations T(N) for a problem of "size" N
 - Conclude that the cost of the algorithm is aT(N) where a is the constant cost of the basic operation
- The sorting example: the abstract operation is the comparison

Complexity of recursive algorithms

- Usually leads to a recurrence relation
- Solving the recurrence relation is not necessarily trivial

Beniamin BOGOSEL Advanced Programming Techniques 37/50

Factorial and Fibonacci

FACTORIAL(n)

- 1: **if** n == 0 **then**
- 2: **return** 1
- 3: **return** $n \cdot \text{Factorial}(n-1)$

$$T(0) = c_0$$

 $T(n) = T(n-1) + c_1$
 $= c_1 n + c_0$

$$\implies T(n) \in \Theta(n).$$

$\overline{\text{Fib}(n)}$

- 1: if $n \leq 1$ then
- 2: **return** *n*
- 3: **return** Fig(n-2)+Fig(n-1)

$$T(0) = c_0$$
$$T(1) = c_0$$

$$T(1) \equiv c_0$$

 $T(n) = T(n-1) + T(n-2) + c_1$

$$\implies T(n) \in \Theta(1.61^n).$$

Merge sort

Merge-Sort(A, p, q, r)

- 1: if p < r then
- 2: $q = \lfloor \frac{p+r}{2} \rfloor$
- 3: Merge-Sort(A, p, q)
- 4: MERGE-SORT(A, q + 1, r)
- 5: Merge(A, p, q, r)

Recurrence:

$$T(1) = c_1$$
 $T(1) = \Theta(1)$
 $T(n) = 2T(n/2) + c_2n + c_3$ $T(n) = 2T(n/2) + \Theta(n)$

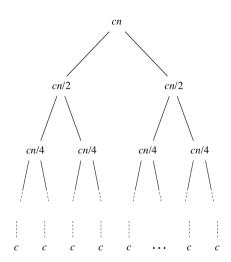
Analysis: merge-sort

• Simplify the recurrence:

$$T(1) = c$$

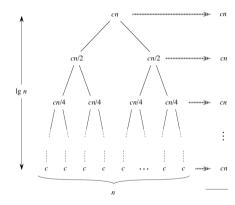
$$T(n) = 2T(n/2) + cn$$

- Represent the recurrence graphically
- Sum the cost at every node



Analysis: merge-sort

- Each level costs cn
- Assume n is a power of 2 there are $\log_2 n + 1$ levels
- Total cost is $cn \log_2 n + cn \in \Theta(n \log n)$



Total: $cn \lg n + cn$

Remarks

Limitation of asymptotic analysis

- Constants are important for problems of small sizes
 - Insertion sort is faster than merge sort for n small
- Two algorithms having the same complexity might behave differently

Space complexity:

- Same type of reasoning, same notations
- Bounded by the time complexity (why?)

Testing for correctedness

2 Complexity

3 Sums and recurrences

Sums and recurrences

- Complexity analysis often involve computing sums and recurrences
- Recall some basic techniques

Examples

$$\star \sum_{i=1}^{n} i = \frac{n(n+1)}{2}$$

$$\star \sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$$
Technique:

$$\sum_{i=1}^{n} i^2 = an^3 + bn^2 + cn + d$$

- Identify coefficients a, b, c, d starting from some values of the sum
- Prove the result by induction.

$$\star \sum_{i=0}^{n-1} z^{i} = \frac{1-z^{n}}{1-z}$$

$$\star \sum_{i=0}^{n-1} iz^{i} = \frac{z-(n+1)z^{n+1}+nz^{n+2}}{(1-z)^{2}}.$$

- $\star S_n = \sum_{k=0}^n k 2^k = (n-1)2^{n+1} + 2$ (appearing when studying the complexity of heap sort)
- * other examples will be handled individually when they appear

Recurrences

- When dealing with recursive algorithm, recurrence relations will appear
- Examples:
 - Merge Sort:

$$T(1) = 0$$
 $T(n) = T(\lceil n/2 \rceil) + T(\lfloor n/2 \rfloor) + n - 1 \text{ for } n > 1$

Fibonacci:

$$T(1) = 0$$

 $T(n) = T(n-1) + T(n-2) + 2$ for $n > 1$

• Various types: linear, polynomial, divide and conquer, etc...

Methods...

- "guess" and prove by induction
- Replace and compute:

Merge sort:

$$T(1) = 0$$
; $T(n) = 2T(n/2) + n - 1$.

* Pattern:

$$T(n) = 2^{i} T(n/2^{i}) + (n-2^{i-1}) + (n-2^{i-2}) + \dots + (n-2^{0})$$

= $2^{i} T(n/2^{i}) + in - 2^{i} + 1$

 \star If $k = \log_2 n$ and i = k then

$$T(n) = 2^{k} T(n/2^{k})_{k} n - 2^{k} + 1$$

= $nT(1) n \log_{2} n - n + 1$
= $O(n \log n)$

General theorem

Theorem

Consider the following recurrence

$$T(n) = c$$
 if $n < d$
 $T(n) = aT(n/b) + f(n)$ if $n \ge d$

where $d \ge 1$, a > 0, c > 0, b > 1 and $f(n) \ge 0$ for $n \ge d$. Then:

- 1. If $f(n) \in O(n^{\log_b a \varepsilon})$ for $\varepsilon > 0$ then $T(n) \in O(n^{\log_b a})$
- 2. If $f(n) \in \Theta(n^{\log_b a})$ then $T(n) \in \Theta(n^{\log_b a} \log n)$.
- 3. If $f(n) \in O(n^{\log_b a + \varepsilon})$ for $\varepsilon > 0$ and there exists $\delta < 1$ such that $af(n/b) \le \delta f(n)$ then $T(n) \in \Theta(f(n))$

Linear/divide and conquer recurrences

$$T_n = 2T_{n-1} + 1$$
 $T_n \sim 2^n$
 $T_n = 2T_{n-1} + n$ $T_n \sim 2 \cdot 2^n$
 $T_n = 2T_{n/2} + 1$ $T_n \sim n$
 $T_n = 2T_{n/2} + n - 1$ $T_n \sim n \log nT_n = T_{n-1} + T_{n-2}$ $T_n \sim (1.61)^{n+1}$

- Divide and conquer recurrences are generally polynomial
- Linear recurrences are exponential
- Generating smaller sub-problems is more important than reducing the non-homogeneous term

Comparing recurrences: number of sub-problems

Linear recurrences:

$$T_n = 2T_n + 1 \Longrightarrow T_n \in \Theta(2^n)$$

 $T_n = 3T_n + 1 \Longrightarrow T_n \in \Theta(3^n)$

* passing from 2 to 3 sub-problems increases the time exponentially

Divide and conquer recurrences:

$$T_1 = 0$$

$$T_n = aT_{n/2} + n - 1$$

The master theorem implies:

$$T_n = egin{cases} \Theta(n) & ext{for } a < 2 \ \Theta(n \log n) & ext{for } a = 2 \ \Theta(n^{\log_2 a}) & ext{for } a > 2 \end{cases}$$

49/50

What we have seen

- Correcting algorithms: iterative (invariants), recursive (recurrence)
- Algorithm complexity, asymptotic notation
- How do we compute the complexity of iterative and recursive algorithms