
Advanced Programming Techniques
PART I
Introduction
Beniamin Bogosel

Aurel Vlaicu University of Arad
Faculty of Exact Sciences

Beniamin Bogosel Advanced Programming Techniques 1/44

Contact

Beniamin BOGOSEL: beniamin.bogosel@uav.ro

Site Web: https://beniamin-bogosel.github.io/

slides

lab subjects

codes: Python, Jupyter Notebook

Bibliography:

https:

//people.montefiore.uliege.be/geurts/Cours/PA/2018/pa2018_2019.html

Steven S. Skiena, The Algorithm Design Manual, Springer (available online, search it!)

Beniamin Bogosel Advanced Programming Techniques 2/44

https://beniamin-bogosel.github.io/
https://people.montefiore.uliege.be/geurts/Cours/PA/2018/pa2018_2019.html
https://people.montefiore.uliege.be/geurts/Cours/PA/2018/pa2018_2019.html

Course objectives

Introduction to the systematic study of algorithms and data structures

Two objectives:

Provide a toolbox containing:

data structures allowing to organize and easily access data sets
popular algorithms
generic methods for the modelization, analysis and solving algorithmic problems

Use elements of this toolbox to solve new algorithmic problems

Beniamin Bogosel Advanced Programming Techniques 3/44

Organization

First part: (7 weeks)
⋆ Theoretical/algorithmical aspects
⋆ Implementation in Python
Second part: (7 weeks)
⋆ More applied aspects taught by Marcela Florea

An evaluation will be given after each half of the course.

Active participation in the labs: 10% of the grade

Beniamin Bogosel Advanced Programming Techniques 4/44

1 Intro: Algorithms + Data structures = Programs

2 Recursivity: recall

Beniamin Bogosel Advanced Programming Techniques 4/44

Algorithms

An Algorithm is a finite and non-ambiguous set of instructions or operations allowing to
solve a problem

Comes from the name of the mathematician Al-Khawarizmi (±820), the father of the
algebra

An algorithmic problem is formulated by transforming a sequence of values, inputs, into
a series of values, outputs

Examples of algorithms:

a cooking recipe (ingredients −→ meal/cake)
searching in a dictionary (word −→ definition)
integer division (two integers −→ their quotient)
sorting a sequence (sequence −→ ordered sequence)

Beniamin Bogosel Advanced Programming Techniques 5/44

Algorithms

⋆ We will study algorithms which are correct.

An algorithm is totally correct if for every given instance, the algorithm terminates
producing the expected output

There are partially correct algorithms (working well only for certain instances (inputs),
termination not guaranteed)

approximate algorithms, producing an inexact output, which is close enough to the
desired result

⋆ Algorithms are evaluated in terms of ressource usage:

computational time

memory usage

Beniamin Bogosel Advanced Programming Techniques 6/44

Algorithm descriptions

An algorithm may be specified in multiple ways

natural language

graphical illustration

pseudo code

a program in a programming language

...

The only condition is that the description is precise enough.

Beniamin Bogosel Advanced Programming Techniques 7/44

Example: sorting algorithms

⋆ sorting problem:

Input: a sequence of n numbers ⟨a1, ..., an⟩
Output: a permutation of the initial sequence ⟨a′1, ..., a′n⟩ such that a′1 ≤ a′2 ≤ ... ≤ a′n.

Permutation: same values but in a different order.

⋆ Example:

Input: ⟨31, 41, 59, 26, 41, 58⟩
Output: ⟨26, 31, 41, 41, 58, 59⟩

Beniamin Bogosel Advanced Programming Techniques 8/44

Insertion Sort

Description in natural language:
Go through the sequence from left to right
For every element aj :
⋆ insert it in the corresponding position in a newly ordered sequence containing all previous
values of the sequence
Stop when the last element of the sequence was inserted in its place in the new sequence.

Beniamin Bogosel Advanced Programming Techniques 9/44

Insertion sort: graphical representation

Beniamin Bogosel Advanced Programming Techniques 10/44

Pseudo-code

Beniamin Bogosel Advanced Programming Techniques 11/44

Pseudo-code

Objectives:

Describe algorithms such that they can be understood by humans

Render the description independent of the implementation

Leave out details: error handling, type declaration, etc

Can contain instructions in natural language if necessary

Beniamin Bogosel Advanced Programming Techniques 12/44

Pseudo-code: Some rules

Block structures indicated by indentation

loops (for, while, repeat) and conditions (if, else, elseif)

Comments indicated by double slash: �
Variables in a function are local

A[i] designates the ith element in an array A. A[i ..j] represent an interval of values in A,
A.length is the size of the array.

Indexing begins at 1 (note that when coding indices often start at 0)

when exiting a loop the counter keeps its value

Beniamin Bogosel Advanced Programming Techniques 13/44

Three questions when facing an algorithm

1. Is my algorithm correct? Does it finish?

2. What is the execution speed

3. Is it possible to do better?

Example: insertion sort

1. Yes, analysis, induction

2. O(n2): complexity analysis

3. Yes: there are algorithms of complexity O(n log n)

Recall: O(f (n)) ≤ C (f (n)) for some constant C , arbitrary, but fixed.

Beniamin Bogosel Advanced Programming Techniques 14/44

Correctness: Insertion Sort

Observation: Before every iteration: the interval 1..j − 1 of A is sorted

After every iteration the interval 1..j of A is sorted

Beniamin Bogosel Advanced Programming Techniques 15/44

Correctness: Insertion Sort

⋆ Before the first iteration A[1] is trivially sorted

⋆ Before iteration j A[1..j − 1] is sorted.

The inner loop displaces A[j − 1],A[j − 2], ... a step towards the right until the right
position for A[j] is found

⋆ when exiting the main loop A[1, ...,A.length] is ordered!

Beniamin Bogosel Advanced Programming Techniques 16/44

Complexity of Insertion-sort

How many comparisons T (n) to sort an array of size n?

In worst case:

The for loop is executed n − 1 times n = A.length
The while loop is executed j − 1 times

Beniamin Bogosel Advanced Programming Techniques 17/44

Complexity of Insertion-sort

The number of comparisons is bounded by

T (n) ≤
n∑

j=2

(j − 1).

Since
∑n

i=1 i = n(n + 1)/2 we have

T (n) ≤ n(n − 1)/2

Finally T (n) = O(n2).

Question: What about the lower bound?

Beniamin Bogosel Advanced Programming Techniques 18/44

Data structures

method for storing and organizing data to facilitate access and modification

A data structure regroups:

a certain number of data to maintain
a set of operations that may be applied to the data

In most cases there are

multiple ways to represent data and
multiple ways to manipulate data

We distinguish between the interface(abstract representation/description) of the data
structures and an implementation

Beniamin Bogosel Advanced Programming Techniques 19/44

Abstract data structures

An abstract data structure (ADS) represents the interface of a data structure

An ADS specifies precisely:

the nature and proprieties of the data
the usage and operations that ca be performed

An ADS admits different implementations! (multiple ways of representing the data,
multiple ways of performing the operations – more or less efficient)

Beniamin Bogosel Advanced Programming Techniques 20/44

Example: priority queue

Data that can be handled: objects with attributes:

a key, with a comparison operator, each two keys can be compared (e.g. positive integers)
an arbitrary value

Operations:

create an empty queue
Insert(S,x): insert element x in the queue S
Extract-Max(S): remove and output the element of S with the largest priority key

Possible implementation of this ADS:

non-ordered table (insert cheap, extract-max expensive)
ordered list (insert costs a bit, extract cheap)
etc...

Each implementation leads to different complexities for Insert and Extract-Max

Beniamin Bogosel Advanced Programming Techniques 21/44

Data structures and algorithms in practice

Solving algorithmic problems almost always requires a good combination of data
structures and algorithms (more or less sophisticated) to manage and search in these
structures

The importance of efficient implementation grows with the size of the data

Real life examples:

routing in computer networks
search engines
aligning DNA sequences in bio-informatics

Beniamin Bogosel Advanced Programming Techniques 22/44

An example

A genetics laboratory wants to develop a program capable of finding repetitions of
length M in a sequence of nucleotides S of length N with N ≫ M:

ACTGCGACGGTACGCTTCGACTTAG ...(M = 4)

First idea:

An index i goes from 2 to N −M + 1
Another index j goes from 1 to j − 1
For k ∈ [0, ...,M − 1] test if S [i + k] = S [j + k]

Efficiency: number of comparison equal to

M · (1 + ...+ (N −M)) =
M(N −M + 1)(N −M)

2
≈ 4.5 · 1021 for N = 3 · 109 and M = 1000

≈ 143.000 years assuming 109 operations/s

Beniamin Bogosel Advanced Programming Techniques 23/44

A better solution

1. Build a table of N −M + 1 lines and M columns for which the k-th line contains the
subsequence of length M starting at position k in S

ACTG
CTGC
TGCG
GCGA
CGAC

...


2. Sort the lines of this table in lexicographic order

3. Go through the sorted table and test if there are two identical consecutive lines

Note: when comparing two lines stop at the first difference. Less than 4/3 comparisons on
average.

Beniamin Bogosel Advanced Programming Techniques 24/44

Effectiveness

Constructing the table: M(N −M + 1) copy operations

Lexicographic sorting (fast sorting)

≤ 8

3
N lnN comparison operations on average

Detection of consecutive lines

≤ 4

3
(N −M) comparison operations on average

Assuming identical cost for all operations we get:

N(M +
8

3
lnN +

4

3
)−M(M + 1/3)

≈3.179 · 1012 operations for N = 3 · 109 and M = 1000

≈53 minutes assuming 109 operations/s

Beniamin Bogosel Advanced Programming Techniques 25/44

Remarks

Using a bigger computer does not improve efficiency problems! Having a computer 1000
more effective: 143 years for the first approach 3.2s for the second

The second solution is faster, but uses a lot of memory (M times more than the first
one)

(for later) Find an even more efficient solution given the data structures that you will
learn in this course

Beniamin Bogosel Advanced Programming Techniques 26/44

1 Intro: Algorithms + Data structures = Programs

2 Recursivity: recall

Beniamin Bogosel Advanced Programming Techniques 26/44

Recursive algorithms

An algorithm is recursive if it calls itself directly or indirectly

Motivation: Simplicity of expression for some algorithms

Example: Factorial function

n! =

{
1 if n = 0

n · (n − 1)! if n > 0

Beniamin Bogosel Advanced Programming Techniques 27/44

Recursive algorithms

Rules for defining a recursive solution:

Define a base case (n == 0)

Each step must decrease the ”size” of the problem n 7→ n − 1

If the recursive calls work on the same structure, the sub-problems must not overlap
(avoid boundary effects)

Beniamin Bogosel Advanced Programming Techniques 28/44

Example of multiple recursion

Computing the n-th Fibonacci number

F0 = 0
F1 = 1

∀n ≥ 2 : Fn = Fn−2 + Fn−1

Algorithm:

Beniamin Bogosel Advanced Programming Techniques 29/44

Example of multiple recursion

1. Is the algorithm correct?

2. What is the speed of execution?

3. Can we do better?

Beniamin Bogosel Advanced Programming Techniques 30/44

Example of multiple recursion

1. Is the algorithm correct?

Obviously, the algorithm is correct
Proof by induction

2. What is the speed of execution?

3. Can we do better?

Beniamin Bogosel Advanced Programming Techniques 30/44

Execution speed

number of operations for computing Fibonacci(n) in function of n

Doing some tests

Exponential complexity: all implementation reach their limit very fast

A bigger computer or a faster programming language do not fix a bad algorithm!

Beniamin Bogosel Advanced Programming Techniques 31/44

Keeping track of the execution

A naive implementation (like the one presented) computes the same thing multiple
times!!

Keeping track of computed instances could help improve efficiency: recursion with
memoization (the recursive algorithm should interact with a data structure; store and
quickly retrieve computed values)

Beniamin Bogosel Advanced Programming Techniques 32/44

Complexity of the naive implementation

⋆ T (n) number of basic operations for computing Fibonacci(n)

T (0) = 2,T (1) = 2,T (n) = T (n − 1) + T (n − 2) + 2.

⋆ therefore T (n) ≥ Fn

Beniamin Bogosel Advanced Programming Techniques 33/44

Complexity: how fast does Fn grow?

Elementary observation: Note that Fn ≥ Fn−1 ≥ Fn−2 ≥ Therefore for n even we have

Fn ≥ 2Fn−2 ≥ 22Fn−4 ≥ 2n/2−1F2

and for n odd
Fn ≥ 2Fn−2 ≥ ... ≥ 2

n−1
2 F1.

Direct formula: Fn =
1√
5

(
1 +
√
5

2

)n

− 1√
5

(
1−
√
5

2

)n

.

Conclusion: Fn grows exponentially with n and so does T (n).

Can we do better?

Beniamin Bogosel Advanced Programming Techniques 34/44

Iterative solution

Yes: simplest approach is better than recursion!

Complexity: time O(n), space O(1)

Beniamin Bogosel Advanced Programming Techniques 35/44

Merge sort

Sort idea based on recursion:

separate the array into two sub-arrays of the same size

sort (recursively) each one of the sub-tables

merge the sorted tables into the big sorted table

The base case is a table with only one element!

Initial call: Merge-sort(A, 1,A.length)
General principle: divide and conquer, divide et impera!

Beniamin Bogosel Advanced Programming Techniques 36/44

Merge-Sort: example

Beniamin Bogosel Advanced Programming Techniques 37/44

The Merge function

Merge(A, p, q, r)

input: the array A and indices p, q, r such that

p ≤ q < r (no void tables)
The sub tables A[p..q] and A[q + 1..r] are ordered

output: the two sub-tables are fusioned into a single ordered sub-table A[p..r]

Idea

keep a pointer for the beginning of the tables

Compare the two smallest elements

Put it in the fusioned table

advance the pointer

Beniamin Bogosel Advanced Programming Techniques 38/44

Fusion: the algorithm

Merge(A, p, q, r)

1: n1 = q − p + 1; n2 = r − q
2: New arrays L[1..n1 + 1]← A[p..q], R[1..n2 + 1]← A[q + 1..r]
3: L[n1 + 1] =∞,R[n2 + 1] =∞
4: i = 1; j = 1
5: for k = p to r do
6: if L[i] ≤ R[j] then
7: A[k] = L[i]
8: i = i + 1
9: else

10: A[k] = R[j]
11: j = j + 1

Beniamin Bogosel Advanced Programming Techniques 39/44

Remarks

Complexity of merge-sort: O(n log n) – see next part of the course

The Merge function uses O(n) memory space. Exercise (difficult): write a Merge
function which does not use additional memory!

Recursive version of insertion sort:

Insertion-Sort-Rec(A, n)

1: if n > 1 then
2: Insertion-Sort-Rec(A, n − 1)
3: Merge(A, 1, n − 1, n)

Beniamin Bogosel Advanced Programming Techniques 40/44

Note on implementing recursivity

execution trace of the factorial

each recursion call must memorize the invocation context

The memory space is O(n) (n recursive calls)

Beniamin Bogosel Advanced Programming Techniques 41/44

Terminal recursivity

A procedure is tail recursive if it does not make any other operations after it is being
invoked recursively

Advantages:

the memory space is reduced since the invocation context does not need to be memorized
Tail recursive procedures can be converted into iterative procedures

Beniamin Bogosel Advanced Programming Techniques 42/44

Tail recursive version of the factorial

Factorial2(n)

1: return Factorial2-rec(n, 2, 1)

Factorial2-Rec(n, i , f)

1: if i > n then
2: return f
3: return Factorial2-rec(n, i + 1, f)

⋆ Memory space used O(1): the factorial is kept in f which is an input argument for the
recursive function
⋆ A little bit less straightforward

Beniamin Bogosel Advanced Programming Techniques 43/44

We have seen...

general definition: algorithms, data structures

analysis of an iterative algorithm (Insertion-Sort)

notions regarding recursivity

analysis of a recursive algorithm (Fibonacci)

merge sorting (MergeSort)

Beniamin Bogosel Advanced Programming Techniques 44/44

	Intro: Algorithms + Data structures = Programs
	Recursivity: recall

